The present invention relates to aggregating integrated circuits and, in particular, to stacking integrated circuits in chip-scale packages.
Leaded packages play an important role in electronics, but efforts to miniaturize electronic components and assemblies have driven development of technologies that preserve circuit board surface area. Because leaded packages have leads emergent from peripheral sides of the package, leaded packages occupy more than a minimal amount of circuit board surface area. Consequently, alternatives to leaded packages known as chip scale packaging or CSP have recently gained market share.
CSP refers generally to packages that provide connection to an integrated circuit through a set of contacts arrayed across a major surface of the package. Instead of leads emergent from a peripheral side of the package, contacts are placed on a major surface and typically emerge from the planar bottom surface of the package. The absence of “leads” on package sides renders most stacking techniques devised for leaded packages inapplicable for CSP stacking.
The previous known methods for stacking CSPs apparently have various deficiencies including complex structural arrangements and thermal or high frequency performance issues. Thermal performance is a characteristic of importance in CSP stacks. To increase dissipation of heat generated by constituent CSPs, the thermal gradient between the lower CSP and upper CSP in a CSP stack or module should be minimized. Prior art, solutions to CSP stacking do not, however, address thermal gradient minimization in disclosed constructions.
As CSP gains in market share, signal complexity and datapath widths reflect the growing trend toward moving ever larger amounts of data at increasing rates and the demand for wider datapath storage increases.
What is needed, therefore, is a technique and system for stacking chipscale packaged integrated circuits in a module that provides a thermally efficient, reliable structure that performs well at higher frequencies and provides datapath flexibility but does not result in a stack of excessive height yet allows production at reasonable cost with readily understood and managed materials and methods.
The present invention stacks chip scale-packaged integrated circuits (CSPs) into modules that conserve PWB or other board surface area. The present invention can be used to advantage with CSP packages of a variety of sizes and configurations. Although the present invention is applied most frequently to chip scale packages that contain one die, it may be employed with chip scale packages that include more than one integrated circuit die.
In a two-high CSP stack or module devised in accordance with a preferred embodiment of the present invention, two CSPs are stacked, with one CSP disposed above the other. The two CSPs are connected with a flex circuitry. The flex circuitry connects the upper and lower CSPs and provides a thermal and electrical path connection path between the module and an application environment such as a printed wiring board (PWB). Supplemental contacts on the module provide connectivity for additional signaling and/or data-path and/or control.
The present invention may be employed to advantage in numerous configurations and combinations of CSPs in modules provided for high-density memories or high capacity computing.
The invention is used with CSP packages and packaged integrated circuits of a variety of types and configurations such as, for example, those that are die-sized, as well those that are near chip-scale as well as the variety of ball grid array packages known in the art. It may also be used with those CSP-like packages that exhibit bare die connectives on one major surface. Thus, the term CSP should be broadly considered in the context of this application. Collectively, these will be known herein as chip scale packaged integrated circuits (CSPs) and preferred embodiments will be described in terms of CSPs, but the particular configurations used in the explanatory figures are not, however, to be construed as limiting. For example, the elevation views of
Typical CSPs, such as, for example, ball-grid-array (“BGA”), micro-ball-grid array, and fine-pitch ball grid array (“FBGA”) packages have an array of connective contacts embodied, for example, as leads, bumps, solder balls, or balls that extend from lower surface 18 of a plastic casing in any of several patterns and pitches. An external portion of the connective contacts is often finished with a ball of solder. Shown in
In
Form standard 234 is, in a preferred embodiment, devised from copper to create a mandrel that mitigates thermal accumulation while providing a standard-sized form about which flex circuitry is disposed. Form standard 234 may take other shapes and forms such as for example, an angular “cap” that rests upon the respective CSP body. It also need not be thermally enhancing although such attributes are preferable. The form standard 234 allows the invention to be employed with CSPs of varying sizes, while articulating a single set of connective structures useable with the varying sizes of CSPs. Thus, a single set of connective structures such as flex circuits 30 and 32 (or a single flexible circuit in the mode where a single flex is used in place of the flex circuit pair 30 and 32) may be devised and used with the form standard 234 method and/or systems disclosed herein to create stacked modules with CSPs having different sized packages. This will allow the same flexible circuitry set design to be employed to create iterations of a stacked module 10 from constituent CSPs having a first arbitrary dimension X across attribute Y (where Y may be, for example, package width), as well as modules 10 from constituent CSPs having a second arbitrary dimension X prime across that same attribute Y. Thus, CSPs of different sizes may be stacked into modules 10 with the same set of connective structures (i.e. flex circuitry). Further, as those of skill will recognize, mixed sizes of CSPs may be implemented into the same module 10, such as would be useful to implement embodiments of a system-on-a-stack such as those disclosed in co-pending application U.S. patent application Ser. No. 10/136,890.
Preferably, portions of flex circuits 30 and 32 are fixed to form standard 234 by adhesive 35 which is preferably a tape adhesive, but may be a liquid adhesive or may be placed in discrete locations across the package. Preferably, adhesive 35 is thermally conductive. In some embodiments, adhesive 35 may be an inter-metallic bond and may have a melting point higher than typical reflow temperatures encountered in subsequent reflow operations. Adhesive 35 (“metallic bond 35”, “bond 35”) is preferably devised to provide for optimal thermal conductivity between flex circuits 30 and 32 and form standards 234.
Further, heat transference can be improved with use of a form standard 234 comprised of heat transference material such as a metal or preferably, copper or a copper compound or alloy to provide a significant sink for thermal energy. Such thermal enhancement of module 10 particularly presents opportunities for improvement of thermal performance where larger numbers of CSPs are aggregated in a single stacked module 10.
In a preferred embodiment, flex circuits 30 and 32 are multi-layer flexible circuit structures that have at least two conductive layers examples of which are described with regard to later-referenced Figures. Other embodiments may, however, employ flex circuitry, either as one circuit or two flex circuits to connect a pair of CSPs, that have only a single conductive layer.
Preferably, the conductive layers are metal such as alloy 110. The use of plural conductive layers provides advantages and the creation of a distributed capacitance across module 10 intended to reduce noise or bounce effects that can, particularly at higher frequencies, degrade signal integrity, as those of skill in the art will recognize. Module 10 of
Extra contacts 36E are depicted as solder balls, but this is not limiting and extra contacts 36E may take other forms of chipscale contacts, such as, for example, plated bumps, solder bumps, and balls. Further, module and extra contacts 36 and 36E may be solder balls having a circumference smaller or larger than CSP contacts 24. In this embodiment, module contacts 36 and extra contacts 36E are disposed in a pattern offset from the pattern of CSP contacts 24 of CSP 14. For example, in this depicted embodiment, the first row of extra contacts 36E is disposed between and below the two rows of CSP contacts 24 of lower CSP 14. Extra contacts 36E are depicted in extra rows disposed in a direction toward the periphery of module 10 from module contacts 36 and CSP contacts 24. However, this is not limiting and extra contacts 36E may be disposed toward the center of the bottom surface of CSP 14 as depicted in
In this embodiment, CSP contacts 24 have a column pitch 284, measured from center-to-center of CSP contacts in adjacent rows. CSP contacts 24 may be further described by a row pitch 281, measured from center-to-center of CSP contacts adjacent to each other in the same row. In this embodiment, module contacts 36 and supplemental contacts 36E have a column pitch 283, measured from center-to-center of CSP contacts adjacent to each other within a column. Module contacts 36 and supplemental contacts 36E may be further described by a row pitch 282, measured from center-to-center of CSP contacts adjacent to each other within a row. In this embodiment, row pitch 281 is equal to row pitch 282. However, in other embodiments, row pitch 282 may be less than or greater than column pitch 281. In this embodiment, column pitch 283 is 0.8 mm, which is 0.2 mm smaller than column pitch 284 of 1 mm. Other embodiments may have other smaller or larger pitches for rows or columns. For example, as is known in the art, contacts arranged about the periphery of devices frequently have smaller pitches than similarly-sized contacts arranged in arrays. Further, in other embodiments, module and supplemental contacts 36 and 36E may be smaller or larger than CSP contacts 24, although here they are depicted as being similarly-sized.
In this embodiment, module contacts 36 and supplemental contacts 36E have one more column of contacts than do CSP contacts 24. Module and supplemental contacts 36 and 36E are arranged in an offset position devised to place the arrays of contacts having an extra column at the center with regard to the longitudinal dimension flex circuitry 30 and 32. While in this embodiment, module and supplemental contacts 36 and 36E have four extra rows and are offset, in other embodiments there may be more or fewer rows arranged in other offset positions or non-offset positions. Further, other embodiments may present a contact footprint having an area equal to or smaller than the footprint of module contacts 24 including some or all of supplemental contacts 36E by reducing pitch 282 and/or reducing the size of module and supplemental contacts 36 and 36E. Such arrangements, and various other embodiments including those described herein, may be devised to connect module 10 to various operating environments, such as, for example, DIMM memory boards, embedded systems like cellular phones and other personal electronics, circuit boards and modules, and many other systems requiring densely integrated CSPs.
In this embodiment, there are two rows of supplemental contacts 36E in each of the depicted arrays, in addition to the one extra column described above. The outside row of supplemental contacts 36E on each side is depicted as extending slightly beyond the lateral extent of CSP 14. In other embodiments, there may be rows of supplemental contacts 36E wholly outside the lateral extent of CSP 14, or all the supplemental contacts 36E may be inside the lateral extent of CSP 14. A lower portion of form standard 234 is depicted having an interior edge on each side marked by the dotted lines referenced 234. This position is devised to place form standard 234 above supplemental contacts 36E for mechanical support and thermal conduction. In other embodiments, form standard 234 may not extend over supplemental contacts 36E, or may extend only partially over supplemental contacts 36E or may extend further under CSP 14 and surround or penetrate the arrays of CSP contacts 24. Still other embodiments may be practiced without a form standard 234.
Those having skill in the art will understand, after appreciating this specification, that contacts 42E in this embodiment are devised in a manner providing a module footprint compliant with a ball-out for a common x36 FCRAM CSP. In this embodiment, the flex 30 provides, together with a similarly-devised flex 32 on the opposing lateral side of the module, connections to provide for combining the 18-bit datapath on two x18 FCRAM CSPs into an x36 datapath. Such an embodiment may have adjusted column pitches such as those described with reference to
While a two-high stack having FCRAM x18 to x36 datapath conversion has been described, other embodiments may have more CSPs, and may combine different types of CSPs or combine memory CSPs with different sizes and operating standards. Only certain embodiments will need the split datapath scheme described with reference to
In a wide datapath module 10, the data paths of the constituent upper CSP 12 and lower CSP 14 are combined to provide a module 10 that expresses a module datapath that is twice the width of the datapaths of the constituent CSPs in a two-high module 10. The preferred method of combination is concatenation, but other combinations may be employed to combine the datapaths of CSPs 12 and 14 on the array of module contacts 36 and 36E.
As an example,
In particular, in the embodiment depicted in
Although the present invention has been described in detail, it will be apparent to those skilled in the art that the invention may be embodied in a variety of specific forms and that various changes, substitutions and alterations can be made without departing from the spirit and scope of the invention. The described embodiments are only illustrative and not restrictive and the scope of the invention is, therefore, indicated by the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/005,581 filed Oct. 29, 2001, now U.S. Pat. No. 6,576,992. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/453,398, filed Jun. 3, 2003, pending, which application is a continuation-in-part of U.S. patent application Ser. No. 10/005,581 filed Oct. 29, 2001, now U.S. Pat. No. 6,576,992.
Number | Name | Date | Kind |
---|---|---|---|
3411122 | Schiller et al. | Nov 1968 | A |
3436604 | Hyltin | Apr 1969 | A |
3654394 | Gordon | Apr 1972 | A |
3727064 | Bottini | Apr 1973 | A |
3746934 | Stein | Jul 1973 | A |
3766439 | Isaacson | Oct 1973 | A |
3772776 | Weisenburger | Nov 1973 | A |
3983547 | Almasi | Sep 1976 | A |
4079511 | Grabbe | Mar 1978 | A |
4103318 | Schwede | Jul 1978 | A |
4288841 | Gogal | Sep 1981 | A |
4398235 | Lutz et al. | Aug 1983 | A |
4406508 | Sadigh-Behzadi | Sep 1983 | A |
4437235 | McIver | Mar 1984 | A |
4466183 | Burns | Aug 1984 | A |
4513368 | Houseman | Apr 1985 | A |
4587596 | Bunnell | May 1986 | A |
4645944 | Uya | Feb 1987 | A |
4696525 | Coller et al. | Sep 1987 | A |
4712129 | Orcutt | Dec 1987 | A |
4722691 | Gladd et al. | Feb 1988 | A |
4733461 | Nakano | Mar 1988 | A |
4758875 | Fujisaki et al. | Jul 1988 | A |
4763188 | Johnson | Aug 1988 | A |
4821007 | Fields et al. | Apr 1989 | A |
4823234 | Konishi et al. | Apr 1989 | A |
4833568 | Berhold | May 1989 | A |
4839717 | Phy et al. | Jun 1989 | A |
4862249 | Carlson | Aug 1989 | A |
4884237 | Mueller et al. | Nov 1989 | A |
4891789 | Quattrini et al. | Jan 1990 | A |
4911643 | Perry et al. | Mar 1990 | A |
4953060 | Lauffer et al. | Aug 1990 | A |
4956694 | Eide | Sep 1990 | A |
4983533 | Go | Jan 1991 | A |
4985703 | Kaneyama | Jan 1991 | A |
5012323 | Farnworth | Apr 1991 | A |
5016138 | Woodman | May 1991 | A |
5034350 | Marchisi | Jul 1991 | A |
5041015 | Travis | Aug 1991 | A |
5041902 | McShane | Aug 1991 | A |
5057903 | Olla | Oct 1991 | A |
5064762 | Nishiguchi | Nov 1991 | A |
5068708 | Newman | Nov 1991 | A |
5081067 | Shimru et al. | Jan 1992 | A |
5099393 | Bentlage et al. | Mar 1992 | A |
5104820 | Go et al. | Apr 1992 | A |
5117282 | Salatino | May 1992 | A |
5122862 | Kajihara et al. | Jun 1992 | A |
5138430 | Gow, 3rd et al. | Aug 1992 | A |
5138434 | Wood et al. | Aug 1992 | A |
5158912 | Kellerman et al. | Oct 1992 | A |
5159434 | Kohno et al. | Oct 1992 | A |
5159535 | Desai et al. | Oct 1992 | A |
5168926 | Watson et al. | Dec 1992 | A |
5198888 | Sugano et al. | Mar 1993 | A |
5198965 | Curtis et al. | Mar 1993 | A |
5214307 | Davis | May 1993 | A |
5219794 | Satoh et al. | Jun 1993 | A |
5222014 | Lin | Jun 1993 | A |
5224023 | Smith et al. | Jun 1993 | A |
5229916 | Frankeny et al. | Jul 1993 | A |
5239198 | Lin et al. | Aug 1993 | A |
5240588 | Uchida | Aug 1993 | A |
5241454 | Ameen et al. | Aug 1993 | A |
5243133 | Engle et al. | Sep 1993 | A |
5247423 | Lin et al. | Sep 1993 | A |
5252855 | Ogawa et al. | Oct 1993 | A |
5252857 | Kane et al. | Oct 1993 | A |
5259770 | Bates et al. | Nov 1993 | A |
5261068 | Gaskins et al. | Nov 1993 | A |
5262927 | Chia et al. | Nov 1993 | A |
5276418 | Klosowiak et al. | Jan 1994 | A |
5279029 | Burns | Jan 1994 | A |
5281852 | Normington | Jan 1994 | A |
5289062 | Wyland | Feb 1994 | A |
5311401 | Gates, Jr. et al. | May 1994 | A |
5313097 | Haj-Ali-Ahmadi et al. | May 1994 | A |
5343075 | Nishino | Aug 1994 | A |
5347428 | Carson et al. | Sep 1994 | A |
5357478 | Kikuda et al. | Oct 1994 | A |
5361228 | Adachi et al. | Nov 1994 | A |
5375041 | McMahon | Dec 1994 | A |
5377077 | Burns | Dec 1994 | A |
5386341 | Olson et al. | Jan 1995 | A |
5394010 | Tazawa et al. | Feb 1995 | A |
5394303 | Yamaji | Feb 1995 | A |
5397916 | Normington | Mar 1995 | A |
5402006 | O'Donley | Mar 1995 | A |
5420751 | Burns | May 1995 | A |
5428190 | Stopperan | Jun 1995 | A |
5438224 | Papageorge et al. | Aug 1995 | A |
5446620 | Burns et al. | Aug 1995 | A |
5448511 | Paurus et al. | Sep 1995 | A |
5455740 | Burns | Oct 1995 | A |
5475920 | Burns et al. | Dec 1995 | A |
5477082 | Buckley, III et al. | Dec 1995 | A |
5479318 | Burns | Dec 1995 | A |
5484959 | Burns | Jan 1996 | A |
5493476 | Burns | Feb 1996 | A |
5499160 | Burns | Mar 1996 | A |
5502333 | Bertin et al. | Mar 1996 | A |
5514907 | Moshayedi | May 1996 | A |
5523619 | McAllister et al. | Jun 1996 | A |
5523695 | Lin | Jun 1996 | A |
5541812 | Burns | Jul 1996 | A |
5543664 | Burns | Aug 1996 | A |
5561591 | Burns | Oct 1996 | A |
5566051 | Burns | Oct 1996 | A |
5572065 | Burns | Nov 1996 | A |
5588205 | Roane | Dec 1996 | A |
5592364 | Roane | Jan 1997 | A |
5594275 | Kwon et al. | Jan 1997 | A |
5612570 | Eide et al. | Mar 1997 | A |
5631193 | Burns | May 1997 | A |
5642055 | Difrancesco | Jun 1997 | A |
5644161 | Burns | Jul 1997 | A |
5646446 | Nicewarner, Jr. et al. | Jul 1997 | A |
5654877 | Burns | Aug 1997 | A |
5657537 | Saia et al. | Aug 1997 | A |
5677569 | Choi et al. | Oct 1997 | A |
5729894 | Rostoker et al. | Mar 1998 | A |
5744827 | Jeong et al. | Apr 1998 | A |
5751553 | Clayton | May 1998 | A |
5763296 | Casati et al. | Jun 1998 | A |
5764497 | Mizumo et al. | Jun 1998 | A |
5776797 | Nicewarner et al. | Jul 1998 | A |
5778522 | Burns | Jul 1998 | A |
5783464 | Burns | Jul 1998 | A |
5789815 | Tessier et al. | Aug 1998 | A |
5801437 | Burns | Sep 1998 | A |
5801439 | Fujisawa et al. | Sep 1998 | A |
5804870 | Burns | Sep 1998 | A |
5805422 | Otake et al. | Sep 1998 | A |
5828125 | Burns | Oct 1998 | A |
5835988 | Ishii | Nov 1998 | A |
5841721 | Kwon et al. | Nov 1998 | A |
5869353 | Levy et al. | Feb 1999 | A |
5895970 | Miyoshi | Apr 1999 | A |
5899705 | Akram | May 1999 | A |
5917709 | Johnson et al. | Jun 1999 | A |
5922061 | Robinson | Jul 1999 | A |
5925934 | Lim | Jul 1999 | A |
5926369 | Ingraham et al. | Jul 1999 | A |
5949657 | Karabatsos | Sep 1999 | A |
5953215 | Karabatsos | Sep 1999 | A |
5959839 | Gates | Sep 1999 | A |
5963427 | Bollesen | Oct 1999 | A |
5973395 | Suzuki et al. | Oct 1999 | A |
5995370 | Nakamori | Nov 1999 | A |
6002167 | Hatano et al. | Dec 1999 | A |
6002589 | Perino et al. | Dec 1999 | A |
6014316 | Eide | Jan 2000 | A |
6025642 | Burns | Feb 2000 | A |
6028352 | Eide | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6034878 | Osaka et al. | Mar 2000 | A |
6040624 | Chambers et al. | Mar 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6084293 | Ohuchi | Jul 2000 | A |
6084294 | Tomita | Jul 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6121676 | Solberg | Sep 2000 | A |
RE36916 | Moshayedi | Oct 2000 | E |
6157541 | Hacke | Dec 2000 | A |
6165817 | Akram | Dec 2000 | A |
6172874 | Bartilson | Jan 2001 | B1 |
6178093 | Bhatt et al. | Jan 2001 | B1 |
6187652 | Chou et al. | Feb 2001 | B1 |
6205654 | Burns | Mar 2001 | B1 |
6208521 | Nakatsuka | Mar 2001 | B1 |
6222737 | Ross | Apr 2001 | B1 |
6225688 | Kim et al. | May 2001 | B1 |
6233650 | Johnson et al. | May 2001 | B1 |
6234820 | Perino et al. | May 2001 | B1 |
6262476 | Vidal | Jul 2001 | B1 |
6262895 | Forthun | Jul 2001 | B1 |
6265660 | Tandy | Jul 2001 | B1 |
6266252 | Karabatsos | Jul 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6285560 | Lyne | Sep 2001 | B1 |
6288907 | Burns | Sep 2001 | B1 |
6300679 | Mukerji et al. | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6310392 | Burns | Oct 2001 | B1 |
6313998 | Kledzik | Nov 2001 | B1 |
6316825 | Park et al. | Nov 2001 | B1 |
6323060 | Isaak | Nov 2001 | B1 |
6329708 | Komiyama | Dec 2001 | B1 |
6336262 | Dalal et al. | Jan 2002 | B1 |
6351029 | Isaak | Feb 2002 | B1 |
6360433 | Ross | Mar 2002 | B1 |
6368896 | Farnworth et al. | Apr 2002 | B1 |
6376769 | Chung | Apr 2002 | B1 |
6392162 | Karabatsos | May 2002 | B1 |
6410857 | Gonya | Jun 2002 | B1 |
6426240 | Isaak | Jul 2002 | B1 |
6426549 | Isaak | Jul 2002 | B1 |
6426560 | Kawamura et al. | Jul 2002 | B1 |
6433418 | Fujisawa et al. | Aug 2002 | B1 |
6444490 | Bertin et al. | Sep 2002 | B1 |
6444921 | Wang et al. | Sep 2002 | B1 |
6446158 | Karabatsos | Sep 2002 | B1 |
6449159 | Haba | Sep 2002 | B1 |
6452826 | Kim et al. | Sep 2002 | B1 |
6462412 | Kamei et al. | Oct 2002 | B1 |
6465877 | Farnworth et al. | Oct 2002 | B1 |
6465893 | Khandros et al. | Oct 2002 | B1 |
6473308 | Forthun | Oct 2002 | B1 |
6486544 | Hashimoto | Nov 2002 | B1 |
6489178 | Coyle et al. | Dec 2002 | B1 |
6489687 | Hashimoto | Dec 2002 | B1 |
6492718 | Ohmori | Dec 2002 | B1 |
6509639 | Lin | Jan 2003 | B1 |
6514793 | Isaak | Feb 2003 | B1 |
6528870 | Fukatsu et al. | Mar 2003 | B1 |
6552910 | Moon et al. | Apr 2003 | B1 |
6560117 | Moon | May 2003 | B1 |
6572387 | Burns et al. | Jun 2003 | B1 |
6576992 | Cady et al. | Jun 2003 | B1 |
6588095 | Pan | Jul 2003 | B1 |
6590282 | Wang et al. | Jul 2003 | B1 |
6600222 | Levardo | Jul 2003 | B1 |
6614664 | Lee | Sep 2003 | B1 |
6620651 | He et al. | Sep 2003 | B1 |
6627984 | Bruce et al. | Sep 2003 | B1 |
6657134 | Spielberger et al. | Dec 2003 | B1 |
6660561 | Forthun | Dec 2003 | B1 |
6677670 | Kondo | Jan 2004 | B1 |
6683377 | Shim et al. | Jan 2004 | B1 |
6690584 | Uzuka et al. | Feb 2004 | B1 |
6699730 | Kim et al. | Mar 2004 | B1 |
6707684 | Andric et al. | Mar 2004 | B1 |
6709893 | Moden et al. | Mar 2004 | B1 |
6768660 | Kong et al. | Jul 2004 | B1 |
6781240 | Choi et al. | Aug 2004 | B1 |
6803651 | Chiang | Oct 2004 | B1 |
6812567 | Kim et al. | Nov 2004 | B1 |
6833984 | Belgacem | Dec 2004 | B1 |
6849949 | Lyu et al. | Feb 2005 | B1 |
6876074 | Kim | Apr 2005 | B1 |
6884653 | Larson | Apr 2005 | B1 |
6891729 | Ko et al. | May 2005 | B1 |
6908792 | Bruce et al. | Jun 2005 | B1 |
6914324 | Rapport et al. | Jul 2005 | B1 |
6919626 | Burns | Jul 2005 | B1 |
20010006252 | Kim et al. | Jul 2001 | A1 |
20010013423 | Datal et al. | Aug 2001 | A1 |
20010015487 | Forthun | Aug 2001 | A1 |
20010035572 | Harlan | Nov 2001 | A1 |
20010040793 | Inaba | Nov 2001 | A1 |
20020006032 | Karabatsos | Jan 2002 | A1 |
20020030995 | Masao | Mar 2002 | A1 |
20020048849 | Harlan | Apr 2002 | A1 |
20020076919 | Peters et al. | Jun 2002 | A1 |
20020101261 | Karabatsos | Aug 2002 | A1 |
20020139577 | Miller | Oct 2002 | A1 |
20020164838 | Moon et al. | Nov 2002 | A1 |
20020180022 | Emoto | Dec 2002 | A1 |
20030016710 | Satoshi | Jan 2003 | A1 |
20030045025 | Coyle et al. | Mar 2003 | A1 |
20030049886 | Salmon | Mar 2003 | A1 |
20030081392 | Cady et al. | May 2003 | A1 |
20030107118 | Pflughaupt et al. | Jun 2003 | A1 |
20030109078 | Yoshikazu et al. | Jun 2003 | A1 |
20030168725 | Warner et al. | Sep 2003 | A1 |
20040000708 | Rapport et al. | Jan 2004 | A1 |
20040021211 | Damberg | Feb 2004 | A1 |
20040031972 | Pflughaupt et al. | Feb 2004 | A1 |
20040045159 | DiStefano et al. | Mar 2004 | A1 |
20040065963 | Karnezos | Apr 2004 | A1 |
20040075991 | Haba et al. | Apr 2004 | A1 |
20040099938 | Kang et al. | May 2004 | A1 |
20040104470 | Bang et al. | Jun 2004 | A1 |
20040115866 | Bang et al. | Jun 2004 | A1 |
20040150107 | Cha et al. | Aug 2004 | A1 |
20040157352 | Beroz et al. | Aug 2004 | A1 |
20040203190 | Pflughaupt et al. | Oct 2004 | A1 |
20040217461 | Damberg | Nov 2004 | A1 |
20040217471 | Haba | Nov 2004 | A1 |
20040238931 | Haba et al. | Dec 2004 | A1 |
20040245617 | Damberg et al. | Dec 2004 | A1 |
20050018495 | Bhakta et al. | Jan 2005 | A1 |
20050035440 | Mohammed | Feb 2005 | A1 |
20050040508 | Lee | Feb 2005 | A1 |
20050133897 | Baek et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
004215467 (A) | Nov 1992 | DE |
004214102 | Dec 1992 | DE |
0426-303 | Oct 1990 | EP |
0461-639 | Dec 1991 | EP |
1119-049 | Jul 2001 | EP |
359088863 (A) | May 1984 | JP |
60-254762 (A) | Dec 1985 | JP |
3641047659 (A) | Sep 1986 | JP |
62-230027 (A) | Aug 1987 | JP |
4-209562 (A) | Jul 1992 | JP |
4-4368167 (A) | Dec 1992 | JP |
50-29534 (A) | May 1993 | JP |
5-335695 | Dec 1993 | JP |
63-153849 (A) | Jun 1998 | JP |
2-821315 | Nov 1998 | JP |
2000307029 (A) | Nov 2000 | JP |
2001077294 | Mar 2001 | JP |
2001085592 | Mar 2001 | JP |
2001332683 | Nov 2001 | JP |
2003037246 | Feb 2003 | JP |
2003086760 | Mar 2003 | JP |
2003086761 | Mar 2003 | JP |
2003309247 (A) | Oct 2003 | JP |
2003309246 | Oct 2003 | JP |
2003347475 (A) | Dec 2003 | JP |
2003347503 (A) | Dec 2003 | JP |
WO 03037053 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050018412 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10005581 | Oct 2001 | US |
Child | 10914483 | US | |
Parent | 10453398 | Jun 2003 | US |
Child | 10005581 | US |