Embodiments described herein generally relate to semiconductor device manufacturing hardware and processes, and more specifically to an apparatus and methods of controlling the delivery of power to a plasma formed in plasma processing chamber used in semiconductor manufacturing.
Reliably producing high aspect ratio features is one of the key technology challenges for the next generation of very large scale integration (VLSI) and ultra large scale integration (ULSI) of semiconductor devices. One method of forming high aspect ratio features uses a plasma assisted etching process, such as a reactive ion etch (RIE) plasma process, to form high aspect ratio openings in a material layer, such as a dielectric layer, of a substrate. In a typical RIE plasma process, a plasma is formed in an RIE processing chamber and ions from the plasma are accelerated towards a surface of a substrate to form openings in a material layer disposed beneath a mask layer formed on the surface of the substrate.
A typical Reactive Ion Etch (RIE) plasma processing chamber includes a radio frequency (RF) bias generator, which supplies an RF voltage to a “power electrode” (e.g., a biasing electrode), such as a metal plate positioned adjacent to an “electrostatic chuck” (ESC) assembly, more commonly referred to as the “cathode”. The power electrode can be capacitively coupled to the plasma of a processing system through a thick layer of dielectric material (e.g., ceramic material), which is a part of the ESC assembly. In a capacitively coupled gas discharge, the plasma is created by using a radio frequency (RF) generator that is coupled to an RF electrode through an RF matching network (“RF match”) that tunes the apparent load to 50Ω to minimize the reflected power and maximize the power delivery efficiency. The application of RF voltage to the power electrode causes an electron-repelling plasma sheath (also referred to as the “cathode sheath”) to form over a processing surface of a substrate that is positioned on a substrate supporting surface of the ESC assembly during processing. The non-linear, diode-like nature of the plasma sheath results in rectification of the applied RF field, such that a direct-current (DC) voltage drop, or “self-bias”, appears between the substrate and the plasma, making the substrate potential negative with respect to the plasma potential. This voltage drop determines the average energy of the plasma ions accelerated towards the substrate, and thus etch anisotropy. More specifically, ion directionality, the feature profile, and etch selectivity to the mask and the stop-layer are controlled by the Ion Energy Distribution Function (IEDF). In plasmas with RF bias, the IEDF typically has two non-discrete peaks, one at a low energy and one at a high energy, and an ion population that has a range of energies that extend between the two peaks. The presence of the ion population in-between the two peaks of the IEDF is reflective of the fact that the voltage drop between the substrate and the plasma oscillates at the RF bias frequency. When a lower frequency RF bias generator is used to achieve higher self-bias voltages, the difference in energy between these two peaks can be significant; and because the etch profile due to the ions at low energy peak is more isotropic, this could potentially lead to bowing of the etched feature walls. Compared to the high-energy ions, the low-energy ions are less effective at reaching the corners at the bottom of the etched feature (e.g., due to the charging effect), but cause less sputtering of the mask material. This is important in high aspect ratio etch applications, such as hard-mask opening or dielectric mold etch. As feature sizes continue to diminish and the aspect ratio increases, while feature profile control requirements become more stringent, it becomes more desirable to have a well-controlled IEDF at the substrate surface during processing.
Other conventional plasma processes and processing chamber designs have also found that delivering multiple different RF frequencies to one or more of the electrodes in a plasma processing chamber can be used to control various plasma properties, such as plasma density, ion energy, and/or plasma chemistry. However, it has been found that the delivery of multiple conventional sinusoidal waveforms from two or more RF sources, which are each configured to provide different RF frequencies, is unable to adequately or desirably control the sheath properties and can lead to undesirable arcing problems. Moreover, due to direct or capacitive coupling between the RF sources during processing, each RF source may induce an RF current that is provided to the output of the other connected RF source(s) (e.g., often referred to as the “cross-talk”), resulting in the power being diverted away from the intended load (plasma), as well as a possibly causing damage to each of the RF sources.
Accordingly, there is a need in the art for novel, robust and reliable plasma processing and biasing methods that enable maintaining a nearly constant sheath voltage, and thus create a desirable and repeatable IEDF at the surface of the substrate to enable a precise control over the shape of IEDF and, in some cases, the etch profile of the features formed in the surface of the substrate.
The present disclosure generally includes a plasma processing chamber that comprises a substrate support assembly, a pulsed-voltage waveform generator, a first filter assembly, a radio frequency (RF) generator and a second filter assembly. The substrate support assembly includes a substrate supporting surface, a support base, and a biasing electrode that is disposed between the support base and the substrate supporting surface, wherein a first dielectric layer is disposed between the support base and the biasing electrode, and a second dielectric layer is disposed between the biasing electrode and the substrate surface. The pulsed-voltage waveform generator is electrically coupled to the biasing electrode, and is configured to generate a pulsed-voltage signal that comprises a pulsed-voltage waveform. The first filter assembly is electrically coupled between the pulsed-voltage waveform generator and the biasing electrode. The radio frequency (RF) generator is electrically coupled to the support base or the biasing electrode, and is configured to generate an RF signal that comprises an RF waveform. The second filter assembly is electrically coupled between the radio frequency generator and the support base or the biasing electrode. In some configurations, second filter assembly is electrically coupled between the radio frequency generator and a radio frequency match, which is electrically coupled between the radio frequency generator and the support base or the biasing electrode. In some other configurations, a radio frequency match is disposed between the second filter assembly and the support base or the biasing electrode.
Embodiments of the present disclosure may further provide a method of processing of a substrate in a plasma processing chamber that includes delivering, by use of a radio frequency generator, a radio frequency signal to a support base disposed within a substrate support assembly, wherein the radio frequency generator is electrically coupled to the support base through a pulsed voltage filter assembly, and establishing, by use of a first pulsed-voltage waveform generator, a first pulsed voltage waveform at a biasing electrode disposed within the substrate support assembly, wherein the first pulsed-voltage waveform generator is electrically coupled to the biasing electrode through a first radio frequency filter assembly. The biasing electrode is disposed between the support base and a substrate supporting surface of the substrate support assembly. A first dielectric layer is disposed between the support base and the biasing electrode, and a second dielectric layer is disposed between the biasing electrode and the substrate supporting surface.
Embodiments of the present disclosure may further provide a method of processing of a substrate in a plasma processing chamber that includes delivering, by use of a radio frequency generator, a radio frequency signal to a support base disposed within a substrate support assembly, wherein the radio frequency generator is electrically coupled to the support base through a pulsed voltage filter assembly, establishing, by use of a first pulsed-voltage waveform generator, a first pulsed voltage waveform at a biasing electrode disposed within the substrate support assembly, wherein the first pulsed-voltage waveform generator is electrically coupled to the biasing electrode through a first radio frequency filter assembly, and establishing, by use of a second pulsed-voltage waveform generator, a second pulsed voltage waveform at an edge control electrode disposed within the substrate support assembly, wherein the second pulsed-voltage waveform generator is electrically coupled to the edge control electrode through a second radio frequency filter assembly. The biasing electrode is disposed between the support base and a substrate supporting surface of the substrate support assembly. A first dielectric layer is disposed between the support base and the biasing electrode, a second dielectric layer is disposed between the biasing electrode and the substrate supporting surface, and the edge control electrode surrounds at least a portion of the biasing electrode.
Embodiments of the present disclosure may further provide a plasma processing chamber that includes a substrate support assembly, a pulsed-voltage waveform generator, a radio frequency filter assembly, a radio frequency generator, and a pulsed-voltage filter assembly. The substrate support assembly includes a substrate supporting surface, a support base, a first biasing electrode that is disposed between the support base and the substrate supporting surface, a first dielectric layer is disposed between the support base and the first biasing electrode, and a second dielectric layer is disposed between the first biasing electrode and the substrate supporting surface. The pulsed-voltage waveform generator is electrically coupled to the first biasing electrode through a first electrical conductor, and is configured to establish a pulsed-voltage waveform at the first biasing electrode. The radio frequency filter assembly is electrically coupled between the pulsed-voltage waveform generator and the first electrical conductor. The radio frequency generator is electrically coupled to the support base or the first biasing electrode through a second electrical conductor, and is configured to establish a radio frequency voltage waveform at the support base or the first biasing electrode. The pulsed-voltage filter assembly is electrically coupled between the radio frequency generator and the second electrical conductor.
Embodiments of the present disclosure may further provide a plasma processing chamber that includes a substrate support assembly, a first pulsed-voltage waveform generator, a first radio frequency filter assembly, a second pulsed-voltage waveform generator, a second radio frequency filter assembly, a radio frequency generator, and a pulsed-voltage filter assembly. The substrate support assembly includes a substrate supporting surface, a support base, a first biasing electrode that is disposed between the support base and the substrate supporting surface, a first dielectric layer is disposed between the support base and the first biasing electrode, a second dielectric layer is disposed between the first biasing electrode and the substrate supporting surface, and an edge control electrode. The first pulsed-voltage waveform generator is electrically coupled to the first biasing electrode through a first electrical conductor, and is configured to establish a pulsed-voltage signal waveform at the first biasing electrode. The first radio frequency filter assembly is electrically coupled between the first pulsed-voltage waveform generator and the first electrical conductor. The second pulsed-voltage waveform generator is electrically coupled to the edge control electrode through a second electrical conductor, and is configured to establish a pulsed-voltage waveform at the edge control electrode. The second radio frequency filter assembly is electrically coupled between the second pulsed-voltage waveform generator and the second electrical conductor. The radio frequency generator is electrically coupled to the support base or the first biasing electrode through a third electrical conductor, and is configured to establish an RF waveform at the support base or the first biasing electrode. The pulsed-voltage filter assembly electrically coupled between the radio frequency generator and the third electrical conductor.
Embodiments of the present disclosure may provide a pulsed-voltage subsystem assembly, comprising a pulsed-voltage-generating unit enclosure and a junction box enclosure. The pulsed-voltage-generating unit enclosure may include a first pulsed-voltage waveform generator electrically coupled to a first generator output coupling assembly. The junction box enclosure may include a first bias compensation module compartment and a radio frequency filter compartment. The first bias compensation module compartment includes a first blocking capacitor electrically coupled between a first bias compensation module compartment output coupling assembly and the first generator output coupling assembly, and a first DC power supply having a positive terminal and a negative terminal, wherein the positive terminal or the negative terminal is electrically coupled to the first bias compensation module compartment output coupling assembly. The radio frequency filter compartment includes a first radio frequency filter assembly electrically coupled between a first radio frequency filter output coupling assembly and the first bias compensation module compartment output coupling assembly. The pulsed-voltage subsystem assembly is configured to be coupled to a plasma processing chamber. The first radio frequency filter output coupling assembly is configured to be electrically coupled to a first electrode disposed in the plasma processing chamber.
Embodiments of the present disclosure may further provide a pulsed-voltage subsystem assembly that includes a pulsed-voltage-generating unit enclosure and a junction box enclosure. The pulsed-voltage-generating unit enclosure includes a first pulsed-voltage waveform generator electrically coupled to a first generator output coupling assembly, and a second pulsed-voltage waveform generator that is electrically coupled to a second generator output coupling assembly. The junction box enclosure includes a first bias compensation module compartment, a second bias compensation module compartment, and a radio frequency filter compartment. The first bias compensation module compartment includes a first blocking capacitor electrically coupled between a first bias compensation module compartment output coupling assembly and the first generator output coupling assembly, and a first DC power supply having a positive terminal and a negative terminal, wherein the positive terminal or the negative terminal is electrically coupled to the first bias compensation module compartment output coupling assembly. The second bias compensation module compartment includes a second blocking capacitor electrically coupled between a second bias compensation module compartment output coupling assembly and the second generator output coupling assembly, and a second DC power supply having a positive terminal and a negative terminal, wherein the positive terminal or the negative terminal is electrically coupled to the second bias compensation module compartment output coupling assembly. The radio frequency filter compartment includes a first radio frequency filter assembly electrically coupled between a first radio frequency filter output coupling assembly and the first bias compensation module compartment output coupling assembly, and a second radio frequency filter assembly electrically coupled between a second radio frequency filter output coupling assembly and the second bias compensation module compartment output coupling assembly. The pulsed-voltage subsystem assembly is configured to be coupled to a plasma processing chamber. The first radio frequency filter output coupling assembly is configured to be electrically coupled to a first electrode disposed in the plasma processing chamber, and is configured to be electrically coupled to a second electrode disposed in the plasma processing chamber.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, and may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the disclosure provided herein include an apparatus and method for the plasma processing of a substrate in a processing chamber. More specifically, embodiments of this disclosure describe a biasing scheme that is configured to provide a radio frequency (RF) generated RF waveform from an RF generator to one or more electrodes within a processing chamber and a pulsed-voltage (PV) waveform delivered from one or more pulsed-voltage (PV) generators to the one or more electrodes within the processing chamber. In general, the generated RF waveform is configured to establish and maintain a plasma within the processing chamber, and the delivered PV waveform(s) are configured to establish a nearly constant sheath voltage across the surface of a substrate and thus create a desirable ion energy distribution function (IEDF) at the surface of the substrate during one or more plasma processing steps performed within the processing chamber. The plasma process(es) disclosed herein can be used to control the shape of IEDF and thus the interaction of the plasma with a surface of a substrate during processing. In some configurations, the plasma process(es) disclosed herein are used to control the profile of features formed in the surface of the substrate during processing. In some embodiments, the pulsed voltage waveform is established by a PV generator that is electrically coupled to a biasing electrode disposed within a substrate support assembly disposed within a plasma processing chamber.
During some semiconductor plasma processes, ions are purposely accelerated towards the substrate by the voltage drop in an electron-repelling sheath that forms over the substrate placed on top of a substrate-support assembly 136 (
In some embodiments of the disclosure provided herein, a processing chamber is configured to provide a capacitively coupled gas discharge, such that a plasma is created by use of an RF generator assembly that includes an RF generator that is coupled to an RF electrode through an RF matching network (“RF match”). The RF matching network is configured to tune the apparent load to 50Ω to minimize the reflected power and maximize the power delivery efficiency. In some embodiments, the RF electrode includes a metal plate that is positioned parallel to the plasma-facing surface of the substrate.
Additionally, during the plasma processing methods disclosed herein, an ion-accelerating cathode sheath is generally formed during plasma processing by use of a pulsed-voltage (PV) generator that is configured to establish a pulsed-voltage waveform at one or more biasing electrodes 104 (
However, as noted above, due to direct or capacitive coupling between the RF generator assembly and the PV generator assembly during processing, the interaction between the generated outputs from the RF generator and PV generator(s) will result in the power being diverted away from the intended (plasma) load, as well as possibly causing damage to each of the RF source and the PV source(s) without the use of a filtering scheme and/or processing method disclosed herein. Thus, the apparatus and methods disclosed herein are configured to provide at least a method of combining RF and PV power to one or more electrodes (e.g., cathode(s)) of a plasma processing chamber by coupling each generator to its respective electrode through one or more waveform-dependent filter assemblies, such that the one or more waveform-dependent filter assemblies do not significantly impede the power delivery provided from their respective RF and PV generators to the plasma.
The processing chamber 100 also includes a chamber body 113 that includes the chamber lid 123, one or more sidewalls 122, and a chamber base 124, which define a processing volume 129. The one or more sidewalls 122 and chamber base 124 generally include materials that are sized and shaped to form the structural support for the elements of the processing chamber 100, and are configured to withstand the pressures and added energy applied to them while a plasma 101 is generated within a vacuum environment maintained in the processing volume 129 of the processing chamber 100 during processing. In one example, the one or more sidewalls 122 and chamber base 124 are formed from a metal, such as aluminum, an aluminum alloy, or a stainless steel. A gas inlet 128 disposed through the chamber lid 123 is used to provide one or more processing gases to the processing volume 129 from a processing gas source 119 that is in fluid communication therewith. A substrate 103 is loaded into, and removed from, the processing volume 129 through an opening (not shown) in one of the one or more sidewalls 122, which is sealed with a slit valve (not shown) during plasma processing of the substrate 103. Herein, the substrate 103 is transferred to and from a substrate receiving surface 105A of an ESC substrate support 105 using a lift pin system (not shown).
In some embodiments, an RF generator assembly 160 is configured to deliver RF power to the support base 107 disposed proximate to the ESC substrate support 105, and within the substrate support assembly 136. The RF power delivered to the support base 107 is configured to ignite and maintain a processing plasma 101 formed by use of processing gases disposed within the processing volume 129. In some embodiments, the support base 107 is an RF electrode that is electrically coupled to an RF generator 118 via an RF matching circuit 161 and a first filter assembly 162, which are both disposed within the RF generator assembly 160. In some embodiments, the plasma generator assembly 160 and RF generator 118 are used to ignite and maintain a processing plasma 101 using the processing gases disposed in the processing volume 129 and fields generated by the RF power provided to the support base 107 by the RF generator 118. The processing volume 129 is fluidly coupled to one or more dedicated vacuum pumps, through a vacuum outlet 120, which maintain the processing volume 129 at sub-atmospheric pressure conditions and evacuate processing and/or other gases, therefrom. A substrate support assembly 136, disposed in the processing volume 129, is disposed on a support shaft 138 that is grounded and extends through the chamber base 124. However, in some embodiments, the RF generator assembly 160 is configured to deliver RF power to the biasing electrode 104 disposed in the substrate support 105 versus the support base 107.
The substrate support assembly 136, as briefly discussed above, generally includes a substrate support 105 (e.g., ESC substrate support) and support base 107. In some embodiments, the substrate support assembly 136 can additionally include an insulator plate 111 and a ground plate 112, as is discussed further below. The substrate support 105 is thermally coupled to and disposed on the support base 107. In some embodiments, the support base 107 is configured to regulate the temperature of the substrate support 105, and the substrate 103 disposed on the substrate support 105, during substrate processing. In some embodiments, the support base 107 includes one or more cooling channels (not shown) disposed therein that are fluidly coupled to, and in fluid communication with, a coolant source (not shown), such as a refrigerant source or water source having a relatively high electrical resistance. In some embodiments, the substrate support 105 includes a heater (not shown), such as a resistive heating element embedded in the dielectric material thereof. Herein, the support base 107 is formed of a corrosion resistant thermally conductive material, such as a corrosion resistant metal, for example aluminum, an aluminum alloy, or a stainless steel and is coupled to the substrate support with an adhesive or by mechanical means.
The support base 107 is electrically isolated from the chamber base 124 by the insulator plate 111, and the ground plate 112 is interposed between the insulator plate 111 and the chamber base 124. In some embodiments, the processing chamber 100 further includes a quartz pipe 110, or collar, that at least partially circumscribes portions of the substrate support assembly 136 to prevent corrosion of the ESC substrate support 105 and, or, the support base 107 from contact with corrosive processing gases or plasma, cleaning gases or plasma, or byproducts thereof. Typically, the quartz pipe 110, the insulator plate 111, and the ground plate 112 are circumscribed by a liner 108. Herein, a plasma screen 109 approximately coplanar with the substrate receiving surface of the ESC substrate support 105 prevents plasma from forming in a volume between the liner 108 and the one or more sidewalls 122.
The substrate support 105 is typically formed of a dielectric material, such as a bulk sintered ceramic material, such as a corrosion resistant metal oxide or metal nitride material, for example aluminum oxide (Al2O3), aluminum nitride (AlN), titanium oxide (TiO), titanium nitride (TiN), yttrium oxide (Y2O3), mixtures thereof, or combinations thereof. In embodiments herein, the substrate support 105 further includes a biasing electrode 104 embedded in the dielectric material thereof. In one configuration, the biasing electrode 104 is a chucking pole used to secure (chuck) the substrate 103 to a substrate receiving surface 105A of the substrate support 105, also referred to herein as an ESC substrate support, and to bias the substrate 103 with respect to the processing plasma 101 using one or more of the pulsed-voltage biasing schemes described herein. Typically, the biasing electrode 104 is formed of one or more electrically conductive parts, such as one or more metal meshes, foils, plates, or combinations thereof. In some embodiments, the biasing electrode 104 is electrically coupled to a chucking module 116, which provides a chucking voltage thereto, such as static DC voltage between about −5000 V and about 5000 V, using an electrical conductor, such as the coaxial transmission line 106 (e.g., a coaxial cable). As will be discussed further below, the chucking module 116 includes bias compensation circuit elements 116A (
The biasing electrode 104 is spaced apart from the substrate receiving surface 105A of the substrate support 105, and thus from the substrate 103, by a layer of dielectric material of the substrate support 105. Depending on the type of electrostatic chucking method utilized within the substrate support 105 to retain a substrate 103 during processing, such as a coulombic ESC or a Johnsen-Rahbek ESC, the effective circuit elements used to model the electrical coupling of the biasing electrode 104 to the plasma 101 will vary.
In a more complex model of the Johnsen-Rahbek ESC illustrated in
In some applications, since the substrate 103 is typically made out of a thin layer of a semiconductor material and/or dielectric material, the substrate 103 can be considered to be electrically a part of the ESC dielectric layer disposed between the biasing electrode 104 and the substrate receiving surface 105A. Thus, in some applications, the chuck capacitance CESC is approximated by the combined series capacitance of the ESC and the substrate (i.e., substrate capacitance Csub). However, in the coulombic chuck case, since the substrate capacitance Csub is typically very large (>10 nF), or the substrate may be conductive (infinite capacitance), the series capacitance is determined primarily by the capacitance CESC. In this case, the effective capacitance CE, as illustrated in
The substrate support assembly 136 further includes an edge control electrode 115 that is positioned below the edge ring 114 and surrounds the biasing electrode 104 so that when biased, due to its position relative to the substrate 103, it can affect or alter a portion of the generated plasma 101 that is at or outside of the edge of the substrate 103. The edge control electrode 115 can be biased by use of a pulsed-voltage waveform generator (PVWG) 150 that is different from the pulsed-voltage waveform generator (PVWG) 150 that is used to bias the biasing electrode 104. In one configuration, a first PV waveform generator 150 of a first PV source assembly 196 is configured to bias the biasing electrode 104, and a second PV waveform generator 150 of a second PV source assembly 197 is configured to bias the edge control electrode 115. In one embodiment, the edge control electrode 115 is positioned within a region of the substrate support 105, as shown in
Referring to
Referring to
Generally, a low pressure formed in the processing volume 129 of the processing chamber 100 results in poor thermal conduction between surfaces of hardware components disposed therein, such as between the dielectric material of the substrate support 105 and the substrate 103 disposed on the substrate receiving surface thereof, which reduces the substrate support's effectiveness in heating or cooling the substrate 103. Therefore, in some processes, a thermally conductive inert heat transfer gas, typically helium, is introduced into a volume (not shown) disposed between a non-device side surface of the substrate 103 and the substrate receiving surface 105A of the substrate support 105 to improve the heat transfer therebetween. The heat transfer gas, provided by a heat transfer gas source (not shown), flows to the backside volume through a gas communication path (not shown) disposed through the support base 107 and further disposed through the substrate support 105.
The processing chamber 100 further includes a controller 126, which is also referred to herein as a processing chamber controller. The controller 126 herein includes a central processing unit (CPU) 133, a memory 134, and support circuits 135. The controller 126 is used to control the process sequence used to process the substrate 103 including the substrate biasing methods described herein. The CPU 133 is a general-purpose computer processor configured for use in an industrial setting for controlling processing chamber and sub-processors related thereto. The memory 134 described herein, which is generally non-volatile memory, may include random access memory, read only memory, floppy or hard disk drive, or other suitable forms of digital storage, local or remote. The support circuits 135 are conventionally coupled to the CPU 133 and comprise cache, clock circuits, input/output subsystems, power supplies, and the like, and combinations thereof. Software instructions (program) and data can be coded and stored within the memory 134 for instructing a processor within the CPU 133. A software program (or computer instructions) readable by CPU 133 in the controller 126 determines which tasks are performable by the components in the processing chamber 100. Preferably, the program, which is readable by CPU 133 in the controller 126, includes code, which when executed by the processor (CPU 133), perform tasks relating to the monitoring and execution of the electrode biasing scheme described herein. The program will include instructions that are used to control the various hardware and electrical components within the processing chamber 100 to perform the various process tasks and various process sequences used to implement the electrode biasing scheme described herein.
During processing, the PV generators 314 within the PV waveform generators 150 of the first PV source assembly 196 and the second PV source assembly 197 establishes a pulsed voltage waveform on a load (e.g., the complex load 130) disposed with the processing chamber 100. While not intending to be limiting as to the disclosure provided herein, and to simplify the discussion, the components within the second PV source assembly 197, which are used to bias the edge control electrode 115, are not schematically shown in
A current-return output stage 314A has one end connected to ground, and another end connected to a connection point (i.e., one side of a generator output coupling assembly (not shown)) at the output of the PV waveform generator 150. The current-return output stage 314A can include the following elements: a resistor, a resistor and an inductor connected in series, a switch S2, and/or a more complex combination of electrical elements, including parallel capacitors, which permits a positive current flow towards the ground.
Transmission line 131, which forms part of the PV transmission line 157 (
Referring back to
In another alternate chamber lid 123 configuration, which can be used with one or more of the other embodiments disclosed herein, the chamber lid 123 (i.e., opposing electrode) is electrically isolated from the one or more sidewalls 122 and is electrically coupled to an RF generator 118 through a plasma generator assembly 160, as shown in
The biasing subsystem assembly 170 will generally include a pulsed-voltage generating unit enclosure 172 and a junction box enclosure 169. The biasing subsystem assembly 170 will generally include active power and voltage sources, as well as electrical circuits that include passive components. The active sources may include one or more pulsed voltage waveform generators, one or more RF generators and/or one or more DC power sources. The passive components within the electrical circuits may include resistors, capacitors, inductors and diodes. When in use, the biasing subsystem assembly 170 can be used to combine different kinds of power sources so that their output can be applied to the same load (e.g., complex load 130). The load may include the plasma 101 formed in the processing chamber 100, the cathode sheath, cathode and its power delivery system (e.g., transmission line(s)) as well as stray inductive and capacitive elements.
In some embodiments, the junction box enclosure 169 includes one or more bias compensation module compartments 171 and a radio frequency (RF) filter compartment 173. In some embodiments, the biasing subsystem assembly 170 also includes an RF delivery enclosure 174. Each of the compartments 171, 172, and 173 and the RF delivery enclosure 174 include one or more walls 171A, 172A, 173A and 174A, respectively, that are each configured to at least partially enclose, separate and isolate their internal electrical components from the electrical components found in adjacently positioned enclosures and an environment outside of the process chamber 100. Typically, only a single wall is used to isolate adjacent compartments from each other. While
The pulsed-voltage generating unit enclosure 172 includes at least one PV waveform generator 150 that is isolated from the electrical components found in the bias compensation module compartment 171, the radio frequency filter compartment 173 and the RF delivery enclosure 174 by at least the wall(s) 172A. The wall(s) 172A can include a grounded sheet metal box (e.g., aluminum or SST box) that is configured to support and isolate the one or more PV waveform generators 150 from any electromagnetic interference generated by the components within the RF delivery enclosure 174 and/or external to the process chamber 100. At an interface between the pulsed-voltage generating unit enclosure 172 and the bias compensation module compartment 171, a generator output coupling assembly 181 is used to connect the output 350 of a PV waveform generator 150 to a first portion of the transmission line 131 and the electrical components (e.g., blocking capacitor 153) disposed within the bias compensation module compartment 171. The term “coupling assembly”, as used herein, generally describes one or more electrical components, such as one or more electrical connectors, discrete electrical elements (e.g., capacitor, inductor, and resistor) and/or conductive elements that are configured to connect the current carrying elements that electrically couple two or more electrical components together.
The one or more bias compensation module compartments 171 includes the bias compensation circuit elements 116A (
The radio frequency filter compartment 173 includes one or more second filter assemblies 151 and chamber interconnecting components that are isolated from the electrical components found in the pulsed-voltage generating unit enclosure 172, the one or more bias compensation module enclosures 171, and the RF delivery enclosure 174 by at least the wall(s) 173A. The wall(s) 173A can include a grounded sheet metal box that is configured to isolate the components within the radio frequency filter compartment 173 from any electromagnetic interference generated by the components within the pulsed-voltage generating unit enclosure 172, the RF delivery enclosure 174 and/or external to the process chamber 100. At an interface between the radio frequency filter compartment 173 and the base 124 of the process chamber 100, a cathode coupling assembly 183 is used to connect the output connection(s) of the radio frequency filter compartment 173 to a portion of the PV transmission lines 157, 158 that electrically connect the biasing subsystem assembly 170 to one of the electrodes within the process chamber 100, such as the electrodes within the substrate support assembly 136.
The RF delivery enclosure 174 includes the RF matching circuit 161, the first filter assembly 162, optionally the RF generator 118, and other chamber interconnecting components that are isolated from the electrical components found in the pulsed-voltage generating unit enclosure 172 and the one or more bias compensation module enclosures 171 by at least the wall(s) 174A. The wall(s) 174A can include a grounded sheet metal box that is configured to isolate the components within the RF delivery enclosure 174 from any electromagnetic interference generated by the components within the pulsed-voltage generating unit enclosure 172 and/or external to the process chamber 100. At an interface between the RF delivery enclosure 174 and the base 124 of the process chamber 100, a cathode coupling assembly 184 is used to connect the output connection(s) of RF delivery enclosure 174 to a portion of the RF transmission line 167 that electrically connect the RF delivery enclosure 174 of the biasing subsystem assembly 170 to one of the electrodes within the process chamber 100, such as the electrodes within the substrate support assembly 136. The external conductor portion (e.g., third electrical conductor) of the RF transmission line 167, such as the portion of the RF transmission line 167 within the support shaft 138 and the support base 107 will have some combined stray capacitance Cstray to ground.
As illustrated in
As briefly discussed above,
The complex load 130 illustrated in
As illustrated in
The first filter assembly 162, also referred to herein as the pulsed voltage filter assembly, includes one or more electrical elements that are configured to substantially prevent a current generated by the output of the PV waveform generator 150 from flowing through the RF transmission line 167 and damaging the RF generator 118. The first filter assembly 162 acts as a high impedance (e.g., high Z) to the PV signal generated from the PV pulse generator 314 within the PV waveform generator 150, and thus inhibits the flow of current to the RF generator 118. In one embodiment, the first filter assembly 162 includes a blocking capacitor CBC, which is disposed between the RF matching circuit 161 and the RF generator 118. In this configuration, the RF matching element 161 is configured to compensate for the capacitance of the blocking capacitor CBC as it tunes the load apparent to the RF generator 118. In one example, to prevent a nanosecond PV waveform (e.g., pulse period 10-100 ns) provided from the PV waveform generator 150 from damaging the RF generator 118 the first filter assembly 162 includes a 35-100 pF capacitor. In another example, the first filter assembly 162 includes a blocking capacitor CBC that has a capacitance that is less than 50 pF.
In some embodiments, it may be desirable to utilize two or more sets of RF generators 118 and RF plasma generator assemblies 160 that are each configured to separately provide RF power at different RF frequencies to the support base 107, or other electrodes within the substrate support assembly 136. In one example, a first RF generator 118A (not shown) and first RF plasma generator assembly 160A (not shown) are configured to provide an RF signal at an RF frequency between about 300 kHz and 13.56 MHz to the support base 107 and a second RF generator 118B (not shown) and second RF plasma generator assembly 160B (not shown) are configured to provide an RF signal at an RF frequency of about 40 MHz or greater to the support base 107. In this example, each of the RF generator assemblies 160A, 160B will include a similarly configured first filter assembly 162 (e.g., includes a blocking capacitor having a capacitance CBC) that is adapted to prevent a current generated by the output of the PV waveform generator 150 from flowing through the respective transmission lines and damaging each of the respective RF generators. In addition, each of the RF generator assemblies 160A, 160B may also include a separate RF filter assembly, such as the second filter assembly 151 that is connected in series with their respective RF generator assembly and is configured to block the other RF frequencies delivered from the other RF generator assemblies to additionally prevent an RF currents generated by the output of the other RF generators from flowing through the transmission line and damaging their respective RF generator. In this configuration, the separate RF filter assembly can include a low-pass filter, a notch filter or a high-pass filter that is able to allow the generated RF waveform to pass and block the RF waveform(s) generated by the other RF generator(s).
In some embodiments, it may also be desirable to utilize two or more sets of PV generators that are each configured to separately provide a PV waveform to the biasing electrode 104 and/or edge control electrode 115. In this example, each of the PV waveform generators 150 (only one is shown in
In some embodiments, as shown in
Referring to
The second filter assembly 151 includes one or more electrical elements that are configured to prevent a current generated by the output of the RF generator 118 from flowing through PV transmission line 157 and damaging the PV pulse generator 314 of the PV waveform generator 150. As discussed above, the PV transmission line 157 is an assembly that includes the coaxial transmission line 106 and transmission line 131. In one embodiment, the second filter assembly 151 includes a filter capacitor 151A, which has a capacitance CFC, and a filter inductor 151B, which has an inductance LFL, that are connected in parallel, and are disposed in the transmission line 157 between the PV pulse generator 314 and the biasing electrode 104. In some configurations, the second filter assembly 151 is disposed between the blocking capacitor 153 of the chucking module 116 and the biasing electrode 104. The second filter assembly 151 acts as a high impedance (e.g., high Z) to the RF signal generated from the RF generator 118, and thus inhibits the flow of current to the PV pulse generator 314. In some embodiments, the capacitance CFC of the filter capacitor 151A is significantly less than the capacitance of the blocking capacitor 153, such as at least one order of magnitude, or at least two orders of magnitude, or three orders of magnitude less than the capacitance of the blocking capacitor 153. In one example, the capacitance CFC of the filter capacitor 151A is about 51 pF and the capacitance of the blocking capacitor 153 is about 40 nF.
As discussed above, the second filter assembly 151 is configured to block the RF signal, and any associated harmonics from making their way to the PV pulse generator 314. In some embodiments, the RF signal generated by the RF generator is configured to deliver an RF frequency greater than 400 kHz, such an RF frequency ≥1 MHz, or ≥2 MHz, or ≥13.56 MHz, or ≥40 MHz. In some embodiments, to prevent RF power provided from the RF generator 118 from damaging the PV pulse generator 314 the second filter assembly 151 includes a filter capacitor 151A that has a capacitance in a range between about 25 pF and 100 pF and a filter inductor 151B that has an inductance in a range between about 0.1 and 1 μH. In one example, to prevent RF power provided from the RF generator 118 at a frequency of 40 MHz from damaging the PV pulse generator 314 the second filter assembly 151 includes a filter capacitor 151A that has a capacitance of about 51 pF and a filter inductor 151B that has an inductance of about 311 nH. In some embodiments, the blocking capacitor CBC of the first filter assembly 162 has a capacitance value that is within one order of magnitude of the capacitance value of the filter capacitor 151A of the second filter assembly 151.
In some embodiments, as shown in
As noted above, embodiments of the disclosure provide novel substrate biasing methods that enable the maintaining of a nearly constant sheath voltage during processing, and thus creating a desired IEDF at the surface of the substrate, while also providing the ability to separately control aspects of the plasma formed in the processing volume of the plasma processing chamber by use of one or more RF source assemblies. In some embodiments, by use of the novel substrate biasing apparatus and methods disclosed herein, a single-peak (mono-energetic) IEDF can be formed at the surface of the substrate during processing. In other embodiments, as illustrated in
As is discussed further below in relation to
The substrate PV waveform 425, as shown in
In some embodiments, during processing in the processing chamber 100, a multiphase negative pulse waveform 401 is formed when a PV waveform generator 150 supplies and controls the delivery of a negative voltage during two of the phases of the established multiphase negative pulse waveform 401, such as the portions of the PV waveform that trend in a negative direction and/or are maintained at a negative voltage level (e.g., ion current phase). For example, these negative voltage-containing portions of the negative pulse waveform 401 would, by analogy, relate to the sheath formation phase 451 and the ion current phase 452 illustrated in
In some embodiments, as illustrated in
The various pulse voltage waveforms 401, 441 and 431 illustrated in
In some embodiments of the method illustrated in
In some embodiments, the positive pulse waveforms 431 is formed by establishing a positive voltage at the biasing electrode 104 and/or edge control electrode 115 between time TP1 and time TP2. Referring to
As shown in
In either of the processes of establishing pulsed voltage waveforms, such as establishing negative pulse waveforms 401, shaped pulse waveforms 441 or positive pulse waveforms 431, at the biasing electrode 104 and/edge control electrode 115, can enable keeping the sheath voltage nearly constant for a large percentage (e.g., 85%-90%) of the substrate processing time during a plasma process. The waveforms illustrated in
In general, the pulsed voltage waveforms such as establishing negative pulse waveforms 401, shaped pulse waveforms 441 or positive pulse waveforms 431, comprises a periodic series of short pulses repeating with a period TPD, on top of a voltage offset (ΔV). In one example, the period TPD can be between about 1 μs and about 5 μs, such as about 2.5 μs. A waveform within each period (repetition cycle) includes the following:
As discussed above, in some embodiments, the processing chamber 100 will at least include one or more RF generators 118, and their associated first filter assembly 162, and one or more PV generators 314, and their associated second filter assembly 151, that are together configured deliver desired waveforms to one or more electrodes disposed within the substrate support assembly 136. The software instruction stored in memory of the controller 126 are configured to cause the generation of an RF waveform that is configured to establish, maintain and control one or more aspects of a plasma formed within the processing chamber. The one or more aspects of the plasma that are controlled can include, but are not limited to, plasma density, plasma chemistry, and ion energy in the plasma formed in the processing volume 129.
In one example, during processing a series of bursts 612 that include a plurality of bursts 615 are provided to the biasing electrode 104 and/or edge control electrode 115 and are synchronized with delivery of the pulsed RF waveform 602. In this example, each of the plurality of bursts 615 have the same burst delivery length, burst rest length, and burst period as the RF pulse delivery length TRFON, RF pulse rest length TRFOFF and RF pulse period TRFP of the RF pulses within the pulsed RF waveform 602.
In another example, during processing a series of bursts 622, which include a plurality of bursts 625 are provided to the biasing electrode 104 and/or edge control electrode 115 and are synchronized with the delivery of pulsed RF waveform 602. In this example, each of the plurality of bursts 625 have the same burst delivery length, burst rest length, and burst period as the RF pulse delivery length TRFON, RF pulse rest length TRFOFF and RF pulse period TRFP of the RF pulses within the pulsed RF waveform 602. However, in this example, a delay period TDE is provided such that the start of each burst 625 occurs at a time after at least a portion of each of the RF pulse within the pulsed RF waveform 602 are delivered, which is also referred to herein as a positive delay period. It may also or alternately be desirable to delay the delivery of the RF pulse relative to the delivery of the bursts 625 such that the delivery of the RF pulses occurs after at least a portion of the bursts 625 are delivered (i.e., negative delay period).
In another example, during processing a series of bursts 632, which include a plurality of bursts 635 are provided to the biasing electrode 104 and/or edge control electrode 115 and synchronized with the delivery of pulsed RF waveform 602. In this example, each of the plurality of bursts 635 have the same burst period as the RF pulses within the pulsed RF waveform 602. However, in this example the burst delivery length and burst rest length are different from the RF pulses within the pulsed RF waveform 602. As illustrated in
While the series of bursts 612, 622, 632 illustrated in
In another example, as illustrated in
In another example, as illustrated in
In another example, as illustrated in
In some embodiment, a series of bursts, such as the series of bursts 612, 622 or 632, are synchronized and separately provided to the biasing electrode 104 and the edge control electrode 115 by use of one or more PV waveform generators 150 and the controller 126. In addition, as discussed above, a pulsed RF waveform 602 can be synchronized with a series of bursts 612, 622 or 632 that can be provided to the biasing electrode 104 and the edge control electrode 115 by use of one or more PV waveform generators 150 and the controller 126. In one example, a series of bursts 612 are provided to the biasing electrode 104 from the PV waveform generator 150 of the first PV source assembly 196 and a series of bursts 612 are provided to the edge control electrode 115 from the PV waveform generator 150 of the second PV source assembly 197, which are synchronized with the delivery of the pulsed RF waveform 602.
In some embodiments, the bursts and/or series of bursts provided to the biasing electrode 104 and the bursts and/or series of bursts provided to the edge control electrode have one or more different characteristics. In one example, the pulsed voltage waveforms provided in a burst provided to the biasing electrode 104 is different from the pulsed voltage waveforms provided in a burst that is simultaneously provided to the edge control electrode 115. In another example, the bursts provided in a series of burst provided to the biasing electrode 104 (e.g., burst 615) have a different burst delivery length from the bursts (e.g., burst 635) provided in a series of burst that are provided to the edge control electrode 115. In another example, the bursts provided in a series of burst provided to the biasing electrode 104 are staggered in time from the bursts provided in a series of burst that are provided to the edge control electrode 115. In this example, the bursts 615 of the series of bursts 612 are provided to the biasing electrode 104 and the bursts 625 of the series of bursts 622 are provided to the edge control electrode 115, and thus the timing of the delivery of bursts provided to the biasing electrode 104, edge control electrode and pulsed RF waveform 602 can be separately adjusted relative to one another.
In some embodiments, the PV waveforms provided to the biasing electrode 104 and the edge control electrode 115 are synchronized and identical in shape except for the amplitudes of the individual pulses provided to each electrode may be different. The differing PV waveform amplitude applied to the biasing electrode 104 and the edge control electrode 115 can be used control the “edge tilt” of the etched features formed on a substrate. In one example, the PV waveforms within a first burst that is provided to the biasing electrode 104 and the edge control electrode 115 are synchronized and identical in shape, and the peak-to-peak voltage of the PV waveform applied to the edge control electrode 115 is greater than the peak-to-peak voltage of the PV waveform applied to the biasing electrode 104. In another example, the PV waveforms within a second burst that is provided to the biasing electrode 104 and the edge control electrode 115 are synchronized and identical in shape, and the peak-to-peak voltage of the PV waveform applied to the edge control electrode 115 is less than the peak-to-peak voltage of the PV waveform applied to the biasing electrode 104.
In some embodiments, the software instructions stored in memory of the controller 126 are configured to cause the generation of a pulsed-voltage (PV) waveform and/or bursts of pulsed-voltage (PV) waveforms that are used to establish a nearly constant sheath voltage and thus create a desired IEDF at the surface of the substrate during plasma processing in the processing chamber. The control of pulsed-voltage (PV) waveform and/or bursts of pulsed-voltage (PV) waveforms enables the precise control over the shape of IEDF and number of peaks with IEDF, and thus better control the profile of the features formed in the surface of the substrate. The control of the pulsed-voltage (PV) waveform and/or bursts of pulsed-voltage (PV) waveforms will typically include the delivery of a desired voltage signal during one or more of the phases of the pulsed-voltage (PV) waveforms, and then allow the shape of the remaining phases of the pulsed-voltage (PV) waveform to evolve naturally during the rest of the waveform period TPD. The software stored in memory of the controller 126 will also include instructions that are used to control the various hardware and electrical components within the processing chamber 100, and processing system in which the processing chamber is disposed, to perform the various process tasks and various process sequences needed to synchronized the delivery of RF waveform(s), pulsed-voltage (PV) waveforms and/or bursts of pulsed-voltage (PV) waveforms to one or more electrodes within a processing chamber 100.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 63/059,533, filed Jul. 31, 2020, and U.S. Provisional Patent Application Ser. No. 63/150,529, filed Feb. 17, 2021, which are both hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4070589 | Martinkovic | Jan 1978 | A |
4340462 | Koch | Jul 1982 | A |
4464223 | Gorin | Aug 1984 | A |
4504895 | Steigerwald | Mar 1985 | A |
4585516 | Corn et al. | Apr 1986 | A |
4683529 | Bucher, II | Jul 1987 | A |
4931135 | Horiuchi et al. | Jun 1990 | A |
4992919 | Lee et al. | Feb 1991 | A |
5099697 | Agar | Mar 1992 | A |
5140510 | Myers | Aug 1992 | A |
5242561 | Sato | Sep 1993 | A |
5449410 | Chang et al. | Sep 1995 | A |
5451846 | Peterson et al. | Sep 1995 | A |
5464499 | Moslehi et al. | Nov 1995 | A |
5554959 | Tang | Sep 1996 | A |
5565036 | Westendorp et al. | Oct 1996 | A |
5595627 | Inazawa et al. | Jan 1997 | A |
5597438 | Grewal et al. | Jan 1997 | A |
5610452 | Shimer et al. | Mar 1997 | A |
5698062 | Sakamoto et al. | Dec 1997 | A |
5716534 | Tsuchiya et al. | Feb 1998 | A |
5770023 | Sellers | Jun 1998 | A |
5796598 | Nowak et al. | Aug 1998 | A |
5810982 | Sellers | Sep 1998 | A |
5830330 | Lantsman | Nov 1998 | A |
5882424 | Taylor et al. | Mar 1999 | A |
5928963 | Koshiishi | Jul 1999 | A |
5933314 | Ambson et al. | Aug 1999 | A |
5935373 | Koshimizu | Aug 1999 | A |
5948704 | Benjamin et al. | Sep 1999 | A |
5997687 | Koshimizu | Dec 1999 | A |
6043607 | Roderick | Mar 2000 | A |
6051114 | Yao et al. | Apr 2000 | A |
6055150 | Clinton et al. | Apr 2000 | A |
6074518 | Imafuku et al. | Jun 2000 | A |
6089181 | Suemasa et al. | Jul 2000 | A |
6099697 | Hausmann | Aug 2000 | A |
6110287 | Arai et al. | Aug 2000 | A |
6117279 | Smolanoff et al. | Sep 2000 | A |
6125025 | Howald et al. | Sep 2000 | A |
6133557 | Kawanabe et al. | Oct 2000 | A |
6136387 | Koizumi | Oct 2000 | A |
6187685 | Hopkins et al. | Feb 2001 | B1 |
6197151 | Kaji et al. | Mar 2001 | B1 |
6198616 | Dahimene et al. | Mar 2001 | B1 |
6201208 | Wendt et al. | Mar 2001 | B1 |
6214162 | Koshimizu | Apr 2001 | B1 |
6232236 | Shan et al. | May 2001 | B1 |
6252354 | Collins et al. | Jun 2001 | B1 |
6253704 | Savas | Jul 2001 | B1 |
6277506 | Okamoto | Aug 2001 | B1 |
6309978 | Donohoe et al. | Oct 2001 | B1 |
6313583 | Arita et al. | Nov 2001 | B1 |
6355992 | Via | Mar 2002 | B1 |
6358573 | Raoux et al. | Mar 2002 | B1 |
6367413 | Sill et al. | Apr 2002 | B1 |
6392187 | Johnson | May 2002 | B1 |
6395641 | Savas | May 2002 | B2 |
6413358 | Donohoe | Jul 2002 | B2 |
6423192 | Wada et al. | Jul 2002 | B1 |
6433297 | Kojima et al. | Aug 2002 | B1 |
6435131 | Koizumi | Aug 2002 | B1 |
6451389 | Amann et al. | Sep 2002 | B1 |
6456010 | Yamakoshi et al. | Sep 2002 | B2 |
6483731 | Isurin et al. | Nov 2002 | B1 |
6535785 | Johnson et al. | Mar 2003 | B2 |
6621674 | Zahringer et al. | Sep 2003 | B1 |
6664739 | Kishinevsky et al. | Dec 2003 | B1 |
6733624 | Koshiishi et al. | May 2004 | B2 |
6740842 | Johnson et al. | May 2004 | B2 |
6741446 | Ennis | May 2004 | B2 |
6777037 | Sumiya et al. | Aug 2004 | B2 |
6808607 | Christie | Oct 2004 | B2 |
6818103 | Scholl et al. | Nov 2004 | B1 |
6818257 | Amann et al. | Nov 2004 | B2 |
6830595 | Reynolds, III | Dec 2004 | B2 |
6830650 | Roche et al. | Dec 2004 | B2 |
6849154 | Nagahata et al. | Feb 2005 | B2 |
6861373 | Aoki et al. | Mar 2005 | B2 |
6863020 | Mitrovic et al. | Mar 2005 | B2 |
6896775 | Chistyakov | May 2005 | B2 |
6902646 | Mahoney et al. | Jun 2005 | B2 |
6917204 | Mitrovic et al. | Jul 2005 | B2 |
6947300 | Pai et al. | Sep 2005 | B2 |
6962664 | Mitrovic | Nov 2005 | B2 |
6970042 | Glueck | Nov 2005 | B2 |
6972524 | Marakhtanov et al. | Dec 2005 | B1 |
7016620 | Maess et al. | Mar 2006 | B2 |
7046088 | Ziegler | May 2006 | B2 |
7059267 | Hedberg et al. | Jun 2006 | B2 |
7104217 | Himori et al. | Sep 2006 | B2 |
7115185 | Gonzalez et al. | Oct 2006 | B1 |
7126808 | Koo et al. | Oct 2006 | B2 |
7147759 | Chistyakov | Dec 2006 | B2 |
7151242 | Schuler | Dec 2006 | B2 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183177 | Al-Bayati et al. | Feb 2007 | B2 |
7206189 | Reynolds, III | Apr 2007 | B2 |
7218503 | Howald | May 2007 | B2 |
7218872 | Shimomura | May 2007 | B2 |
7226868 | Mosden et al. | Jun 2007 | B2 |
7265963 | Hirose | Sep 2007 | B2 |
7274266 | Kirchmeier | Sep 2007 | B2 |
7305311 | van Zyl | Dec 2007 | B2 |
7312974 | Kuchimachi | Dec 2007 | B2 |
7408329 | Wiedemuth et al. | Aug 2008 | B2 |
7415940 | Koshimizu et al. | Aug 2008 | B2 |
7440301 | Kirchmeier et al. | Oct 2008 | B2 |
7452443 | Gluck et al. | Nov 2008 | B2 |
7479712 | Richert | Jan 2009 | B2 |
7509105 | Ziegler | Mar 2009 | B2 |
7512387 | Glueck | Mar 2009 | B2 |
7535688 | Yokouchi et al. | May 2009 | B2 |
7586099 | Eyhorn et al. | Sep 2009 | B2 |
7586210 | Wiedemuth et al. | Sep 2009 | B2 |
7588667 | Cerio, Jr. | Sep 2009 | B2 |
7601246 | Kim et al. | Oct 2009 | B2 |
7609740 | Glueck | Oct 2009 | B2 |
7618686 | Colpo | Nov 2009 | B2 |
7633319 | Arai | Dec 2009 | B2 |
7645341 | Kennedy et al. | Jan 2010 | B2 |
7651586 | Moriya et al. | Jan 2010 | B2 |
7652901 | Kirchmeier et al. | Jan 2010 | B2 |
7692936 | Richter | Apr 2010 | B2 |
7700474 | Cerio, Jr. | Apr 2010 | B2 |
7705676 | Kirchmeier et al. | Apr 2010 | B2 |
7706907 | Hiroki | Apr 2010 | B2 |
7718538 | Kim et al. | May 2010 | B2 |
7740704 | Strang | Jun 2010 | B2 |
7758764 | Dhindsa et al. | Jul 2010 | B2 |
7761247 | van Zyl | Jul 2010 | B2 |
7782100 | Steuber et al. | Aug 2010 | B2 |
7791912 | Walde | Sep 2010 | B2 |
7795817 | Nitschke | Sep 2010 | B2 |
7808184 | Chistyakov | Oct 2010 | B2 |
7821767 | Fujii | Oct 2010 | B2 |
7825719 | Roberg et al. | Nov 2010 | B2 |
7858533 | Liu et al. | Dec 2010 | B2 |
7888240 | Hamamjy et al. | Feb 2011 | B2 |
7898238 | Wiedemuth et al. | Mar 2011 | B2 |
7929261 | Wiedemuth | Apr 2011 | B2 |
RE42362 | Schuler | May 2011 | E |
7977256 | Liu et al. | Jul 2011 | B2 |
7988816 | Koshiishi et al. | Aug 2011 | B2 |
7995313 | Nitschke | Aug 2011 | B2 |
8044595 | Nitschke | Oct 2011 | B2 |
8052798 | Moriya et al. | Nov 2011 | B2 |
8055203 | Choueiry et al. | Nov 2011 | B2 |
8083961 | Chen et al. | Dec 2011 | B2 |
8110992 | Nitschke | Feb 2012 | B2 |
8128831 | Sato et al. | Mar 2012 | B2 |
8129653 | Kirchmeier et al. | Mar 2012 | B2 |
8133347 | Gluck et al. | Mar 2012 | B2 |
8133359 | Nauman et al. | Mar 2012 | B2 |
8140292 | Wendt | Mar 2012 | B2 |
8217299 | Ilic et al. | Jul 2012 | B2 |
8221582 | Patrick et al. | Jul 2012 | B2 |
8236109 | Moriya et al. | Aug 2012 | B2 |
8284580 | Wilson | Oct 2012 | B2 |
8313612 | McMillin et al. | Nov 2012 | B2 |
8313664 | Chen et al. | Nov 2012 | B2 |
8333114 | Hayashi | Dec 2012 | B2 |
8361906 | Lee et al. | Jan 2013 | B2 |
8382999 | Agarwal et al. | Feb 2013 | B2 |
8383001 | Mochiki et al. | Feb 2013 | B2 |
8384403 | Zollner et al. | Feb 2013 | B2 |
8391025 | Walde et al. | Mar 2013 | B2 |
8399366 | Takaba | Mar 2013 | B1 |
8419959 | Bettencourt et al. | Apr 2013 | B2 |
8422193 | Tao et al. | Apr 2013 | B2 |
8441772 | Yoshikawa et al. | May 2013 | B2 |
8456220 | Thome et al. | Jun 2013 | B2 |
8460567 | Chen | Jun 2013 | B2 |
8466622 | Knaus | Jun 2013 | B2 |
8542076 | Maier | Sep 2013 | B2 |
8551289 | Nishimura et al. | Oct 2013 | B2 |
8568606 | Ohse et al. | Oct 2013 | B2 |
8603293 | Koshiishi et al. | Dec 2013 | B2 |
8632537 | McNall, III et al. | Jan 2014 | B2 |
8641916 | Yatsuda et al. | Feb 2014 | B2 |
8685267 | Yatsuda et al. | Apr 2014 | B2 |
8704607 | Yuzurihara et al. | Apr 2014 | B2 |
8716114 | Ohmi et al. | May 2014 | B2 |
8716984 | Mueller et al. | May 2014 | B2 |
8735291 | Ranjan et al. | May 2014 | B2 |
8796933 | Hermanns | Aug 2014 | B2 |
8809199 | Nishizuka | Aug 2014 | B2 |
8821684 | Ui et al. | Sep 2014 | B2 |
8828883 | Rueger | Sep 2014 | B2 |
8845810 | Hwang | Sep 2014 | B2 |
8852347 | Lee et al. | Oct 2014 | B2 |
8884523 | Winterhalter et al. | Nov 2014 | B2 |
8884525 | Hoffman et al. | Nov 2014 | B2 |
8889534 | Ventzek et al. | Nov 2014 | B1 |
8895942 | Liu et al. | Nov 2014 | B2 |
8907259 | Kasai et al. | Dec 2014 | B2 |
8916056 | Koo et al. | Dec 2014 | B2 |
8926850 | Singh et al. | Jan 2015 | B2 |
8963377 | Ziemba et al. | Feb 2015 | B2 |
8979842 | McNall, III et al. | Mar 2015 | B2 |
8993943 | Pohl et al. | Mar 2015 | B2 |
9011636 | Ashida | Apr 2015 | B2 |
9039871 | Nauman et al. | May 2015 | B2 |
9042121 | Walde et al. | May 2015 | B2 |
9053908 | Sriraman et al. | Jun 2015 | B2 |
9059178 | Matsumoto et al. | Jun 2015 | B2 |
9087798 | Ohtake et al. | Jul 2015 | B2 |
9101038 | Singh et al. | Aug 2015 | B2 |
9105447 | Brouk et al. | Aug 2015 | B2 |
9105452 | Jeon et al. | Aug 2015 | B2 |
9123762 | Lin et al. | Sep 2015 | B2 |
9129776 | Finley et al. | Sep 2015 | B2 |
9139910 | Lee et al. | Sep 2015 | B2 |
9147555 | Richter | Sep 2015 | B2 |
9150960 | Nauman et al. | Oct 2015 | B2 |
9159575 | Ranjan et al. | Oct 2015 | B2 |
9208992 | Brouk et al. | Dec 2015 | B2 |
9209032 | Zhao et al. | Dec 2015 | B2 |
9209034 | Kitamura et al. | Dec 2015 | B2 |
9210790 | Hoffman et al. | Dec 2015 | B2 |
9224579 | Finley et al. | Dec 2015 | B2 |
9226380 | Finley | Dec 2015 | B2 |
9228878 | Haw et al. | Jan 2016 | B2 |
9254168 | Palanker | Feb 2016 | B2 |
9263241 | Arson et al. | Feb 2016 | B2 |
9287086 | Brouk et al. | Mar 2016 | B2 |
9287092 | Brouk et al. | Mar 2016 | B2 |
9287098 | Finley | Mar 2016 | B2 |
9306533 | Mavretic | Apr 2016 | B1 |
9309594 | Hoffman et al. | Apr 2016 | B2 |
9313872 | Yamazawa | Apr 2016 | B2 |
9355822 | Yamada et al. | May 2016 | B2 |
9362089 | Brouk et al. | Jun 2016 | B2 |
9373521 | Mochiki et al. | Jun 2016 | B2 |
9384992 | Narishige et al. | Jul 2016 | B2 |
9396960 | Ogawa et al. | Jul 2016 | B2 |
9404176 | Parkhe et al. | Aug 2016 | B2 |
9412613 | Manna et al. | Aug 2016 | B2 |
9435029 | Brouk et al. | Sep 2016 | B2 |
9483066 | Finley | Nov 2016 | B2 |
9490107 | Kim et al. | Nov 2016 | B2 |
9495563 | Ziemba et al. | Nov 2016 | B2 |
9496150 | Mochiki et al. | Nov 2016 | B2 |
9503006 | Pohl et al. | Nov 2016 | B2 |
9520269 | Finley et al. | Dec 2016 | B2 |
9530667 | Rastogi et al. | Dec 2016 | B2 |
9536713 | Van Zyl et al. | Jan 2017 | B2 |
9544987 | Mueller et al. | Jan 2017 | B2 |
9558917 | Finley et al. | Jan 2017 | B2 |
9564287 | Ohse et al. | Feb 2017 | B2 |
9570313 | Ranjan et al. | Feb 2017 | B2 |
9576810 | Deshmukh et al. | Feb 2017 | B2 |
9576816 | Rastogi et al. | Feb 2017 | B2 |
9577516 | Van Zyl | Feb 2017 | B1 |
9583357 | Long et al. | Feb 2017 | B1 |
9593421 | Baek et al. | Mar 2017 | B2 |
9601283 | Ziemba et al. | Mar 2017 | B2 |
9601319 | Bravo et al. | Mar 2017 | B1 |
9607843 | Rastogi et al. | Mar 2017 | B2 |
9620340 | Finley | Apr 2017 | B2 |
9620376 | Kamp et al. | Apr 2017 | B2 |
9620987 | Alexander et al. | Apr 2017 | B2 |
9637814 | Bugyi et al. | May 2017 | B2 |
9644221 | Kanamori et al. | May 2017 | B2 |
9651957 | Finley | May 2017 | B1 |
9655221 | Ziemba et al. | May 2017 | B2 |
9663858 | Nagami et al. | May 2017 | B2 |
9666446 | Tominaga et al. | May 2017 | B2 |
9666447 | Rastogi et al. | May 2017 | B2 |
9673027 | Yamamoto et al. | Jun 2017 | B2 |
9673059 | Raley et al. | Jun 2017 | B2 |
9685297 | Carter et al. | Jun 2017 | B2 |
9706630 | Miller et al. | Jul 2017 | B2 |
9711331 | Mueller et al. | Jul 2017 | B2 |
9711335 | Christie | Jul 2017 | B2 |
9728429 | Ricci et al. | Aug 2017 | B2 |
9734992 | Yamada et al. | Aug 2017 | B2 |
9741544 | Van Zyl | Aug 2017 | B2 |
9754768 | Yamada et al. | Sep 2017 | B2 |
9761419 | Nagami | Sep 2017 | B2 |
9761459 | Long et al. | Sep 2017 | B2 |
9767988 | Brouk et al. | Sep 2017 | B2 |
9786503 | Raley et al. | Oct 2017 | B2 |
9799494 | Chen et al. | Oct 2017 | B2 |
9805916 | Konno et al. | Oct 2017 | B2 |
9805965 | Sadjadi et al. | Oct 2017 | B2 |
9812305 | Pelleymounter | Nov 2017 | B2 |
9831064 | Konno et al. | Nov 2017 | B2 |
9837285 | Tomura et al. | Dec 2017 | B2 |
9840770 | Klimczak et al. | Dec 2017 | B2 |
9852889 | Kellogg et al. | Dec 2017 | B1 |
9852890 | Mueller et al. | Dec 2017 | B2 |
9865471 | Shimoda et al. | Jan 2018 | B2 |
9865893 | Esswein et al. | Jan 2018 | B2 |
9870898 | Urakawa et al. | Jan 2018 | B2 |
9872373 | Shimizu | Jan 2018 | B1 |
9881820 | Wong et al. | Jan 2018 | B2 |
9922802 | Hirano et al. | Mar 2018 | B2 |
9922806 | Tomura et al. | Mar 2018 | B2 |
9929004 | Ziemba et al. | Mar 2018 | B2 |
9941097 | Yamazawa et al. | Apr 2018 | B2 |
9941098 | Nagami | Apr 2018 | B2 |
9960763 | Miller et al. | May 2018 | B2 |
9972503 | Tomura et al. | May 2018 | B2 |
9997374 | Takeda et al. | Jun 2018 | B2 |
10020800 | Prager et al. | Jul 2018 | B2 |
10026593 | Alt et al. | Jul 2018 | B2 |
10027314 | Prager et al. | Jul 2018 | B2 |
10041174 | Matsumoto et al. | Aug 2018 | B2 |
10042407 | Grede et al. | Aug 2018 | B2 |
10063062 | Voronin et al. | Aug 2018 | B2 |
10074518 | Van Zyl | Sep 2018 | B2 |
10085796 | Podany | Oct 2018 | B2 |
10090191 | Tomura et al. | Oct 2018 | B2 |
10102321 | Povolny et al. | Oct 2018 | B2 |
10109461 | Yamada et al. | Oct 2018 | B2 |
10115567 | Hirano et al. | Oct 2018 | B2 |
10115568 | Kellogg et al. | Oct 2018 | B2 |
10176970 | Nitschke | Jan 2019 | B2 |
10176971 | Nagami | Jan 2019 | B2 |
10181392 | Leypold et al. | Jan 2019 | B2 |
10199246 | Koizumi et al. | Feb 2019 | B2 |
10217618 | Arson et al. | Feb 2019 | B2 |
10217933 | Nishimura et al. | Feb 2019 | B2 |
10224822 | Miller et al. | Mar 2019 | B2 |
10229819 | Hirano et al. | Mar 2019 | B2 |
10249498 | Ventzek et al. | Apr 2019 | B2 |
10268846 | Miller et al. | Apr 2019 | B2 |
10269540 | Carter et al. | Apr 2019 | B1 |
10276420 | Ito et al. | Apr 2019 | B2 |
10282567 | Miller et al. | May 2019 | B2 |
10283321 | Yang et al. | May 2019 | B2 |
10290506 | Ranjan et al. | May 2019 | B2 |
10297431 | Zelechowski et al. | May 2019 | B2 |
10304661 | Ziemba et al. | May 2019 | B2 |
10304668 | Coppa et al. | May 2019 | B2 |
10312048 | Dorf et al. | Jun 2019 | B2 |
10312056 | Collins et al. | Jun 2019 | B2 |
10320373 | Prager et al. | Jun 2019 | B2 |
10332730 | Christie | Jun 2019 | B2 |
10340123 | Ohtake | Jul 2019 | B2 |
10348186 | Schuler et al. | Jul 2019 | B2 |
10354839 | Alt et al. | Jul 2019 | B2 |
10373755 | Prager et al. | Aug 2019 | B2 |
10373804 | Koh et al. | Aug 2019 | B2 |
10373811 | Christie et al. | Aug 2019 | B2 |
10381237 | Takeda et al. | Aug 2019 | B2 |
10382022 | Prager et al. | Aug 2019 | B2 |
10387166 | Preston et al. | Aug 2019 | B2 |
10388544 | Ui et al. | Aug 2019 | B2 |
10389345 | Ziemba et al. | Aug 2019 | B2 |
10410877 | Takashima et al. | Sep 2019 | B2 |
10431437 | Gapi{right arrow over (n)}ski et al. | Oct 2019 | B2 |
10438797 | Cottle et al. | Oct 2019 | B2 |
10446453 | Coppa et al. | Oct 2019 | B2 |
10447174 | Porter, Jr. et al. | Oct 2019 | B1 |
10448494 | Dorf et al. | Oct 2019 | B1 |
10448495 | Dorf et al. | Oct 2019 | B1 |
10453656 | Carducci et al. | Oct 2019 | B2 |
10460910 | Ziemba et al. | Oct 2019 | B2 |
10460911 | Ziemba et al. | Oct 2019 | B2 |
10460916 | Boyd, Jr. et al. | Oct 2019 | B2 |
10483089 | Ziemba et al. | Nov 2019 | B2 |
10483100 | Ishizaka et al. | Nov 2019 | B2 |
10510575 | Kraus et al. | Dec 2019 | B2 |
10522343 | Tapily et al. | Dec 2019 | B2 |
10535502 | Carducci et al. | Jan 2020 | B2 |
10546728 | Carducci et al. | Jan 2020 | B2 |
10553407 | Nagami et al. | Feb 2020 | B2 |
10555412 | Dorf et al. | Feb 2020 | B2 |
10580620 | Carducci et al. | Mar 2020 | B2 |
10593519 | Yamada et al. | Mar 2020 | B2 |
10607813 | Fairbairn et al. | Mar 2020 | B2 |
10607814 | Ziemba et al. | Mar 2020 | B2 |
10658189 | Hatazaki et al. | May 2020 | B2 |
10659019 | Slobodov et al. | May 2020 | B2 |
10665434 | Matsumoto et al. | May 2020 | B2 |
10666198 | Prager et al. | May 2020 | B2 |
10672589 | Koshimizu et al. | Jun 2020 | B2 |
10672596 | Brcka | Jun 2020 | B2 |
10672616 | Kubota | Jun 2020 | B2 |
10685807 | Dorf et al. | Jun 2020 | B2 |
10707053 | Urakawa et al. | Jul 2020 | B2 |
10707054 | Kubota | Jul 2020 | B1 |
10707055 | Shaw et al. | Jul 2020 | B2 |
10707086 | Yang et al. | Jul 2020 | B2 |
10707090 | Takayama et al. | Jul 2020 | B2 |
10707864 | Miller et al. | Jul 2020 | B2 |
10714372 | Chua et al. | Jul 2020 | B2 |
10720305 | Van Zyl | Jul 2020 | B2 |
10734906 | Miller et al. | Aug 2020 | B2 |
10748746 | Kaneko et al. | Aug 2020 | B2 |
10755894 | Hirano et al. | Aug 2020 | B2 |
10763150 | Lindley et al. | Sep 2020 | B2 |
10773282 | Coppa et al. | Sep 2020 | B2 |
10774423 | Janakiraman et al. | Sep 2020 | B2 |
10777388 | Ziemba et al. | Sep 2020 | B2 |
10790816 | Ziemba et al. | Sep 2020 | B2 |
10791617 | Dorf et al. | Sep 2020 | B2 |
10796887 | Prager et al. | Oct 2020 | B2 |
10804886 | Miller et al. | Oct 2020 | B2 |
10811227 | Van Zyl et al. | Oct 2020 | B2 |
10811228 | Van Zyl et al. | Oct 2020 | B2 |
10811229 | Van Zyl et al. | Oct 2020 | B2 |
10811230 | Ziemba et al. | Oct 2020 | B2 |
10811296 | Cho et al. | Oct 2020 | B2 |
10847346 | Ziemba et al. | Nov 2020 | B2 |
10892140 | Ziemba et al. | Jan 2021 | B2 |
10892141 | Ziemba et al. | Jan 2021 | B2 |
10896807 | Fairbairn et al. | Jan 2021 | B2 |
10896809 | Ziemba et al. | Jan 2021 | B2 |
10903047 | Ziemba et al. | Jan 2021 | B2 |
10904996 | Koh et al. | Jan 2021 | B2 |
10916408 | Dorf et al. | Feb 2021 | B2 |
10923320 | Koh et al. | Feb 2021 | B2 |
10923321 | Dorf et al. | Feb 2021 | B2 |
10923367 | Lubomirsky et al. | Feb 2021 | B2 |
10923379 | Liu et al. | Feb 2021 | B2 |
10971342 | Engelstaedter et al. | Apr 2021 | B2 |
10978274 | Kubota | Apr 2021 | B2 |
10978955 | Ziemba et al. | Apr 2021 | B2 |
10985740 | Prager et al. | Apr 2021 | B2 |
10991553 | Ziemba et al. | Apr 2021 | B2 |
10991554 | Zhao et al. | Apr 2021 | B2 |
10998169 | Ventzek et al. | May 2021 | B2 |
11004660 | Prager et al. | May 2021 | B2 |
11011349 | Brouk et al. | May 2021 | B2 |
11075058 | Ziemba et al. | Jul 2021 | B2 |
11095280 | Ziemba et al. | Aug 2021 | B2 |
11101108 | Slobodov et al. | Aug 2021 | B2 |
11108384 | Prager et al. | Aug 2021 | B2 |
20010003298 | Shamouilian et al. | Jun 2001 | A1 |
20010009139 | Shan et al. | Jul 2001 | A1 |
20010033755 | Ino et al. | Oct 2001 | A1 |
20020069971 | Kaji et al. | Jun 2002 | A1 |
20020078891 | Chu et al. | Jun 2002 | A1 |
20030026060 | Hiramatsu et al. | Feb 2003 | A1 |
20030029859 | Knoot et al. | Feb 2003 | A1 |
20030049558 | Aoki et al. | Mar 2003 | A1 |
20030052085 | Parsons | Mar 2003 | A1 |
20030079983 | Long et al. | May 2003 | A1 |
20030091355 | Jeschonek et al. | May 2003 | A1 |
20030137791 | Arnet et al. | Jul 2003 | A1 |
20030151372 | Tsuchiya et al. | Aug 2003 | A1 |
20030165044 | Yamamoto | Sep 2003 | A1 |
20030201069 | Johnson | Oct 2003 | A1 |
20040040665 | Mizuno et al. | Mar 2004 | A1 |
20040040931 | Koshiishi et al. | Mar 2004 | A1 |
20040066601 | Larsen | Apr 2004 | A1 |
20040112536 | Quon | Jun 2004 | A1 |
20040223284 | Iwami et al. | Nov 2004 | A1 |
20050022933 | Howard | Feb 2005 | A1 |
20050024809 | Kuchimachi | Feb 2005 | A1 |
20050039852 | Roche et al. | Feb 2005 | A1 |
20050092596 | Kouznetsov | May 2005 | A1 |
20050098118 | Amann et al. | May 2005 | A1 |
20050151544 | Mahoney et al. | Jul 2005 | A1 |
20050152159 | Isurin et al. | Jul 2005 | A1 |
20050286916 | Nakazato et al. | Dec 2005 | A1 |
20060075969 | Fischer | Apr 2006 | A1 |
20060130767 | Herchen | Jun 2006 | A1 |
20060139843 | Kim | Jun 2006 | A1 |
20060158823 | Mizuno et al. | Jul 2006 | A1 |
20060171848 | Roche et al. | Aug 2006 | A1 |
20060219178 | Asakura | Oct 2006 | A1 |
20060278521 | Stowell | Dec 2006 | A1 |
20070113787 | Tigashiura et al. | May 2007 | A1 |
20070114981 | Vasquez et al. | May 2007 | A1 |
20070196977 | Wang et al. | Aug 2007 | A1 |
20070284344 | Todorov et al. | Dec 2007 | A1 |
20070285869 | Howald | Dec 2007 | A1 |
20070297118 | Fujii | Dec 2007 | A1 |
20080012548 | Gerhardt et al. | Jan 2008 | A1 |
20080037196 | Yonekura et al. | Feb 2008 | A1 |
20080048498 | Wiedemuth et al. | Feb 2008 | A1 |
20080106842 | Ito et al. | May 2008 | A1 |
20080135401 | Kadlec et al. | Jun 2008 | A1 |
20080160212 | Koo | Jul 2008 | A1 |
20080185537 | Walther et al. | Aug 2008 | A1 |
20080210545 | Kouznetsov | Sep 2008 | A1 |
20080236493 | Sakao | Oct 2008 | A1 |
20080252225 | Kurachi et al. | Oct 2008 | A1 |
20080272706 | Kwon et al. | Nov 2008 | A1 |
20080289576 | Lee et al. | Nov 2008 | A1 |
20090016549 | French et al. | Jan 2009 | A1 |
20090059462 | Mizuno et al. | Mar 2009 | A1 |
20090078678 | Kojima | Mar 2009 | A1 |
20090133839 | Yamazawa et al. | May 2009 | A1 |
20090236214 | Janakiraman et al. | Sep 2009 | A1 |
20090295295 | Shannon et al. | Dec 2009 | A1 |
20100018648 | Collins et al. | Jan 2010 | A1 |
20100025230 | Ehiasarian et al. | Feb 2010 | A1 |
20100029038 | Murakawa | Feb 2010 | A1 |
20100072172 | Ui et al. | Mar 2010 | A1 |
20100101935 | Chistyakov et al. | Apr 2010 | A1 |
20100118464 | Matsuyama | May 2010 | A1 |
20100154994 | Fischer et al. | Jun 2010 | A1 |
20100193491 | Cho et al. | Aug 2010 | A1 |
20100271744 | Ni et al. | Oct 2010 | A1 |
20100276273 | Heckman et al. | Nov 2010 | A1 |
20100321047 | Zollner et al. | Dec 2010 | A1 |
20100326957 | Maeda et al. | Dec 2010 | A1 |
20110096461 | Yoshikawa et al. | Apr 2011 | A1 |
20110100807 | Matsubara et al. | May 2011 | A1 |
20110143537 | Lee et al. | Jun 2011 | A1 |
20110157760 | Willwerth et al. | Jun 2011 | A1 |
20110177669 | Lee et al. | Jul 2011 | A1 |
20110177694 | Chen et al. | Jul 2011 | A1 |
20110259851 | Brouk et al. | Oct 2011 | A1 |
20110281438 | Lee et al. | Nov 2011 | A1 |
20110298376 | Kanegae | Dec 2011 | A1 |
20120000421 | Miller et al. | Jan 2012 | A1 |
20120052599 | Brouk et al. | Mar 2012 | A1 |
20120081350 | Sano et al. | Apr 2012 | A1 |
20120088371 | Ranjan et al. | Apr 2012 | A1 |
20120097908 | Willwerth et al. | Apr 2012 | A1 |
20120171390 | Nauman | Jul 2012 | A1 |
20120319584 | Brouk et al. | Dec 2012 | A1 |
20130059448 | Marakhtanov | Mar 2013 | A1 |
20130087447 | Bodke et al. | Apr 2013 | A1 |
20130175575 | Ziemba et al. | Jul 2013 | A1 |
20130213935 | Liao et al. | Aug 2013 | A1 |
20130214828 | Valcore, Jr. et al. | Aug 2013 | A1 |
20130340938 | Tappan et al. | Dec 2013 | A1 |
20130344702 | Nishizuka | Dec 2013 | A1 |
20140057447 | Yang | Feb 2014 | A1 |
20140061156 | Brouk et al. | Mar 2014 | A1 |
20140062495 | Carter et al. | Mar 2014 | A1 |
20140077611 | Young et al. | Mar 2014 | A1 |
20140109886 | Singleton et al. | Apr 2014 | A1 |
20140117861 | Finley et al. | May 2014 | A1 |
20140125315 | Kirchmeier et al. | May 2014 | A1 |
20140154819 | Gaff et al. | Jun 2014 | A1 |
20140177123 | Thach et al. | Jun 2014 | A1 |
20140238844 | Chistyakov | Aug 2014 | A1 |
20140262755 | Deshmukh et al. | Sep 2014 | A1 |
20140263182 | Chen et al. | Sep 2014 | A1 |
20140273487 | Deshmukh et al. | Sep 2014 | A1 |
20140305905 | Yamada et al. | Oct 2014 | A1 |
20140356984 | Ventzek et al. | Dec 2014 | A1 |
20140361690 | Yamada et al. | Dec 2014 | A1 |
20150002018 | Lill et al. | Jan 2015 | A1 |
20150043123 | Cox | Feb 2015 | A1 |
20150076112 | Sriraman et al. | Mar 2015 | A1 |
20150084509 | Yuzurihara et al. | Mar 2015 | A1 |
20150111394 | Hsu | Apr 2015 | A1 |
20150116889 | Yamasaki et al. | Apr 2015 | A1 |
20150130354 | Leray et al. | May 2015 | A1 |
20150130525 | Miller et al. | May 2015 | A1 |
20150170952 | Subramani et al. | Jun 2015 | A1 |
20150181683 | Singh et al. | Jun 2015 | A1 |
20150235809 | Ito et al. | Aug 2015 | A1 |
20150256086 | Miller et al. | Sep 2015 | A1 |
20150279689 | Yamamoto | Oct 2015 | A1 |
20150303914 | Ziemba et al. | Oct 2015 | A1 |
20150315698 | Chistyakov | Nov 2015 | A1 |
20150318846 | Prager et al. | Nov 2015 | A1 |
20150325413 | Kim et al. | Nov 2015 | A1 |
20150366004 | Nangoy et al. | Dec 2015 | A1 |
20160004475 | Beniyama et al. | Jan 2016 | A1 |
20160020072 | Brouk et al. | Jan 2016 | A1 |
20160027678 | Parkhe et al. | Jan 2016 | A1 |
20160056017 | Kim et al. | Feb 2016 | A1 |
20160064189 | Tandou et al. | Mar 2016 | A1 |
20160196958 | Leray et al. | Jul 2016 | A1 |
20160241234 | Mavretic | Aug 2016 | A1 |
20160284514 | Hirano | Sep 2016 | A1 |
20160314946 | Pelleymounter | Oct 2016 | A1 |
20160322242 | Nguyen et al. | Nov 2016 | A1 |
20160327029 | Ziemba et al. | Nov 2016 | A1 |
20160351375 | Valcore, Jr. et al. | Dec 2016 | A1 |
20160358755 | Long et al. | Dec 2016 | A1 |
20170011887 | Deshmukh et al. | Jan 2017 | A1 |
20170018411 | Sriraman et al. | Jan 2017 | A1 |
20170022604 | Christie et al. | Jan 2017 | A1 |
20170029937 | Chistyakov et al. | Feb 2017 | A1 |
20170069462 | Kanarik et al. | Mar 2017 | A1 |
20170076962 | Engelhardt | Mar 2017 | A1 |
20170098527 | Kawasaki et al. | Apr 2017 | A1 |
20170098549 | Agarwal | Apr 2017 | A1 |
20170110335 | Yang et al. | Apr 2017 | A1 |
20170110358 | Sadjadi et al. | Apr 2017 | A1 |
20170113355 | Genetti et al. | Apr 2017 | A1 |
20170115657 | Trussell et al. | Apr 2017 | A1 |
20170117172 | Genetti et al. | Apr 2017 | A1 |
20170154726 | Prager et al. | Jun 2017 | A1 |
20170162417 | Ye et al. | Jun 2017 | A1 |
20170163254 | Ziemba et al. | Jun 2017 | A1 |
20170169996 | Ui et al. | Jun 2017 | A1 |
20170170449 | Alexander et al. | Jun 2017 | A1 |
20170178917 | Kamp et al. | Jun 2017 | A1 |
20170221682 | Nishimura et al. | Aug 2017 | A1 |
20170236688 | Caron et al. | Aug 2017 | A1 |
20170236741 | Angelov et al. | Aug 2017 | A1 |
20170236743 | Severson et al. | Aug 2017 | A1 |
20170243731 | Ziemba et al. | Aug 2017 | A1 |
20170250056 | Boswell et al. | Aug 2017 | A1 |
20170263478 | McChesney et al. | Sep 2017 | A1 |
20170278665 | Carter et al. | Sep 2017 | A1 |
20170287791 | Coppa et al. | Oct 2017 | A1 |
20170311431 | Park | Oct 2017 | A1 |
20170316935 | Tan et al. | Nov 2017 | A1 |
20170330734 | Lee et al. | Nov 2017 | A1 |
20170330786 | Genetti et al. | Nov 2017 | A1 |
20170334074 | Genetti et al. | Nov 2017 | A1 |
20170358431 | Dorf et al. | Dec 2017 | A1 |
20170366173 | Miller et al. | Dec 2017 | A1 |
20170372912 | Long et al. | Dec 2017 | A1 |
20180019100 | Brouk et al. | Jan 2018 | A1 |
20180076032 | Wang et al. | Mar 2018 | A1 |
20180102769 | Prager et al. | Apr 2018 | A1 |
20180139834 | Nagashima et al. | May 2018 | A1 |
20180166249 | Dorf et al. | Jun 2018 | A1 |
20180189524 | Miller et al. | Jul 2018 | A1 |
20180190501 | Ueda | Jul 2018 | A1 |
20180204708 | Tan et al. | Jul 2018 | A1 |
20180205369 | Prager et al. | Jul 2018 | A1 |
20180218905 | Park et al. | Aug 2018 | A1 |
20180226225 | Koh et al. | Aug 2018 | A1 |
20180226896 | Miller et al. | Aug 2018 | A1 |
20180253570 | Miller et al. | Sep 2018 | A1 |
20180286636 | Ziemba et al. | Oct 2018 | A1 |
20180294566 | Wang et al. | Oct 2018 | A1 |
20180309423 | Okunishi et al. | Oct 2018 | A1 |
20180331655 | Prager et al. | Nov 2018 | A1 |
20180350649 | Gomm | Dec 2018 | A1 |
20180366305 | Nagami et al. | Dec 2018 | A1 |
20180374672 | Hayashi et al. | Dec 2018 | A1 |
20190027344 | Okunishi et al. | Jan 2019 | A1 |
20190080884 | Ziemba et al. | Mar 2019 | A1 |
20190090338 | Koh | Mar 2019 | A1 |
20190096633 | Pankratz et al. | Mar 2019 | A1 |
20190157041 | Zyl et al. | May 2019 | A1 |
20190157042 | Van Zyl et al. | May 2019 | A1 |
20190157044 | Ziemba et al. | May 2019 | A1 |
20190172685 | Van Zyl et al. | Jun 2019 | A1 |
20190172688 | Ueda | Jun 2019 | A1 |
20190180982 | Brouk et al. | Jun 2019 | A1 |
20190198333 | Tokashiki | Jun 2019 | A1 |
20190237300 | Ikeda | Aug 2019 | A1 |
20190259562 | Dorf et al. | Aug 2019 | A1 |
20190267218 | Wang et al. | Aug 2019 | A1 |
20190277804 | Prager et al. | Sep 2019 | A1 |
20190295769 | Prager et al. | Sep 2019 | A1 |
20190295819 | Okunishi et al. | Sep 2019 | A1 |
20190318918 | Saitoh et al. | Oct 2019 | A1 |
20190333741 | Nagami et al. | Oct 2019 | A1 |
20190341232 | Thokachichu et al. | Nov 2019 | A1 |
20190348258 | Koh et al. | Nov 2019 | A1 |
20190348263 | Okunishi | Nov 2019 | A1 |
20190363388 | Esswein et al. | Nov 2019 | A1 |
20190385822 | Marakhtanov et al. | Dec 2019 | A1 |
20190393791 | Ziemba et al. | Dec 2019 | A1 |
20200016109 | Feng et al. | Jan 2020 | A1 |
20200020510 | Shoeb et al. | Jan 2020 | A1 |
20200024330 | Chan-Hui et al. | Jan 2020 | A1 |
20200035457 | Ziemba et al. | Jan 2020 | A1 |
20200035458 | Ziemba et al. | Jan 2020 | A1 |
20200035459 | Ziemba et al. | Jan 2020 | A1 |
20200036367 | Slobodov et al. | Jan 2020 | A1 |
20200037468 | Ziemba et al. | Jan 2020 | A1 |
20200051785 | Miller et al. | Feb 2020 | A1 |
20200051786 | Ziemba et al. | Feb 2020 | A1 |
20200058475 | Engelstaedter et al. | Feb 2020 | A1 |
20200066497 | Engelstaedter et al. | Feb 2020 | A1 |
20200066498 | Engelstaedter et al. | Feb 2020 | A1 |
20200075293 | Ventzek et al. | Mar 2020 | A1 |
20200090905 | Brouk et al. | Mar 2020 | A1 |
20200106137 | Murphy et al. | Apr 2020 | A1 |
20200126760 | Ziemba et al. | Apr 2020 | A1 |
20200126837 | Kuno et al. | Apr 2020 | A1 |
20200144030 | Prager et al. | May 2020 | A1 |
20200161091 | Ziemba et al. | May 2020 | A1 |
20200161098 | Cui et al. | May 2020 | A1 |
20200161155 | Rogers et al. | May 2020 | A1 |
20200162061 | Prager et al. | May 2020 | A1 |
20200168436 | Ziemba et al. | May 2020 | A1 |
20200168437 | Ziemba et al. | May 2020 | A1 |
20200176221 | Prager et al. | Jun 2020 | A1 |
20200227230 | Ziemba et al. | Jul 2020 | A1 |
20200227289 | Song et al. | Jul 2020 | A1 |
20200234922 | Dorf | Jul 2020 | A1 |
20200234923 | Dorf | Jul 2020 | A1 |
20200243303 | Mishra et al. | Jul 2020 | A1 |
20200251371 | Kuno et al. | Aug 2020 | A1 |
20200266022 | Dorf et al. | Aug 2020 | A1 |
20200266035 | Nagaiwa | Aug 2020 | A1 |
20200294770 | Kubota | Sep 2020 | A1 |
20200328739 | Miller et al. | Oct 2020 | A1 |
20200352017 | Dorf et al. | Nov 2020 | A1 |
20200357607 | Ziemba et al. | Nov 2020 | A1 |
20200373114 | Prager et al. | Nov 2020 | A1 |
20200389126 | Prager et al. | Dec 2020 | A1 |
20200407840 | Hayashi et al. | Dec 2020 | A1 |
20200411286 | Koshimizu et al. | Dec 2020 | A1 |
20210005428 | Shaw et al. | Jan 2021 | A1 |
20210013006 | Nguyen et al. | Jan 2021 | A1 |
20210013011 | Prager et al. | Jan 2021 | A1 |
20210013874 | Miller et al. | Jan 2021 | A1 |
20210027990 | Ziemba et al. | Jan 2021 | A1 |
20210029815 | Bowman et al. | Jan 2021 | A1 |
20210043472 | Koshimizu et al. | Feb 2021 | A1 |
20210051792 | Dokan et al. | Feb 2021 | A1 |
20210066042 | Ziemba et al. | Mar 2021 | A1 |
20210082669 | Koshiishi et al. | Mar 2021 | A1 |
20210091759 | Prager et al. | Mar 2021 | A1 |
20210125812 | Ziemba et al. | Apr 2021 | A1 |
20210130955 | Nagaike et al. | May 2021 | A1 |
20210140044 | Nagaike et al. | May 2021 | A1 |
20210151295 | Ziemba et al. | May 2021 | A1 |
20210152163 | Miller et al. | May 2021 | A1 |
20210210313 | Ziemba et al. | Jul 2021 | A1 |
20210210315 | Ziemba et al. | Jul 2021 | A1 |
20210249227 | Bowman et al. | Aug 2021 | A1 |
20210272775 | Koshimizu | Sep 2021 | A1 |
20210288582 | Ziemba et al. | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
101990353 | Mar 2011 | CN |
102084024 | Jun 2011 | CN |
101707186 | Feb 2012 | CN |
105408993 | Mar 2016 | CN |
106206234 | Dec 2016 | CN |
104752134 | Feb 2017 | CN |
665306 | Aug 1995 | EP |
983394 | Mar 2000 | EP |
1119033 | Jul 2001 | EP |
1203441 | May 2002 | EP |
1214459 | Jun 2002 | EP |
1418670 | May 2004 | EP |
1691481 | Aug 2006 | EP |
1701376 | Sep 2006 | EP |
1708239 | Oct 2006 | EP |
1780777 | May 2007 | EP |
1852959 | Nov 2007 | EP |
2016610 | Jan 2009 | EP |
2096679 | Sep 2009 | EP |
2221614 | Aug 2010 | EP |
2541584 | Jan 2013 | EP |
2580368 | Apr 2013 | EP |
2612544 | Jul 2013 | EP |
2838112 | Feb 2015 | EP |
2991103 | Mar 2016 | EP |
3086359 | Oct 2016 | EP |
3396700 | Oct 2018 | EP |
3616234 | Mar 2020 | EP |
H08236602 | Sep 1996 | JP |
2748213 | May 1998 | JP |
111025894 | Jan 1999 | JP |
2002-313899 | Oct 2002 | JP |
2002299322 | Oct 2002 | JP |
4418424 | Feb 2010 | JP |
2011035266 | Feb 2011 | JP |
5018244 | Sep 2012 | JP |
2014112644 | Jun 2014 | JP |
2016-225439 | Dec 2016 | JP |
6741461 | Aug 2020 | JP |
100757347 | Sep 2007 | KR |
10-2007-0098556 | Oct 2007 | KR |
20160042429 | Apr 2016 | KR |
20200036947 | Apr 2020 | KR |
498706 | Aug 2002 | TW |
201717247 | May 2017 | TW |
1998053116 | Nov 1998 | WO |
2000017920 | Mar 2000 | WO |
2000030147 | May 2000 | WO |
2000063459 | Oct 2000 | WO |
2001005020 | Jan 2001 | WO |
2001012873 | Feb 2001 | WO |
2001013402 | Feb 2001 | WO |
2002052628 | Jul 2002 | WO |
2002054835 | Jul 2002 | WO |
2002059954 | Aug 2002 | WO |
2003037497 | May 2003 | WO |
2003052882 | Jun 2003 | WO |
2003054911 | Jul 2003 | WO |
2003077414 | Sep 2003 | WO |
2004084394 | Sep 2004 | WO |
2005124844 | Dec 2005 | WO |
2007118042 | Oct 2007 | WO |
2008016747 | Feb 2008 | WO |
2008050619 | May 2008 | WO |
2008061775 | May 2008 | WO |
2008061784 | May 2008 | WO |
2008062663 | May 2008 | WO |
2009012804 | Jan 2009 | WO |
2009069670 | Jun 2009 | WO |
2009111473 | Sep 2009 | WO |
2011073093 | Jun 2011 | WO |
2011087984 | Jul 2011 | WO |
2011156055 | Dec 2011 | WO |
2012030500 | Mar 2012 | WO |
2012109159 | Aug 2012 | WO |
2012122064 | Sep 2012 | WO |
2013000918 | Jan 2013 | WO |
2013016619 | Jan 2013 | WO |
2013084459 | Jun 2013 | WO |
2013088677 | Jun 2013 | WO |
2013099133 | Jul 2013 | WO |
2013114882 | Aug 2013 | WO |
2013118660 | Aug 2013 | WO |
2013125523 | Aug 2013 | WO |
2013187218 | Dec 2013 | WO |
2014035889 | Mar 2014 | WO |
2014035894 | Mar 2014 | WO |
2014035897 | Mar 2014 | WO |
2014036000 | Mar 2014 | WO |
2014124857 | Aug 2014 | WO |
2014197145 | Dec 2014 | WO |
2015060185 | Apr 2015 | WO |
2014124857 | May 2015 | WO |
2015134398 | Sep 2015 | WO |
2015198854 | Dec 2015 | WO |
2016002547 | Jan 2016 | WO |
2016059207 | Apr 2016 | WO |
2016060058 | Apr 2016 | WO |
2016060063 | Apr 2016 | WO |
2015073921 | May 2016 | WO |
2016104098 | Jun 2016 | WO |
2016128384 | Aug 2016 | WO |
2016131061 | Aug 2016 | WO |
2016170989 | Oct 2016 | WO |
2017172536 | Oct 2017 | WO |
2017208807 | Dec 2017 | WO |
2018048925 | Mar 2018 | WO |
2018111751 | Jun 2018 | WO |
2018170010 | Sep 2018 | WO |
2018197702 | Nov 2018 | WO |
2019036587 | Feb 2019 | WO |
2019040949 | Feb 2019 | WO |
2019099102 | May 2019 | WO |
2019099870 | May 2019 | WO |
2019185423 | Oct 2019 | WO |
2019225184 | Nov 2019 | WO |
2019239872 | Dec 2019 | WO |
2019244697 | Dec 2019 | WO |
2019244698 | Dec 2019 | WO |
2019244734 | Dec 2019 | WO |
2019245729 | Dec 2019 | WO |
2020004048 | Jan 2020 | WO |
2020017328 | Jan 2020 | WO |
2020022318 | Jan 2020 | WO |
2020022319 | Jan 2020 | WO |
2020026802 | Feb 2020 | WO |
2020036806 | Feb 2020 | WO |
2020037331 | Feb 2020 | WO |
2020046561 | Mar 2020 | WO |
2020051064 | Mar 2020 | WO |
2020112921 | Jun 2020 | WO |
2020121819 | Jun 2020 | WO |
2020145051 | Jul 2020 | WO |
2021003319 | Jan 2021 | WO |
2021062223 | Apr 2021 | WO |
2021097459 | May 2021 | WO |
2021134000 | Jul 2021 | WO |
Entry |
---|
Wikepedia, “Radio frequency” via https://en.wikipedia.org/wiki/Radio_frequency; pp. 1-4 (Year: 2023). |
Azo Materials “Alumina-Aluminum Oxide-Al2O3—A Refractory Ceramic Oxide” via https://www.azom.com/properties.aspx?ArticleID=52; pp. 1-2; (Year: 2023). |
Azo Materials “Aluminium Nitride/Aluminum Nitride (AIN)—Properties and Applications” via https://www.azom.com/properties.aspx ?ArticleID=610 (Year: 2023). |
The International Search Report and the Written Opinion for International Application No. PCT/US2021/040380; dated Oct. 27, 2021; 10 pages. |
PCT International Search Report and Written Opinion dated Nov. 9, 2018, for International Application No. PCT/US2018/043032. |
Taiwan Office Action for Application No. 107125613 dated Dec. 24, 2020, 16 pages. |
PCT International Search Report and Written Opinion dated Nov. 7, 2018, for International Application No. PCT/US2018/042965. |
International Search Report and Written Opinion for PCT/US2019/052067 dated Jan. 21, 2020. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/048392; dated Dec. 16, 2019; 13 pages. |
PCT International Search Report and Written Opinion dated Nov. 7, 2018, for International Application No. PCT/US2018/042961. |
PCT International Search Report and Written Opinion dated Nov. 7, 2018, for International Application No. PCT/US2018/042956. |
U.S. Appl. No. 62/433,204; entitled Creating Arbitrarily-Shaped Ion Energy Distribution Function (IEDF) Using Shaped-Pulse (EV) Bias; by Leonid Dorf, etal.; filed Dec. 16, 2016; 22 total pages. |
U.S. Appl. No. 15/424,405; entitled System for Tunable Workpiece Biasing in a Plasma Reactor; by Travis Koh, et al.; filed Feb. 3, 2017; 29 total pages. |
U.S. Appl. No. 15/618,082; entitled Systems and Methods for Controlling a Voltage Waveform at a Substrate During Plasma Processing; by Leonid Dorf, et al.; filed Jun. 8, 2017; 35 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2018/046171; dated Nov. 28, 2018; 10 total pages. |
PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2018/046182; dated Nov. 30, 2018; 10 total pages. |
PCT/US2020/014453 Interanational Search Report and Written Opinion dated May 14, 2020 consists of 8 pages. |
Korean Office Action for 10-2020-7007495 dated Jun. 14, 2021. |
International Search Report and Written Opinion dated Feb. 4, 2022 for Application No. PCT/US2021/054806. |
International Search Report and Written Opinion dated Feb. 4, 2022 for Application No. PCT/US2021/054814. |
United States Patent Application, U.S. Appl. No. 17/346,103, filed Jun. 11, 2021. |
United States Patent Application, U.S. Appl. No. 17/349,763, filed Jun. 16, 2021. |
United States Patent Application, U.S. Appl. No. 63/242,410, filed Sep. 9, 2021. |
United States Patent Application, U.S. Appl. No. 17/410,803, filed Aug. 24, 2021. |
United States Patent Application, U.S. Appl. No. 17/537,107, filed Nov. 29, 2021. |
United States Patent Application, U.S. Appl. No. 17/352,165, filed Jun. 18, 2021. |
United States Patent Application, U.S. Appl. No. 17/352,176, filed Jun. 18, 2021. |
United States Patent Application, U.S. Appl. No. 17/337,146, filed Jun. 2, 2021. |
United States Patent Application, U.S. Appl. No. 17/361,178, filed Jun. 28, 2021. |
United States Patent Application, U.S. Appl. No. 63/210,956, filed Jun. 15, 2021. |
United States Patent Application, U.S. Appl. No. 17/475,223, filed Sep. 14, 2021. |
United States Patent Application, U.S. Appl. No. 17/537,314, filed Nov. 29, 2021. |
Chinese Office Action for 201880053380.1 dated Dec. 2, 2021. |
Taiwan Office Action for 108132682 dated Mar. 24, 2022. |
Wang, S.B., et al.—“Control of ion energy distribution at substrates during plasma processing,” Journal of Applied Physics, vol. 88, No. 2, Jul. 15, 2000, pp. 643-646. |
Eagle Harbor Technologies presentation by Dr. Kenneth E. Miller—“The EHT Integrated Power Module (IPM): An IGBT-Based, High Current, Ultra-Fast, Modular, Programmable Power Supply Unit,” Jun. 2013, 21 pages. |
Zhen-hua Bi et al., A brief review of dual-frequency capacitively coupled discharges, Current Applied Physics, vol. 11, Issue 5, Supplement, 2011, pp. S2-S8. |
Eagle Harbor Technologies webpage—“In Situ Testing of EHT Integrators on a Tokamak,” 2015, 1 page. |
Eagle Harbor Technologies webpage—High Gain and Frequency Ultra-Stable Integrators for Long Pulse and/or High Current Applications, 2018, 1 page. |
Eagle Harbor Technologies webpage—“EHT Integrator Demonstration at DIII-D,” 2015, 1 page. |
Eagle Harbor Technologies webpage—“High Gain and Frequency Ultra-Stable Integrators for ICC and Long Pulse ITER Applications,” 2012, 1 page. |
Eagle Harbor Technologies webpage—“Long-Pulse Integrator Testing with DIII-D Magnetic Diagnostics,” 2016, 1 page. |
Sunstone Circuits—“Eagle Harbor Tech Case Study,” date unknown, 4 pages. |
Prager, J.R., et al.—“A High Voltage Nanosecond Pulser with Variable Pulse Width and Pulse Repetition Frequency Control for Nonequilibrium Plasma Applications,” IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS), pp. 1-6, 2014. |
Zhuoxing Luo, B.S., M.S, “RF Plasma Etching With a DC Bias” A Dissertation in Physics. Dec. 1994. |
Lin, Jianliang, et al.,—“Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses,” Surface & Coatings Technology 258, 2014, published by Elsevier B.V., pp. 1212-1222. |
Richard Barnett et al. A New Plasma Source for Next Generation MEMS Deep Si Etching: Minimal Tilt, Improved Profile Uniformity and Higher Etch Rates, SPP Process Technology Systems. 2010. |
S.B. Wang et al. “Ion Bombardment Energy and SiO 2/Si Fluorocarbon Plasma Etch Selectivity”, Journal of Vacuum Science & Technology A 19, 2425 (2001). |
Electrical 4 U webpage—“Clamping Circuit,” Aug. 29, 2018, 1 page. |
Kyung Chae Yang et al., A study on the etching characteristics of magnetic tunneling junction materials using DC pulse-biased inductively coupled plasmas, Japanese Journal of Applied Physics, vol. 54, 01AE01, Oct. 29, 2014, 6 pages. |
Dr. Steve Sirard, “Introduction to Plasma Etching”, Lam Research Corporation. 64 pages. |
Eagle Harbor Technologies presentation by Dr. Kenneth E. Miller—“The EHT Long Pulse Integrator Program,” ITPA Diagnostic Meeting, General Atomics, Jun. 4-7, 2013, 18 pages. |
Michael A. Lieberman, “A short course of the principles of plasma discharges and materials processing”, Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720. |
Michael A. Lieberman, “Principles of Plasma Discharges and Material Processing”, A Wiley Interscience Publication. 1994. |
Kamada, Keiichi, et al., Editors—“New Developments of Plasma Science with Pulsed Power Technology,” Research Report, NIFS-PROC-82, presented at National Institute for Fusion Science, Toki, Gifu, Japan, Mar. 5-6, 2009, 109 pages. |
Yiting Zhang et al. “Investigation of feature orientation and consequences of ion tilting during plasma etching with a three-dimensional feature profile simulator”, Nov. 22, 2016. |
Chang, Bingdong, “Oblique angled plasma etching for 3D silicon structures with wiggling geometries” 31(8), [085301]. https://doi.org/10.1088/1361-6528/ab53fb. DTU Library. 2019. |
Semiconductor Components Industries, LLC (SCILLC)—“Switch-Mode Power Supply” Reference Manual, SMPSRM/D, Rev. 4, Apr. 2014, ON Semiconductor, 73 pages. |
Number | Date | Country | |
---|---|---|---|
20220037121 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
63150529 | Feb 2021 | US | |
63059533 | Jul 2020 | US |