“Nanoglass™ Product Bulletin,” Discovery, Allied Signal Advanced Microelectronic Materials. |
Abeless, B. et al., “Amorphous Semiconductor Superlattices,” Physical Review Letters, Nov. 21, 1983, vol. 51, No. 21, pp. 2003-2006. |
Colorado University at Boulder, Feb. 16, 2000, “Ceramic Coatings on Metals Using Atomic Layer Controlled Chemical Vapor Deposition,” (Assert-96), U.S. Department of Commerce National Technical Information Service. |
Düscö, C. et al., Research Institute for Materials Science—ATKI, H-1525 Budapest, Hungary; Utriainen, M. et al., Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, FIN-02150 Espoo, Finland, “Deposition of Tin Oxide into Porous Silicon by Atomic Layer Epitaxy,” J. Electrochem. Soc., Feb. 1996, vol. 143, No. 2, pp. 683-687. |
Fazan, P.C. et al., “A High-C Capacitor (20.4 Ff/μm2) with Ultrathin CVD—Ta2O5 Films Deposited on Rugged Poly-Si for High Density DRAMs,” IEEE, 1992, pp. IDEM 92-263-IDEM 92-266. |
Haukka, S. et al., “Chemisorption of chromium acetylacetonate on porous high surface area silica,” Applied Surface Science, vol. 75, pp. 220-227 (1994). |
Hiltunen, L. et al., “Nitrides of Titanium, Niobium, Tantalum and Molybdenum Grown as Thin Films by the Atomic Layer Epitaxy Method,” Thin Solid Films, 1988, vol. 166, pp. 149-154. |
Honeywell, “Wafer Fabrication Materials (WFM) Interconnect Dielectrics,” Nanoglass™, World Wide Web address: electronicmaterials.com. |
Honeywell, “Wafer Fabrication Materials (WFM) Interconnect Dielectrics,” World Wide Web address: electronicmaterials.com. |
Horiike, Y. et al., “Filling of Si oxide into a deep trench using digital CVD method,” Applied Surface Science, 1990, vol. 46, pp. 168-174. |
Jin, Changming et al., “Porous Silica Xerogel Processing and Integration for ULSI Applications,” Materials Research Society Symposium Proceedings, vol. 511, pp. 213-222. |
Kaizuka, T. et al., “Conformal Chemical Vapor Deposition TiN(111) Film Formation as an Underlayer of Al for Highly Reliable Interconnects,” Jpn. J. Appl. Phys., 1994, vol. 33, pp.470-474. |
Kikkawa, T. et al., “A Quarter-Micrometer Interconnection Technology Using a TiN/Al-Si-Cu/TiN/Al-Si-Cu/TiN/Ti Multilayer Structure,” IEEE Transactions on Electron Devices, Feb. 1993, vol. 40, No. 2, pp. 296-302. |
Kikkawa, T. et al., “Al-Si-Cu/TiN multilayer interconnection and Al-Ge reflow sputtering technologies for quarter-micron devices,” SPIE, 1992, vol. 1805, pp. 54-64. |
Klaus, J.W. et al., “Atomic Layer Deposition of SiO2 Using Catalyzed and Uncatalyzed Self-Limiting Surface Reactions,” Surface Review and Letters, vol. 6, Nos. 3 & 4 (1999) pp. 435-448. |
Klaus, J.W. et al., “Atomically controlled growth of tungsten and tungsten nitride using sequential surface reactions,” Applied Surface Science, vols. 162-163, pp. 479-491 (2000). |
Kukli, K. et al., “Atomic Layer Epitaxy Growth of Tantalum Oxide Thin Films from Ta(OC2H5)5 and H2O,” Electrochem. Soc., May 1995, vol. 142, No. 5, pp. 1670-1674. |
Leskelä, M. et al., “Atomic Layer Epitaxy in Deposition of Various Oxide and Nitride Thin Films,” Journal De Physique IV, Colloque C5, supplément au Journal de Physique II, Juin 1995, vol. 5, pp. C5-937-C5-951. |
Martensson, P. et al., “Atomic Layer Epitaxy of Copper on Tantalum,” Chemical Vapor Deposition, vol. 3, No. 1, pp. 45-50 (1997). |
Martensson, P. et al., “Atomic Layer Epitaxy of Copper, Growth and Selectivity in the Cu(II)-2,2,6, 6-tetramethyl-3,5-heptanedionate/H2 Process,” J. Electrochem. Soc., vol. 145, No. 8, Aug. 1998, pp. 2926-2931. |
Martensson, P. et al., “Use of Atomic Layer Epitaxy for Fabrication of Si/TiN/Cu Structures,” J. Vac. Sci. Technol. B, vol. 17, No. 5, Sep./Oct. 1999, pp. 2122-2128. |
Min, Jae-Sik et al., “Atomic Layer Deposition of TiN Films by Alternate Supply of Tetrakis (ethylmethylamino)-Titanium and Ammonia,” Japanese Journal of Applied Physics, 1998, vol. 37, pp. 4999-5004. |
Min, Jae-Sik et al., “Atomic Layer Deposition of TiN Thin Films by Sequential Introduction of Ti Precursor and NH3,” Materials Research Society Symposium Proceedings, 1998, vol. 514, pp. 337-343. |
Min, Jae-Sik et al., Chemical Vapor Deposition of Ti-Si-N Films with Alternating Source Supply, Mat. Res. Soc. Symp. Proc. vol. 564, 1999 Materials Research Society, pp. 207-210. |
Min, Jae-Sik et al., “Metal-organic atomic-layer deposition of titanium-silicon-nitride films,” Applied Physics Letters, vol. 75, No. 11, pp. 1521-1523 (1999). |
Niinistö, L. et al., “Synthesis of oxide thin films and overlayers by atomic layer epitaxy for advanced applications,” Materials Science and Engineering, 1996, vol. B41, pp. 23-29. |
Ott, A.W. et al., “Modification of Porous Alumina membranes Using Al2O3 Atomic Layer Controlled Deposition,” Chem. Mater., vol. 9, pp. 707-714 (1997). |
Ritala, M. et al., “Atomic Layer Epitaxy Growth of TiN Thin Films for Til4 and NH3,” J. Electrochem. Soc., Aug. 1998, vol. 145, No. 8, pp. 2914-2920. |
Ritala, M. et al., “Controlled Growth of TaN, Ta3N5, and TaOxNy Thin Films by Atomic Layer Deposition,” Chem. Mater., 1999, vol. 11, pp. 1712-1718. |
Ritala, M. et al., “Perfectly Conformal TiN and Al2O3 Films Deposited by Atomic Layer Deposition,” Chem Vap. Deposition 1999, vol. 5, No. 1, pp. 7-9. |
Ryan, E.T. et al., “Material Property Characterization and Integration Issues for Mesoporous Silica,” IEEE, 1999, pp. IITC 99-187-IITC 99-189. |
Sakaue, H. et al., “Digital Chemical Vapor Deposition of SiO2 Using a Repetitive Reaction of Triethylsilane/Hydrogen and Oxidation,” Japanese Journal of Applied Physics, Jan. 1990, vol. 30, No. 1B, pp. L124-L127. |
Singer, P., “Atomic Layer Deposition Targets Thin Films,” Semiconductor International, Sep. 1999, pp. 40. |
Sneh, O. et al., “Atomic layer growth of SiO2 on Si(100) using SiCl4 and H2O in a binary reaction sequence,” Surface Science, 1995, vol. 334, pp. 135-152. |
Tiitta, M. et al., Preparation and Characterization of Phosphorus-Doped Aluminum Oxide Thin Films, Materials Research Bulletin, vol. 33, No. 9, pp. 1315-1323 (1998). |
Wang, Shi-Qing, “Spin On Dielectric Films—A General Overview,” 1998 5th International Conference on Solid-State and Integrated Circuit Technology Proceedings, Oct. 21-23, 1998 Beijing, China, p. 961. |
Wise, M.L. et al., Diethyldiethoxysilane as a New Precursor for SiO2 Growth on Silicon, Mat. Res. Soc. Symp. Proc., 1994, vol. 334, pp. 37-43. |
Wolf, H. et al., “Process and Equipment Simulation of Copper Chemical Vapor Desposition Using Cu(hfac)vtms,” Microelectronic Engineering, 45 (1999) 15-27. |