Semiconductor package having reduced thickness

Information

  • Patent Grant
  • 7321162
  • Patent Number
    7,321,162
  • Date Filed
    Tuesday, July 25, 2006
    18 years ago
  • Date Issued
    Tuesday, January 22, 2008
    17 years ago
Abstract
A semiconductor package is disclosed that comprises a chip paddle and a semiconductor chip that has a plurality of bond pads. The semiconductor chip is located on an upper surface of the chip paddle. Leads are formed at intervals along the perimeter of the chip paddle. The leads are in electrical communication with the bond pads. The semiconductor chip, the chip paddle and the leads are encapsulated by an encapsulation material. The height of the semiconductor package of the invention is minimized by half etching the chip paddle to reduce the thickness of the chip paddle such that the thickness of the chip paddle is less than the thickness of the leads. Preferably, the chip paddle of the present invention is about 25-75% of the thickness of the leads.
Description
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a semiconductor package and, more particularly, but not by way of limitation, to a semiconductor package that has a reduced thickness.


2. History of Related Art


It is conventional in the electronic industry to encapsulate one or more semiconductor devices, such as integrated circuit dies, or chips, in a semiconductor package. These plastic packages protect a chip from environmental hazards, and provide a method and apparatus for electrically and mechanically attaching the chip to an intended device. Recently, such semiconductor packages have included metal leadframes for supporting an integrated circuit chip which is bonded to a chip paddle region formed centrally therein. Bond wires which electrically connect pads on the integrated circuit chip to individual leads of the leadframe are then incorporated. A hard plastic encapsulating material, or encapsulant, which covers the bond wire, the integrated circuit chip and other components, forms the exterior of the package. A primary focus in this design is to provide the chip with adequate protection from the external environment in a reliable and effective manner.


As set forth above, the semiconductor package therein described incorporates a leadframe as the central supporting structure of such a package. A portion of the leadframe completely surrounded by the plastic encapsulant is internal to the package. Portions of the leadframe extend internally from the package and are then used to connect the package externally. More information relative to leadframe technology may be found in Chapter 8 of the book Micro Electronics Packaging Handbook, (1989), edited by R. Tummala and E. Rymaszewski. This book is published by Van Nostrand Reinhold, 115 Fifth Avenue, New York, N.Y., which is herein incorporated by reference.


Once the integrated circuit chips have been produced and encapsulated in semiconductor packages described above, they may be used in a wide variety of electronic appliances. The variety of electronic devices utilizing semiconductor packages has grown dramatically in recent years. These devices include cellular phones, portable computers, etc. Each of these devices typically include a motherboard on which a significant number of such semiconductor packages are secured to provide multiple electronic functions. These electronic appliances are typically manufactured in reduced sizes and at reduced costs, which has resulted in increased consumer demand. Accordingly, not only are semiconductor chips highly integrated, but also semiconductor packages are highly miniaturized with an increased level of package mounting density.


According to such miniaturization tendency, semiconductor packages, which transmit electrical signals from semiconductor chips to motherboards and support the semiconductor chips on the motherboards, have been designed to have a size of about 1×1 mm.


One obstacle to reducing the thickness of conventional semiconductor packages is the internal leads are as thick as the chip paddle. Under the condition that the thickness of the internal leads is identical to that of the chip paddle, the bond pads on the semiconductor chip that is mounted onto the chip paddle are positioned at a far higher level than are the internal leads, so that the loop height of the conductive wires for connecting the semiconductor chip and the internal leads is elevated. The loop height results in an increase in a wire sweeping phenomenon that is caused by pressure of an encapsulation material during encapsulation of the package components.


Previously, techniques for reducing the thickness of semiconductor packages have been utilized, such as back-grinding techniques in which a semiconductor chip is ground down before being mounted on a chip paddle. The back-grinding process, however, deleteriously affects the semiconductor chip. For example, a semiconductor chip that is thinned in this manner is apt to undergo warping, which may result in damaging the internal integrated circuits. In addition, the semiconductor chip itself may be cracked during the back-grinding.


BRIEF SUMMARY OF THE INVENTION

The various embodiments of the present invention provide a semiconductor package that is extremely thin without the need for conducting a back-grinding process or at least for reducing the amount of back-grinding that is required. In one embodiment of the present invention, there is provided a semiconductor package comprising a semiconductor chip provided with a plurality of bond pads, a chip paddle bonded to the bottom surface of the semiconductor chip via an adhesive, a plurality of leads formed at regular intervals along the perimeter of the chip paddle and conductive wires for electrically connecting the bond pads of the semiconductor chip to the leads. A package body comprises the semiconductor chip, the conductive wires, the chip paddle and the leads that are preferably encapsulated by an encapsulation material. The chip paddle, the leads and the tie bars are externally exposed at their side surfaces and bottom surfaces. The chip paddle is half-etched over the entire upper surface of the chip paddle, which results in a thinner thickness than the leads. In one embodiment of the present invention, the half-etched chip paddle is about 25-75% as thick as the leads. Accordingly, by half-etching the entire upper surface of the chip paddle, the chip paddle itself is made thinner than the leads, leading to the slimming of the semiconductor package.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following detailed description, with like reference numerals denoting like elements, when taken in conjunction with the accompanying drawings wherein:



FIG. 1 is a cutaway perspective view of a semiconductor package incorporating the improved leadframe assembly of the present invention;



FIG. 2 shows a cross section of a semiconductor package wherein the semiconductor package has a chip paddle of reduced thickness according to one embodiment of the present invention;



FIG. 3 shows a bottom plan view of the semiconductor package of FIG. 1; and



FIG. 4 shows a cross section of a semiconductor package wherein the semiconductor package has a chip paddle of reduced thickness and including a half-etched section according to another embodiment of the present invention.





The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the present invention and the figures.


DETAILED DESCRIPTION OF THE INVENTION

Referring now to FIGS. 1, 2 and 3, a representative semiconductor package embodying aspects of the present invention is designated generally 10. Semiconductor package 10 comprises a semiconductor chip 12. Semiconductor chip 12 has a plurality of bond pads 14 on an upper surface of semiconductor chip 12 and along the perimeter of semiconductor chip 12. A chip paddle 16 is bonded to a bottom surface of semiconductor chip 12 via an adhesive. At a corner of chip paddle 16 is a tie bar 20 (FIGS. 1 & 2), which extends outwards toward a respective corner of the semiconductor package 10. The tie bar 20 preferably also has a half-etched portion 21 (FIG. 1).


A plurality of leads 22 are located along the circumference of chip paddle 16. The chip paddle 16 and the leads 22 are externally exposed at their bottom surfaces (see FIG. 2). Additionally, the leads 22 are exposed on their side faces (see FIG. 1). The externally exposed portions of the chip paddle 16 and the leads 22 may be electroplated with a corrosion minimizing material such as, but not limited to, tin lead, gold, nickel palladium, tin bismuth, or other similar materials known in the art. Each of leads 22 has a half-etched portion 24 at an end facing the chip paddle 16. The upper surface of each of leads 22 may also be electroplated with an electrical conductivity enhancing material such as, for example, gold or silver. Conductive wires 26 provide an electrical pathway between the bond pads 14 of the semiconductor chip 12 and the leads 22. The semiconductor chip 12, the conductive wires 26, the chip paddle 16 and the leads 22 are encapsulated by an encapsulation material 28 to create a package body 30 whereas the chip paddle 16, the leads 22 and the tie bars 20 are externally exposed toward the downward direction of the semiconductor package 10. The encapsulation material 28 may be thermoplastics or thermoset resins, with the thermoset resins including silicones, phenolics, and epoxies.


An aspect of the various embodiments of the present invention resides in the formation of a half etched surface 32 over the entire upper surface of the chip paddle 16, so as to make the thickness of the chip paddle 16, designated h2 (FIG. 2), smaller than the thickness of the lead 22, which is designated h1 (FIG. 2). Preferably, the chip paddle 16 is about 25-75% as thick as the leads 22, but this range is presented for example only and should not be construed to limit the present invention. As shown in FIG. 4, in accordance with one embodiment of the present invention, the chip paddle 16 may include a half-etched section 33 which is located a lower edge 35 of the chip paddle 16. The half-etched section 33 extends to and at least partially circumvents the bottom surface 37 of the chip paddle 16.


It is also preferred that the formation of the half-etched surface 32 over the entire upper surface of the chip paddle 16 is conducted while a lower side area of the lead 22 is etched, e.g., to form half etched portion 24. However, the present invention is not limited to etching the top surface of chip paddle 16 and the half etched portion 24 of the leads 22 simultaneously.


By half-etching the entire upper surface of the chip paddle 16, the total height of the semiconductor package body 30 is reduced. When semiconductor chip 12 is mounted on the half-etched surface 32 of the chip paddle 16, the semiconductor chip 12 is positioned at a lower height than the semiconductor chip 12 would be if it were located on a non-etched chip paddle 16. Thus, the loop height of the conductive wires 26 is also lowered. An additional benefit is that the lower loop height of the conductive wires 26 decreases an occurrence of wire sweeping during encapsulation of the semiconductor package 10. Further, the low height of the semiconductor chip 12 results in decreasing the thickness of the semiconductor package 10.


The present invention has been described in an illustrative manner, and it is to be understood the terminology used is intended to be in the nature of descriptions rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings.


As described hereinbefore, the chip paddle 16 is made thinner than the leads 22 by half-etching the entire upper surface of the chip paddle 16, so that the total thickness of the semiconductor package 10 can be decreased. In addition, the height of semiconductor chip 12


The following applications are being filed on the same date as the present application all incorporated by reference as if wholly rewritten entirely herein, including any al matter incorporated by reference therein:














U.S. Pat. No./Ser. No.
Title of Application
First Named Inventor







6,646,339
Improved Thin and Heat
Jae Hun Ku



Radiant Semiconductor



Package and Method for



Manufacturing


6,627,976
Leadframe for Semi-
Young Suk Chung



conductor Package and



Mold for Molding the



Same


6,475,827
Method for Making a
Tae Heon Lee



Semiconductor Package



Having Improved Defect



Testing and Increased



Production Yield


6,639,308
Near Chip Size Semi-
Sean Timothy Crowley



conductor Package


6,677,663
End Grid Array Semi-
Jae Hun Ku



conductor Package


09/687,048
Leadframe and Semi-
Tae Heon Lee



conductor Package with



Improved Solder Joint



Strength


6,555,899
Semiconductor Lead-
Young Suk Chung



frame Assembly and



Method of Manufacture


6,525,406
Semiconductor Device
Young Suk Chung



Having Increased



Moisture Path and



Increased Solder Joint



Strength









It is this believed that the operation and construction of the present invention will be from the foregoing description of the preferred exemplary embodiments. It will be to a person of ordinary skill in the art that various changes and modifications may be rein without departing from the spirit and the scope of the invention.


It is this believed that the operation and construction of the present invention will be apparent from the foregoing description of the preferred exemplary embodiments. It will be obvious to a person of ordinary skill in the art that various changes and modifications may be made herein without departing from the spirit and the scope of the invention.

Claims
  • 1. A semiconductor package, comprising: a leadframe comprising: a chip paddle defining opposed, generally planar top and bottom surfaces and a half-etched section which at least partially circumvents the bottom surface, the chip paddle having a paddle thickness between the top and bottom surfaces thereof; anda plurality of leads extending at least partially about the chip paddle, each of the leads having: opposed, generally planar upper and lower lead surfaces and a lead thickness between the upper and lower lead surfaces thereof;an inner lead end; anda half-etched portion formed within the lower lead surface and extending to the inner lead end, the half-etched portion defining an etched lead surface which is disposed in opposed relation to the upper lead surface;a semiconductor chip attached to the top surface of the chip paddle and electrically connected to at least one of the leads; andan encapsulation material at least partially encapsulating the leadframe and the semiconductor chip such that at least portions of the lower surfaces of the leads are exposed within the encapsulation material;wherein the lead thickness of each of the leads exceeds the paddle thickness such that the top surface of the chip paddle extends in generally co-planar relation to the etched lead surface of each of the leads.
  • 2. The semiconductor package of claim 1 wherein the semiconductor chip is electrically connected to the upper lead surface of the at least one of the leads via a conductive wire which is encapsulated by the encapsulation material.
  • 3. The semiconductor package of claim 1 wherein the bottom surface of the chip paddle is exposed within the encapsulation material and extends in generally co-planar relation to the lower lead surfaces of the leads.
  • 4. The semiconductor package of claim 3 wherein the bottom surface of the chip paddle and the lower lead surfaces of the leads are each plated with a corrosion-minimizing material.
  • 5. The semiconductor package of claim 1 wherein portions of the upper lead surfaces of each of the leads are exposed within the encapsulation material.
  • 6. The semiconductor package of claim 1 wherein the leadframe further includes at least one tie bar attached to and extending from the chip paddle, the tie bar having: opposed, generally planar upper and lower tie bar surfaces; anda half-etched portion formed in the lower tie bar surface and defining an etched tie bar surface which is disposed in opposed relation to the upper tie bar surface.
  • 7. The semiconductor package of claim 6 wherein: the tie bar and each of the leads each further have an outer end; andthe outer ends and portions of the upper lead and tie bar surfaces are exposed within the encapsulation material.
  • 8. The semiconductor package of claim 6 wherein the lower tie bar surface is exposed within the encapsulation material and extends in generally co-planar relation to the lower lead surfaces of the leads.
  • 9. The semiconductor package of claim 8 wherein the bottom surface of the chip paddle is exposed within the encapsulation material and extends in generally co-planar relation to the lower lead and tie bar surfaces.
  • 10. The semiconductor package of claim 9 wherein the bottom surface of the chip paddle and the lower lead and tie bar surfaces are each plated with a corrosion-minimizing material.
  • 11. The semiconductor package of claim 6 wherein the etched tie bar surface extends in generally co-planar relation to the etched lead surface of each of the leads.
  • 12. The semiconductor package of claim 1 wherein the chip paddle thickness is in the range of from about 25% to about 75% of the lead thickness of each of the leads.
  • 13. The semiconductor package of claim 1 wherein the upper lead surface of the at least one of the leads is plated with an electrical conductivity enhancing material.
  • 14. The semiconductor package of claim 1 wherein the semiconductor chip is secured to the top surface of the chip paddle via an adhesive.
  • 15. A leadframe comprising: a chip paddle defining opposed, generally planar top and bottom surfaces and a half-etched section which at least partially circumvents the bottom surface, the chip paddle having a paddle thickness between the top and bottom surfaces thereof; anda plurality of leads extending at least partially about the die paddle, each of the leads having: opposed, generally planar upper and lower lead surfaces and a lead thickness between the upper and lower lead surfaces thereof;an inner lead end; anda half-etched portion formed within the lower lead surface and extending to the inner lead end, the half-etched portion defining an etched lead surface which is disposed in opposed relation to the upper lead surface;wherein the lead thickness of each of the leads exceeds the paddle thickness such that the top surface of the chip paddle extends in generally co-planar relation to the etched lead surface of each of the leads.
  • 16. The leadframe of claim 15 wherein the bottom surface of the chip paddle extends in generally co-planar relation to the lower lead surfaces of the leads.
  • 17. The leadframe of claim 15 further including at least one tie bar attached to and extending from the chip paddle, the tie bar having: opposed, generally planar upper and lower tie bar surfaces; anda half-etched portion formed in the lower tie bar surface and defining an etched tie bar surface which is disposed in opposed relation to the upper tie bar surface.
  • 18. The leadframe of claim 17 wherein the lower tie bar surface extends in generally co-planar relation to the lower lead surfaces of the leads.
  • 19. The leadframe of claim 15 wherein the chip paddle thickness is in the range of from about 25% to about 75% of the lead thickness of each of the leads.
  • 20. A semiconductor package, comprising: a leadframe comprising: a chip paddle defining opposed, generally planar top and bottom surfaces and a half-etched section which at least partially circumvents the bottom surface, the chip paddle having a paddle thickness between the top and bottom surfaces thereof; anda plurality of leads extending at least partially about the chip paddle, each of the leads having: opposed, generally planar upper and lower lead surfaces and a lead thickness between the upper and lower lead surfaces thereof;an inner lead end; anda half-etched portion formed within the lower lead surface and extending to the inner lead end, the half-etched portion defining an etched lead surface which is disposed in opposed relation to the upper lead surface;a semiconductor chip attached to the top surface of the chip paddle and electrically connected to at least one of the leads; andan encapsulation material at least partially encapsulating the leadframe and the semiconductor chip such that at least portions of the lower surfaces of the leads are exposed within the encapsulation material;wherein the chip paddle thickness is in the range of from about 25% to about 75% of the lead thickness of each of the leads.
Priority Claims (1)
Number Date Country Kind
1999-44651 Oct 1999 KR national
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. application Ser. No. 10/763,859 entitled SEMICONDUCTOR PACKAGE HAVING REDUCED THICKNESS filed Jan. 23, 2004 now U.S. Pat. No. 7,115,445, which is a divisional of U.S. application Ser. No. 09/687,585 entitled SEMICONDUCTOR PACKAGE HAVING REDUCED THICKNESS filed Oct. 13, 2000 and issued as U.S. Pat. No. 6,696,747 on Feb. 24, 2004.

US Referenced Citations (305)
Number Name Date Kind
2596993 Gookin May 1952 A
3435815 Forcier Apr 1969 A
3734660 Davies et al. May 1973 A
3838984 Crane et al. Oct 1974 A
4054238 Lloyd et al. Oct 1977 A
4189342 Kock Feb 1980 A
4258381 Inaba Mar 1981 A
4289922 Devlin Sep 1981 A
4301464 Otsuki et al. Nov 1981 A
4332537 Slepcevic Jun 1982 A
4417266 Grabbe Nov 1983 A
4451224 Harding May 1984 A
4530152 Roche et al. Jul 1985 A
4541003 Otsuka et al. Sep 1985 A
4646710 Schmid et al. Mar 1987 A
4707724 Suzuki et al. Nov 1987 A
4727633 Herrick Mar 1988 A
4737839 Burt Apr 1988 A
4756080 Thorp, Jr. et al. Jul 1988 A
4812896 Rothgery et al. Mar 1989 A
4862245 Pashby et al. Aug 1989 A
4862246 Masuda et al. Aug 1989 A
4907067 Derryberry Mar 1990 A
4920074 Shimizu et al. Apr 1990 A
4935803 Kalfus et al. Jun 1990 A
4942454 Mori et al. Jul 1990 A
4987475 Schlesinger et al. Jan 1991 A
5018003 Yasunaga May 1991 A
5029386 Chao et al. Jul 1991 A
5041902 McShane Aug 1991 A
5057900 Yamazaki Oct 1991 A
5059379 Tsutsumi et al. Oct 1991 A
5065223 Matsuki et al. Nov 1991 A
5070039 Johnson et al. Dec 1991 A
5087961 Long et al. Feb 1992 A
5091341 Asada et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5118298 Murphy Jun 1992 A
5122860 Kichuchi et al. Jun 1992 A
5134773 LeMaire et al. Aug 1992 A
5151039 Murphy Sep 1992 A
5157475 Yamaguchi Oct 1992 A
5157480 McShane et al. Oct 1992 A
5168368 Gow, 3rd et al. Dec 1992 A
5172213 Zimmerman Dec 1992 A
5172214 Casto Dec 1992 A
5175060 Enomoto et al. Dec 1992 A
5200362 Lin et al. Apr 1993 A
5200809 Kwon Apr 1993 A
5214845 King et al. Jun 1993 A
5216278 Lin et al. Jun 1993 A
5218231 Kudo Jun 1993 A
5221642 Burns Jun 1993 A
5250841 Sloan et al. Oct 1993 A
5252853 Michii Oct 1993 A
5258094 Furui et al. Nov 1993 A
5266834 Nishi et al. Nov 1993 A
5273938 Lin et al. Dec 1993 A
5277972 Sakumoto et al. Jan 1994 A
5278446 Nagaraj et al. Jan 1994 A
5279029 Burns Jan 1994 A
5281849 Singh Deo et al. Jan 1994 A
5294897 Notani et al. Mar 1994 A
5327008 Djennas et al. Jul 1994 A
5332864 Liang et al. Jul 1994 A
5335771 Murphy Aug 1994 A
5336931 Juskey et al. Aug 1994 A
5343076 Katayama et al. Aug 1994 A
5358905 Chiu Oct 1994 A
5365106 Watanabe Nov 1994 A
5381042 Lerner et al. Jan 1995 A
5391439 Tomita et al. Feb 1995 A
5406124 Morita et al. Apr 1995 A
5410180 Fujii et al. Apr 1995 A
5414299 Wang et al. May 1995 A
5417905 LeMaire et al. May 1995 A
5424576 Djennas et al. Jun 1995 A
5428248 Cha Jun 1995 A
5435057 Bindra et al. Jul 1995 A
5444301 Song et al. Aug 1995 A
5452511 Chang Sep 1995 A
5454905 Fogelson Oct 1995 A
5474958 Djennas et al. Dec 1995 A
5484274 Neu Jan 1996 A
5493151 Asada et al. Feb 1996 A
5508556 Lin Apr 1996 A
5517056 Bigler et al. May 1996 A
5521429 Aono et al. May 1996 A
5528076 Pavio Jun 1996 A
5534467 Rostoker Jul 1996 A
5539251 Iverson et al. Jul 1996 A
5543657 Diffenderfer et al. Aug 1996 A
5544412 Romero et al. Aug 1996 A
5545923 Barber Aug 1996 A
5581122 Chao et al. Dec 1996 A
5592019 Ueda et al. Jan 1997 A
5592025 Clark et al. Jan 1997 A
5594274 Suetaki Jan 1997 A
5595934 Kim Jan 1997 A
5604376 Hamburgen et al. Feb 1997 A
5608265 Kitano et al. Mar 1997 A
5608267 Mahulikar et al. Mar 1997 A
5625222 Yoneda et al. Apr 1997 A
5633528 Abbott et al. May 1997 A
5639990 Nishihara et al. Jun 1997 A
5640047 Nakashima Jun 1997 A
5641997 Ohta et al. Jun 1997 A
5643433 Fukase et al. Jul 1997 A
5644169 Chun Jul 1997 A
5646831 Manteghi Jul 1997 A
5650663 Parthasarathi Jul 1997 A
5661088 Tessier et al. Aug 1997 A
5665996 Williams et al. Sep 1997 A
5673479 Hawthorne Oct 1997 A
5683806 Sakumoto et al. Nov 1997 A
5689135 Ball Nov 1997 A
5696666 Miles et al. Dec 1997 A
5701034 Marrs Dec 1997 A
5703407 Hori Dec 1997 A
5710064 Song et al. Jan 1998 A
5723899 Shin Mar 1998 A
5724233 Honda et al. Mar 1998 A
5726493 Yamashita Mar 1998 A
5736432 Mackessy Apr 1998 A
5745984 Cole, Jr. et al. May 1998 A
5753532 Sim May 1998 A
5753977 Kusaka et al. May 1998 A
5766972 Takahashi et al. Jun 1998 A
5770888 Song et al. Jun 1998 A
5776798 Quan et al. Jul 1998 A
5783861 Son Jul 1998 A
5801440 Chu et al. Sep 1998 A
5814877 Diffenderfer et al. Sep 1998 A
5814881 Alagaratnam et al. Sep 1998 A
5814883 Sawai et al. Sep 1998 A
5814884 Davis et al. Sep 1998 A
5817540 Wark Oct 1998 A
5818105 Kouda Oct 1998 A
5821457 Mosley et al. Oct 1998 A
5821615 Lee Oct 1998 A
5834830 Cho Nov 1998 A
5835988 Ishii Nov 1998 A
5844306 Fujita et al. Dec 1998 A
5856911 Riley Jan 1999 A
5859471 Kuraishi et al. Jan 1999 A
5866939 Shin et al. Feb 1999 A
5871782 Choi Feb 1999 A
5874784 Aoki et al. Feb 1999 A
5877043 Alcoe et al. Mar 1999 A
5886397 Ewer Mar 1999 A
5886398 Low et al. Mar 1999 A
5894108 Mostafazadeh et al. Apr 1999 A
5897339 Song et al. Apr 1999 A
5900676 Kweon et al. May 1999 A
5903049 Mori May 1999 A
5903050 Thurairajaratnam et al. May 1999 A
5909053 Fukase et al. Jun 1999 A
5915998 Stidham et al. Jun 1999 A
5917242 Ball Jun 1999 A
5939779 Kim Aug 1999 A
5942794 Okumura et al. Aug 1999 A
5951305 Haba Sep 1999 A
5959356 Oh Sep 1999 A
5969426 Baba et al. Oct 1999 A
5973388 Chew et al. Oct 1999 A
5976912 Fukutomi et al. Nov 1999 A
5977613 Takata et al. Nov 1999 A
5977615 Yamaguchi et al. Nov 1999 A
5977630 Woodworth et al. Nov 1999 A
5981314 Glenn et al. Nov 1999 A
5986333 Nakamura Nov 1999 A
5986885 Wyland Nov 1999 A
6001671 Fjelstad Dec 1999 A
6013947 Lim Jan 2000 A
6018189 Mizuno Jan 2000 A
6020625 Qin et al. Feb 2000 A
6025640 Yagi et al. Feb 2000 A
6031279 Lenz Feb 2000 A
RE36613 Ball Mar 2000 E
6034423 Mostafazadeh et al. Mar 2000 A
6040626 Cheah et al. Mar 2000 A
6043430 Chun Mar 2000 A
6060768 Hayashida et al. May 2000 A
6060769 Wark May 2000 A
6072228 Hinkle et al. Jun 2000 A
6075284 Choi et al. Jun 2000 A
6081029 Yamaguchi Jun 2000 A
6084310 Mizuno et al. Jul 2000 A
6087715 Sawada et al. Jul 2000 A
6087722 Lee et al. Jul 2000 A
6100594 Fukui et al. Aug 2000 A
6113473 Costantini et al. Sep 2000 A
6114752 Huang et al. Sep 2000 A
6118174 Kim Sep 2000 A
6118184 Ishio et al. Sep 2000 A
RE36907 Templeton, Jr. et al. Oct 2000 E
6130115 Okumura et al. Oct 2000 A
6130473 Mostafazadeh et al. Oct 2000 A
6133623 Otsuki et al. Oct 2000 A
6140154 Hinkle et al. Oct 2000 A
6143981 Glenn Nov 2000 A
6169329 Farnworth et al. Jan 2001 B1
6177718 Kozono Jan 2001 B1
6181002 Juso et al. Jan 2001 B1
6184465 Corisis Feb 2001 B1
6184573 Pu Feb 2001 B1
6194777 Abbott et al. Feb 2001 B1
6197615 Song et al. Mar 2001 B1
6198171 Huang et al. Mar 2001 B1
6201186 Daniels et al. Mar 2001 B1
6201292 Yagi et al. Mar 2001 B1
6204554 Ewer et al. Mar 2001 B1
6208020 Minamio et al. Mar 2001 B1
6208021 Ohuchi et al. Mar 2001 B1
6208023 Nakayama et al. Mar 2001 B1
6211462 Carter, Jr. et al. Apr 2001 B1
6218731 Huang et al. Apr 2001 B1
6222258 Asano et al. Apr 2001 B1
6222259 Park et al. Apr 2001 B1
6225146 Yamaguchi et al. May 2001 B1
6229200 Mclellan et al. May 2001 B1
6229205 Jeong et al. May 2001 B1
6239367 Hsuan et al. May 2001 B1
6239384 Smith et al. May 2001 B1
6242281 Mclellan et al. Jun 2001 B1
6256200 Lam et al. Jul 2001 B1
6258629 Niones et al. Jul 2001 B1
6281566 Magni Aug 2001 B1
6281568 Glenn et al. Aug 2001 B1
6282095 Houghton et al. Aug 2001 B1
6285075 Combs et al. Sep 2001 B1
6291271 Lee et al. Sep 2001 B1
6291273 Miyaki et al. Sep 2001 B1
6294100 Fan et al. Sep 2001 B1
6294830 Fjelstad Sep 2001 B1
6295977 Ripper et al. Oct 2001 B1
6297548 Moden et al. Oct 2001 B1
6303984 Corisis Oct 2001 B1
6303997 Lee Oct 2001 B1
6307272 Takahashi et al. Oct 2001 B1
6309909 Ohgiyama Oct 2001 B1
6316822 Venkateshwaran et al. Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6323550 Martin et al. Nov 2001 B1
6326243 Suzuya et al. Dec 2001 B1
6326244 Brooks et al. Dec 2001 B1
6326678 Kamezos et al. Dec 2001 B1
6335564 Pour Jan 2002 B1
6337510 Chun-Jen et al. Jan 2002 B1
6339255 Shin Jan 2002 B1
6348726 Bayan et al. Feb 2002 B1
6355502 Kang et al. Mar 2002 B1
6369447 Mori Apr 2002 B2
6369454 Chung Apr 2002 B1
6373127 Baudouin et al. Apr 2002 B1
6380048 Boon et al. Apr 2002 B1
6384472 Huang May 2002 B1
6388336 Venkateshwaran et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6400004 Fan et al. Jun 2002 B1
6410979 Abe Jun 2002 B2
6414385 Huang et al. Jul 2002 B1
6420779 Sharma et al. Jul 2002 B1
6429508 Gang Aug 2002 B1
6437429 Su et al. Aug 2002 B1
6444499 Swiss et al. Sep 2002 B1
6448633 Yee et al. Sep 2002 B1
6452279 Shimoda Sep 2002 B2
6459148 Chun-Jen et al. Oct 2002 B1
6464121 Reijnders Oct 2002 B2
6475827 Lee et al. Nov 2002 B1
6476469 Huang et al. Nov 2002 B2
6476474 Hung Nov 2002 B1
6482680 Khor et al. Nov 2002 B1
6498099 McLellan et al. Dec 2002 B1
6498392 Azuma Dec 2002 B2
6507096 Gang Jan 2003 B2
6507120 Lo et al. Jan 2003 B2
6534849 Gang Mar 2003 B1
6545332 Huang Apr 2003 B2
6545345 Glenn et al. Apr 2003 B1
6559525 Huang May 2003 B2
6566168 Gang May 2003 B2
6583503 Akram et al. Jun 2003 B2
6603196 Lee et al. Aug 2003 B2
6624005 Di Caprio et al. Sep 2003 B1
6667546 Huang et al. Dec 2003 B2
7005327 Kung et al. Feb 2006 B2
20010008305 McLellan et al. Jul 2001 A1
20010014538 Kwan et al. Aug 2001 A1
20020011654 Kimura Jan 2002 A1
20020024122 Jung et al. Feb 2002 A1
20020027297 Ikenaga et al. Mar 2002 A1
20020140061 Lee Oct 2002 A1
20020140068 Lee et al. Oct 2002 A1
20020163015 Lee et al. Nov 2002 A1
20030030131 Lee et al. Feb 2003 A1
20030073265 Hu et al. Apr 2003 A1
20040056277 Karnezos Mar 2004 A1
20040061212 Karnezos Apr 2004 A1
20040061213 Karnezos Apr 2004 A1
20040063242 Karnezos Apr 2004 A1
20040063246 Karnezos Apr 2004 A1
20040065963 Karnezos Apr 2004 A1
20040164387 Ikenaga et al. Aug 2004 A1
Foreign Referenced Citations (83)
Number Date Country
19734794 Aug 1997 DE
0393997 Oct 1990 EP
0459493 Dec 1991 EP
0720225 Mar 1996 EP
0720234 Mar 1996 EP
0794572 Oct 1997 EP
0844665 May 1998 EP
0936671 Aug 1999 EP
0989608 Mar 2000 EP
1032037 Aug 2000 EP
55163868 Dec 1980 JP
5745959 Mar 1982 JP
58160096 Aug 1983 JP
59208756 Nov 1984 JP
59227143 Dec 1984 JP
60010756 Jan 1985 JP
60116239 Aug 1985 JP
60195957 Oct 1985 JP
60231349 Nov 1985 JP
6139555 Feb 1986 JP
61248541 Nov 1986 JP
629639 Jan 1987 JP
6333854 Feb 1988 JP
63067762 Mar 1988 JP
63188964 Aug 1988 JP
63205935 Aug 1988 JP
63233555 Sep 1988 JP
63249345 Oct 1988 JP
63289951 Nov 1988 JP
63316470 Dec 1988 JP
64054749 Mar 1989 JP
1106456 Apr 1989 JP
1175250 Jul 1989 JP
1205544 Aug 1989 JP
1251747 Oct 1989 JP
2129948 May 1990 JP
369248 Jul 1991 JP
3177060 Aug 1991 JP
4098864 Sep 1992 JP
5129473 May 1993 JP
5166992 Jul 1993 JP
5283460 Oct 1993 JP
6061401 Mar 1994 JP
692076 Apr 1994 JP
6140563 May 1994 JP
6260532 Sep 1994 JP
7297344 Nov 1995 JP
7312405 Nov 1995 JP
864634 Mar 1996 JP
8083877 Mar 1996 JP
8125066 May 1996 JP
96-4284 Jun 1996 JP
8222682 Aug 1996 JP
8306853 Nov 1996 JP
98205 Jan 1997 JP
98206 Jan 1997 JP
98207 Jan 1997 JP
992775 Apr 1997 JP
9260568 Oct 1997 JP
9293822 Nov 1997 JP
10022447 Jan 1998 JP
10163401 Jun 1998 JP
10199934 Jul 1998 JP
10256240 Sep 1998 JP
11307675 Nov 1999 JP
00150765 May 2000 JP
556398 Oct 2000 JP
2001060648 Mar 2001 JP
200204397 Aug 2002 JP
941979 Jan 1994 KR
19940010938 May 1994 KR
19950018924 Jun 1995 KR
19950041844 Nov 1995 KR
19950044554 Nov 1995 KR
19950052621 Dec 1995 KR
1996074111 Dec 1996 KR
9772358 Nov 1997 KR
100220154 Jun 1999 KR
20000072714 Dec 2000 KR
20000086238 Dec 2000 KR
0049944 Jun 2002 KR
9956316 Nov 1999 WO
9967821 Dec 1999 WO
Divisions (2)
Number Date Country
Parent 10763859 Jan 2004 US
Child 11492481 US
Parent 09687585 Oct 2000 US
Child 10763859 US