1. Field of the Invention
The present invention relates generally to semiconductor fabrication, and more particularly, to systems and methods for vertically integrating semiconductor devices.
2. Description of Related Art
Vertical integration of semiconductor devices, commonly referred to as “3D interconnect,” may be accomplished using die-to-wafer or wafer-to-wafer flows by which a “donor” die or wafer is stacked on top of a “host” wafer. Of these two methods, die-to-wafer processes provide the most advantageous form of integration. For example, die-to-wafer processes includes the ability to pre-screen or otherwise test donor die, thus allowing the manufacturer to select only devices that have passed the test for further integration and discard the bad ones. In contrast, in a wafer-to-wafer process, all die (good and bad) present on the donor wafer are integrated into the host wafer (which also contains good and bad die).
Additionally, the die-to-wafer process can maximize the number of donor die that are fabricated on a wafer when the donor die are smaller than the host die. For example, if donor die are smaller than host die, the donor wafer can have the donor die close together so as to maximize donor wafer yield. Meanwhile, wafer-to-wafer integration typically results in unused silicon between the individual donor die.
Despite the foregoing, there are several significant drawbacks with respect to existing die-to-wafer integration methods. For example, die-to-wafer integration generally requires that die be individually aligned and bonded to the host wafer. This step can be very time consuming, and it may take many hours per wafer depending upon the required alignment accuracy, die bond time, and the number of dies per wafer. Additionally, die-to-wafer processes produce a non-planar surface that is incompatible with certain 3D integrations requiring further wafer-level processing.
The present invention provides systems and methods for vertically integrating semiconductor devices. In one illustrative embodiment, a method comprises providing an interposer, aligning and bonding a plurality of die to a first surface of the interposer, aligning and bonding a backplate to the plurality of die, and reducing at least one portion of the interposer to create a reconstituted wafer.
In another illustrative embodiment, an apparatus comprises an interposer operable to receive at least one donor semiconductor device disposed on a first surface of the interposer and aligned therewith, and at least one host semiconductor device disposed on a second surface of the interposer and aligned therewith; where the interposer allows the at least one donor and host semiconductor devices to become vertically integrated. In yet another illustrative embodiment, a method comprises providing an interposer, aligning and bonding a plurality of donor die onto a first surface of the interposer using a first alignment mark present thereon to create a reconstituted donor wafer, and aligning and bonding a host wafer to a second surface of the interposer using a second alignment mark present thereon to allow the reconstituted donor wafer and the host wafer to become vertically integrated.
The terms “via” or “vias” is used to describe via “pads,” which are areas of metal on two different layers of interconnect wiring, and that connect to one another through a vertical connection. The terms “via” or “vias,” as used herein, may refer to the entire via structure or to any of its components.
The term “coupled” is defined as connected, although not necessarily directly, and not necessarily mechanically. The terms “a” and “an” are defined as one or more unless this disclosure explicitly requires otherwise. The term “substantially,” “approximately,” “about,” and variations thereof are defined as being largely but not necessarily wholly what is specified as understood by a person of ordinary skill in the art, and in one non-limiting embodiment, the term substantially refers to ranges within 10%, preferably within 5%, more preferably within 1%, and most preferably within 0.5% of what is specified.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a method or device that “comprises,” “has,” “includes” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more elements. Furthermore, a device or structure that is configured in a certain way is configured in at least that way, but may also be configured in ways other than those specifically described herein.
For a more complete understanding of the present invention, reference is now made to the following drawings, in which:
In the following detailed description, reference is made to the accompanying drawings that illustrate embodiments of the present invention. These embodiments are described in sufficient detail to enable a person of ordinary skill in the art to practice the invention without undue experimentation. It should be understood, however, that the embodiments and examples described herein are given by way of illustration only, and not by way of limitation. Various substitutions, modifications, additions, and rearrangements may be made without departing from the spirit of the present invention. Therefore, the description that follows is not to be taken in a limited sense, and the scope of the present invention is defined only by the appended claims.
Turning now to
In one embodiment, interposer base 101 may be made of silicon. Alternatively, glass may be used to reduce costs and increase transparency. The transparency of glass may be helpful for alignment purposes during fabrication. The glass may be chosen with a formulation that approximately matches the thermal coefficient of expansion (TCE) of the host wafer. In this regard, silicon has the advantage of providing a closer match to the TCE of the devices that are being processed.
In another embodiment, interposer 100 may include redistribution layers (not shown) that allow the use of donor die whose pads or connections do not physically align with a host wafer. These redistribution layers are additional layers of interconnect typically used to move the location of the bond pads. Additionally or alternatively, interposer 100 may include a release layer (not shown) between interposer base 101 and dielectric layer 103 that allows for the efficient removal and potential reuse of base 101.
In
Next, as shown in
In a subsequent step depicted in
There may be applications where the processing ends after the step shown in
In the step shown in
Before performing the step shown in
As shown in
In the alternative embodiment shown in
As described in detail above, the present invention provides systems and methods for vertically integrating semiconductor devices. In one embodiment, a semiconductor wafer is reconstituted using singulated die. The reconstituted wafer may be further processed with a wafer-to-wafer integration flow. One advantage of the present invention is that it provides an interposer structure for aligning a plurality of die and providing a planar surface for the reconstituted wafer. The interposer optimizes die alignment and bonding steps to increase alignment accuracy and improve throughput. Moreover, the interposer provides several manufacturing advantages such as lower costs, reduced cycle times and the like.
Although certain embodiments of the present invention and their advantages have been described herein in detail, it should be understood that various changes, substitutions and alterations can be made without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present invention is not intended to be limited to the particular embodiments of the processes, machines, manufactures, means, methods, and steps described herein. As a person of ordinary skill in the art will readily appreciate from this disclosure, other processes, machines, manufactures, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufactures, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
5734201 | Djennas et al. | Mar 1998 | A |
6477034 | Chakravorty et al. | Nov 2002 | B1 |
6528408 | Kinsman | Mar 2003 | B2 |
6716672 | Val | Apr 2004 | B2 |
6794273 | Saito et al. | Sep 2004 | B2 |
6809367 | Val | Oct 2004 | B2 |
6992891 | Mallik et al. | Jan 2006 | B2 |
7226812 | Lu et al. | Jun 2007 | B2 |
7354802 | Poddar et al. | Apr 2008 | B1 |
7456083 | Noma et al. | Nov 2008 | B2 |
7557443 | Ye et al. | Jul 2009 | B2 |
20010005313 | Muramatsu et al. | Jun 2001 | A1 |
20030020142 | Wachtler | Jan 2003 | A1 |
20050110131 | Lee | May 2005 | A1 |
20050277231 | Hembree et al. | Dec 2005 | A1 |
20060284312 | Lee | Dec 2006 | A1 |
20070004050 | Ikeda et al. | Jan 2007 | A1 |
20070108579 | Bolken et al. | May 2007 | A1 |
20070145574 | Colbert et al. | Jun 2007 | A1 |
20070222089 | Maruyama | Sep 2007 | A1 |
20080258267 | Nakashima | Oct 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20090017580 A1 | Jan 2009 | US |