Treatment of a dielectric layer using supercritical CO2

Information

  • Patent Grant
  • 7387868
  • Patent Number
    7,387,868
  • Date Filed
    Monday, March 28, 2005
    19 years ago
  • Date Issued
    Tuesday, June 17, 2008
    16 years ago
Abstract
A method of passivating silicon-oxide based low-k materials using a supercritical carbon dioxide passivating solution comprising a silylating agent is disclosed. The silylating agent is preferably an organosilicon compound comprising organo-groups with five carbon atoms such as hexamethyldisilazane (HMDS), chlorotrimethylsilane (TMCS), trichloromethylsilane (TCMS) and combinations thereof. In accordance with further embodiments of the invention, a post ash substrate comprising a dielectric material is simultaneously cleaned and passivated using a supercritical carbon dioxide cleaning solution.
Description
FIELD OF THE INVENTION

The invention in general relates to the field of semiconductor wafer processing. More particularly, the invention relates to passivating or repairing damaged porous and non-porous dielectric materials having various dielectric constants with supercritical processing solutions.


BACKGROUND OF THE INVENTION

Semiconductor fabrication generally uses photoresist in etching and other processing steps. In the etching steps, a photoresist masks areas of the semiconductor substrate that are not etched. Examples of the other processing steps include using a photoresist to mask areas of a semiconductor substrate in an ion implantation step or using the photoresist as a blanket protective coating of a processed wafer or using the photoresist as a blanket protective coating of a MEMS (micro electromechanical system) device.


State of the art integrated circuits can contain up to 6 million transistors and more than 800 meters of wiring. There is a constant push to increase the number of transistors on wafer-based integrated circuits. As the number of transistors is increased, there is a need to reduce the cross-talk between the closely packed wires in order to maintain high performance requirements. The semiconductor industry is continuously looking for new processes and new materials that can help improve the performance of wafer-based integrated circuits.


Materials exhibiting low dielectric constants of between 3.5-2.5 are generally referred to as low-k materials and porous materials with dielectric constants of 2.5 and below are generally referred to as ultra low-k (ULK) materials. For the purpose of this application low-k materials refer to both low-k and ultra low-k materials. Low-k materials have been shown to reduce cross-talk and provide a transition into the fabrication of even smaller integrated circuit geometries. Low-k materials have also proven useful for low temperature processing. For example, spin-on-glass materials (SOG) and polymers can be coated onto a substrate and treated or cured with relatively low temperatures to make porous silicon oxide-based low-k layers. Silicon oxide-based herein does not strictly refer to silicon-oxide materials. In fact, there are a number of low-k materials that have silicon oxide and hydrocarbon components and/or carbon, wherein the formula is SiOxCyHz, referred to herein as hybrid materials and designated herein as MSQ materials. It is noted, however, that MSQ is often designated to mean Methyl Silsesquioxane, which is an example of the hybrid low-k materials described above. Some low-k materials, such as carbon doped oxide (COD) or fluoridated silicon glass (FSG), are deposited using chemical vapor deposition techniques, while other low-k materials, such as MSQ, porous-MSQ, and porous silica, are deposited using a spin-on process.


While low-k materials are promising materials for fabrication of advanced micro circuitry, they also provide several challenges. They tend to be less robust than more traditional dielectric layer materials and can be damaged by etch and plasma ashing process generally used in patterning dielectric layers in wafer processing, especially in the case of the hybrid low-k materials, such as described above. Further, silicon oxide-based low-k materials tend to be highly reactive after patterning steps. The hydrophilic surface of the silicon oxide-based low-k material can readily absorb water and/or react with other vapors and/or process contaminants that can alter the electrical properties of the dielectric layer itself and/or diminish the ability to further process the wafer.


What is needed is an apparatus and method of passivating a low-k layer especially after a patterning step. Preferably, the method of passivating the low-k layer is compatible with other wafer processing steps, such as processing steps for removing contaminants and/or post-etch residue after a patterning step.


SUMMARY OF THE INVENTION

The present invention is directed to passivating silicon-oxide based low-k materials using a supercritical passivating solution. Low-k materials are usually porous oxide-based materials and can include an organic or hydrocarbon component. Examples of low-k materials include, but are not limited to, carbon-doped oxide (COD), spin-on-glass (SOG) and fluoridated silicon glass (FSG) materials.


In accordance with the embodiments of the present invention, a supercritical passivating solution comprises supercritical carbon dioxide and an amount of a passivating agent that is preferably a silylating agent. In one embodiment, the silylating agent can be introduced into supercritical carbon dioxide directly. In alternative embodiments, the silylating agent can be introduced into supercritical carbon dioxide with a carrier solvent (cosolvent), such as N,N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, and alcohols (such a methanol, ethanol and 1-propanol) or combinations thereof, to generate the supercritical passivating solution.


In accordance with a preferred embodiment of the invention, the silylating agent is an organosilicon compound, and silyl groups (Si(CR3)3) attack silanol (Si—OH) groups on the surface of the silicon oxide-based low-k dielectric material and/or in the bulk of the silicon oxide-based low-k dielectric material to form surface capped organo-silyl groups during the passivating step.


In accordance with further embodiments of the invention, a silicon oxide-based low-k material is passivated with a supercritical passivating solution comprising supercritical carbon dioxide and an organosilicon compound that comprises organo-groups. In accordance with one embodiment of the invention the organo-groups or a portion thereof, are methyl groups. For example, suitable organosilicon compounds useful as silylating agents in the invention include, but are not limited to, hexamethyldisilazane (HMDS), chlorotrimethylsilane (TMCS), trichloromethylsilane (TCMS), dimethylsilyldiethylamine (DMSDEA), tetramethyldisilazane (TMDS), trimethylsilyldimethylamine (TMSDMA), dimethylsilyldimethylamine (DMSDMA), trimethylsilyldiethylamine (TMSDEA), bistrimethylsilyl urea (BTSU), bis(dimethylamino)methyl silane (B[DMA]MS), bis (dimethylamino)dimethyl silane (B[DMA]DS), HMCTS, dimethylaminopentamethyldisilane (DMAPMDS), dimethylaminodimethyldisilane (DMADMDS), disila-aza-cyclopentane (TDACP), disila-oza-cyclopentane (TDOCP), methyltrimethoxysilane (MTMOS), vinyltrimethoxysilane (VTMOS), or trimethylsilylimidazole (TMSI).


During a supercritical passivating step, a silicon oxide-based low-k material, in accordance with the embodiments of the invention, is maintained at temperatures in a range of 40 to 200 degrees Celsius, and preferably at a temperature of between approximately 50 degrees Celsius and approximately 150 degrees Celsius, and at pressures in a range of 1,070 to 9,000 psi, and preferably at a pressure between approximately 1,500 psi and approximately 3,500 psi, while a supercritical passivating solution, such as described herein, is circulated over the surface of the silicon oxide-based low-k material.


In accordance with still further embodiments of the invention, the surface of the silicon oxide-based low-k material is dried or re-treated prior to the passivating step. In accordance with this embodiment of the invention, the silicon oxide-based low-k material is dried, or re-treated by exposing the low-k materials to a supercritical solution of supercritical carbon dioxide or supercritical carbon dioxide with one or more solvents including but not limited to ethanol, methanol, n-butanol and combinations thereof. A supercritical processing solution with methanol and ethanol can be used to remove water from low-k materials. In addition, a supercritcial processing solution with one or more alcohols can be used to remove low molecular weight compounds from a porous inter-level or inter-layer dielectric (ILD).


In accordance with yet further embodiments of the invention, a dielectric surface is passivated during a cleaning processing step, wherein a post-etch residue is simultaneously removed from the dielectric surface using a supercritical cleaning solution comprising a passivating agent, such as described herein. The post-etch residue can include a photoresist polymer or a photoresist polymer with an anti-reflective dye and/or an anti-reflective layer.


In accordance with the method of the present invention, a patterned low-k dielectric layer is formed by depositing a continuous layer of a low-k dielectric material on a substrate or other surface, etching a pattern in the low-k material and passivating the patterned layer.


After a low-k material is patterned by treating the low-k material to an etch and/or ash process, the low-k material can show a marked increase in the k-values as a result of degeneration of the material and/or removal of a portion of the organic component, in the case of low-k hybrid materials; increases of more than 1.0 in k-values have been observed. The method of passivation in accordance with the present invention has the ability to restore or recover a portion of the k-value lost in the patterning steps. In fact it has been observed that low-k materials passivated in accordance with the embodiments of the present invention can be restored to exhibit k-values near, or at, k-values of the original and un-patterned material.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of various embodiments of the invention and many of the attendant advantages thereof will become readily apparent with reference to the following detailed description, particularly when considered in conjunction with the accompanying drawings, in which:



FIGS. 1A-C show schematic representations of organosilicon structures used as silylating agents in a supercritical processing step, in accordance with the embodiments of the invention;



FIG. 1D shows schematic representations of silylating agents reacting with silanol groups in a low-k material, in accordance with the embodiments of the invention;



FIG. 1E illustrates steric hindrance between a silanol-group and a silyl-group on a surface of a low-k material, which can lead to incomplete silylating of the surface;



FIG. 2 shows an exemplary block diagram of a processing system in accordance with an embodiment of the invention;



FIG. 3 illustrates an exemplary graph of pressure versus time for a supercritical process in accordance with an embodiment of the invention; and



FIG. 4 shows a simplified flow diagram outlining steps for treating a silicon oxide-based low-k layer in accordance with the embodiments of the invention.





DETAILED DESCRIPTION OF SEVERAL EMBODIMENTS

In semiconductor fabrication, a dielectric layer is generally patterned using a photoresist mask in one or more etching and ashing steps. Generally, to obtain the high-resolution line widths and high feature aspect ratios, an anti-reflective coating is required. In earlier processes, an anti-reflective coating (ARC) of titanium nitride (TiN) was vapor deposited on the dielectric layer and the TiN anti-reflective coatings would not be removed after patterning but rather remained a part of the device fabricated. With new classes of low dielectric layers that can be made to be very thin, TiN anti-reflective coatings are not preferred because anti-reflective coatings can dominate over the electrical properties of the dielectric layer. Accordingly, polymeric spin-on anti-reflective coatings with an anti-reflective dye that can be removed after a patterning step are preferred. Regardless of the materials that are used in the patterning steps, after patterning the dielectric layer these materials are preferably removed from the dialectic layer after the patterning process is complete.


Porous low-k materials are most commonly silicon-oxide based with silanol (Si—OH) groups and/or organo components as described above. These low-k materials can become activated and/or damaged, which is believed to be in part due to depletion of an organic component during etch and/or ash steps. In either case, of activation and/or damage, additional silanol groups are exposed which can readily adsorb water and/or contaminants and/or chemicals that are present during other processing steps. Accordingly, partial device structures with exposed low-k dielectric layers are difficult to handle and maintain contaminant free, especially after patterning steps. Further, activation and/or damage of the bulk low-k material can result in increased k-values. It has been observed that low-k materials that are activated and/or damaged can exhibit increases in k-values by 1.0 or more.


The present invention is directed to a method of and system for passivating porous low-k dielectric materials. The method of the present invention preferably passivates a layer of patterned low-k layer by end-capping silanol groups on the surface and/or in the bulk of the low-k material to produce a patterned low-k material that is more hydrophobic, more resistant to hydrophilic contamination, and/or less reactive. In accordance with the embodiments of the present invention, a passivation processing step is carried out separately from a supercritical post-etch cleaning process or, alternatively, is carried out simultaneously with a supercritical post-etch cleaning process.


Referring now to FIG. 1A, in accordance with the embodiments of the invention, a supercritical passivating solution comprises a silane structure 10 which can have all organo groups, such as in the case with hexamethyldisilazane (HMDS) or a combination of organo and halide groups (F, Cl, Br and etc.) which are attached to any one of the positions 1-4.


Now referring to FIG. 1B, in accordance with further embodiments of the invention, a supercritical passivating solution comprises a pent-valent organosilicon compound 20, wherein the silicon atom is coordinated to 5 ligands in the positions 1, 2, 3, 4 and 5 in a tiganolbipyramidal configuration. Typically, such compounds 20 are anions with one or more of the positions 1-5 being coordinated with a halide atom, such as in the case with a difluorotrimethylilicate anion. When the structure 20 is an anion, the compound 20 also includes a suitable cation, such as sodium, potassium or any other inorganic or organic cation (not shown).


Now referring to FIG. 1C, in accordance with yet further embodiments of the present invention, a supercritical passivating solution comprises a silazane structure 30, which can be described as an amine structure with two organosilyl groups coordinated to the nitrogen of the amine, such as in the case of hexamethyldisilazane (HMDS) or a combination of organo and halide groups (F, Cl, Br, etc.), which are attached to any one of the positions 1-6.



FIG. 1D shows schematic representations of hexamethyldisilazane (HMDS) reacting with silanol groups on a surface of a low-k material in reaction sequence (1). For example, a trimethyl amine can be produced in the reaction sequence (1), which can then further react with silanol groups on a surface of the low-k material in accordance with reaction sequence (2). Hence, hexamethyldisilazane (HMDS) provides an excellent silylating agent for use in accordance with the method of the present invention.



FIG. 1E illustrates steric hindrance between a silanol group 53 and silyl-group 55 on a surface 51 of a low-k material. Note that the silyl group 55 is extremely large and can actually provide a protective barrier for the silanol group 53. Accordingly, it is not generally possible to completely silylate an entire surface or bulk of a low-k material.


It will be clear to one skilled in the art that a supercritical passivating solution with any number of silylating agents and combinations of silylating agents are within the scope of the present invention. Further, the silylating agent or agents used can be introduced into supercritical carbon dioxide neat or along with a carrier solvent, such as N,N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC) N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, alkane or combinations thereof to generate the supercritical passivating solution. In addition, cleaning and/or rinsing agents used in the present invention can be used in supercritical cleaning/rinsing processes to remove post-processing residues from a surface of a patterned low-k material.


The present invention is particularly well suited for removing post-etch photopolymers from a wafer material and even more specifically is well suited to remove a post-etch photopolymer and/or a polymeric anti-reflective coating layer from a low-k silicon oxide-based layer, including low-k layers formed from porous MSQ and porous SiO2 (e.g., Honeywell's NANOGLASS®), while simultaneously passivating a silicon oxide-based layer.



FIG. 2 shows an exemplary block diagram of a processing system in accordance with an embodiment of the invention. In the illustrated embodiment, processing system 200 comprises a process module 210, a recirculation system 220, a process chemistry supply system 230, a high-pressure fluid supply system 240, a pressure control system 250, an exhaust control system 260, and a controller 280. The processing system 200 can operate at pressures that can range from 1,000 psi. to 10,000 psi. In addition, the processing system 200 can operate at temperatures that can range from 40 to 300 degrees Celsius.


The details concerning one example of a process chamber are disclosed in co-owned and co-pending U.S. patent application Ser. No. 09/912,844, entitled “HIGH PRESSURE PROCESSING CHAMBER FOR SEMICONDUCTOR SUBSTRATE,” filed Jul. 24, 2001, Ser. No. 09/970,309, entitled “HIGH PRESSURE PROCESSING CHAMBER FOR MULTIPLE SEMICONDUCTOR SUBSTRATES,” filed Oct. 3, 2001, Ser. No. 10/121,791, entitled “HIGH PRESSURE PROCESSING CHAMBER FOR SEMICONDUCTOR SUBSTRATE INCLUDING FLOW ENHANCING FEATURES,” filed Apr. 10, 2002, and Ser. No. 10/364,284, entitled “HIGH-PRESSURE PROCESSING CHAMBER FOR A SEMICONDUCTOR WAFER,” filed Feb. 10, 2003, the contents of which are all incorporated herein by reference.


The controller 280 can be coupled to the process module 210, the recirculation system 220, the process chemistry supply system 230, the high-pressure fluid supply system 240, the pressure control system 250, and the exhaust control system 260. Alternatively, controller 280 can be coupled to one or more additional controllers/computers (not shown), and controller 280 can obtain setup and/or configuration information from an additional controller/computer.


In FIG. 2, singular processing elements (210, 220, 230, 240, 250, 260, and 280) are shown, but this is not required for the invention. The semiconductor processing system 200 can comprise any number of processing elements having any number of controllers associated with them in addition to independent processing elements.


The controller 280 can be used to configure any number of processing elements (210, 220, 230, 240, 250, and 260), and the controller 280 can collect, provide, process, store, and display data from processing elements. The controller 280 can comprise a number of applications for controlling one or more of the processing elements. For example, controller 280 can include a GUI component (not shown) that can provide easy-to-use interfaces that enable a user to monitor and/or control one or more processing elements.


The process module 210 can include an upper assembly 212 and a lower assembly 216, and the upper assembly 212 can be coupled to the lower assembly 216 to form a process chamber 208. In an alternative embodiment, a frame and or injection ring may be included and may be coupled to the upper assembly 212 and the lower assembly 216. The upper assembly 212 can comprise a heater (not shown) for heating the process chamber 208, a substrate 205 contained within the process chamber 208, or a processing fluid, or a combination of two or more thereof. Alternatively, a heater is not required in the upper assembly 212. In another embodiment, the lower assembly 216 can comprise a heater (not shown) for heating the process chamber 208, the substrate 205, or the processing fluid, or a combination of two or more thereof. The process module 210 can include means for flowing a processing fluid through the process chamber 208. In one example, a circular flow pattern can be established, and in another example, a substantially linear flow pattern can be established. Alternatively, the means for flowing can be configured differently. The lower assembly 216 can comprise one or more lifters (not shown) for moving a holder or chuck 218 and/or the substrate 105. Alternatively, a lifter is not required.


In one embodiment, the process module 210 can include the holder or chuck 218 for supporting and holding the substrate 205 while processing the substrate 205. The holder or chuck 218 can also be configured to heat or cool the substrate 205 before, during, and/or after processing the substrate 205. Alternatively, the process module 210 can include a platen for supporting and holding the substrate 205 while processing the substrate 205.


A transfer system (not shown) can be used to move a substrate (e.g., 205) into and out of the process chamber 208 through a slot (not shown). In one example, the slot can be opened and closed by moving the chuck, and in another example, the slot can be controlled using a gate valve.


The substrate can include semiconductor material, metallic material, dielectric material, ceramic material, or polymer material, or a combination of two or more thereof. The semiconductor material can include Si, Ge, Si/Ge, or GaAs. The metallic material can include Cu, Al, Ni, Pb, Ti, Ta, or W, or combinations of two or more thereof. The dielectric material can include Si, O, N, or C, or combinations of two or more thereof. The ceramic material can include Al, N, Si, C, or O, or combinations of two or more thereof.


The recirculation system 220 can be coupled to the process module 210 using one or more inlet lines 222 and one or more outlet lines 224. In one embodiment, a recirculation loop 215 can be configured that includes a portion of the recirculation system 220, a portion of the process module 210, one or more of the inlet lines 222 and one or more of the outlet lines 224.


The recirculation system 220 can comprise one or more pumps (not shown) that can be used to regulate the flow of the supercritical processing solution through the process chamber 208 and the other elements in the recirculation loop 215. The flow rate can vary from approximately 0.01 liters/minute to approximately 100 liters/minute.


The recirculation system 220 can comprise one or more valves for regulating the flow of a supercritical processing solution through the recirculation system and through the process module 210. The recirculation system 220 can comprise any number of back-flow valves, filters, pumps, and/or heaters (not shown) for maintaining a supercritical processing solution and flowing the supercritical process solution through the recirculation system 220 and through the process chamber 208 in the process module 210.


Processing system 200 can comprise a process chemistry supply system 230. In the illustrated embodiment, the process chemistry supply system 230 is coupled to the recirculation system 220 using one or more lines 235, but this is not required for the invention. In alternative embodiments, the process chemistry supply system 230 can be configured differently and can be coupled to different elements in the processing system 200. For example, the process chemistry supply system 230 can be directly coupled to the process module 210.


Process chemistry is introduced by the process chemistry supply system 230 into the fluid introduced by the high-pressure fluid supply system 240 at ratios that vary with the substrate properties, the chemistry being used, and the process being performed in the process chamber 208. The ratio can vary from approximately 0.001 to approximately 15 percent by volume. For example, when the recirculation loop 215 comprises a volume of about one liter, the process chemistry volumes can range from approximately ten micro liters to approximately one hundred fifty milliliters. In alternative embodiments, the volume and/or the ratio may be higher or lower.


The process chemistry supply system 230 can comprise a cleaning chemistry assembly (not shown) for providing cleaning chemistry for generating supercritical cleaning solutions within the process chamber 208. The cleaning chemistry can include peroxides and a fluoride source. Further details of fluoride sources and methods of generating supercritical processing solutions with fluoride sources are described in U.S. patent application Ser. No. 10/442,557, filed May 20, 2003, and titled “TETRA-ORGANIC AMMONIUM FLUORIDE AND HF IN SUPERCRITICAL FLUID FOR PHOTORESIST AND RESIDUE REMOVAL”, and U.S. patent application Ser. No. 10/321,341, filed Dec. 26, 2002, and titled “FLUORIDE 1N SUPERCRITICAL FLUID FOR PHOTORESIST POLYMER AND RESIDUE REMOVAL,” both incorporated by reference herein.


In addition, the cleaning chemistry can include chelating agents, complexing agents, oxidants, organic acids, and inorganic acids that can be introduced into supercritical carbon dioxide with one or more carrier solvents, such as N,N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, and alcohols (such as methanol, ethanol and 2-propanol).


The process chemistry supply system 230 can comprise a rinsing chemistry assembly (not shown) for providing rinsing chemistry for generating supercritical rinsing solutions within the process chamber 208. The rinsing chemistry can include one or more organic solvents including, but not limited to, alcohols and ketones. For example, the rinsing chemistry can comprise solvents, such as N,N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, and alcohols (such as methanol, ethanol and 2-propanol).


Furthermore, the process chemistry supply system 230 can be configured to introduce treating chemistry for curing, cleaning, healing (or restoring the dielectric constant of low-k materials), or sealing, or any combination of low dielectric constant films (porous or non-porous). The chemistry can include hexamethyldisilazane (HMDS), chlorotrimethylsilane (TMCS), trichloromethylsilane (TCMS), dimethylsilyldiethylamine (DMSDEA), tetramethyldisilazane (TMDS), trimethylsilyldimethylamine (TMSDMA), dimethylsilyidimethylamine (DMSDMA), trimethylsilyldiethylamine (TMSDEA), bistrimethylsilyl urea (BTSU), bis(dimethylamino)methyl silane (B[DMA]MS), bis (dimethylamino)dimethyl silane (B[DMA]DS), HMCTS, dimethylaminopentamethyldisilane (DMAPMDS), dimethylaminodimethyldisilane (DMADMDS), disila-aza-cyclopentane (TDACP), disila-oza-cyclopentane (TDOCP), methyltrimethoxysilane (MTMOS), vinyltrimethoxysilane (VTMOS), or trimethylsilylimidazole (TMSI). Additionally, the chemistry may include N-tert-butyl-1,1-dimethyl-1-(2,3,4,5-tetramethyl-2,4-cyclopentadiene-1-yl)silanamine, 1,3-diphenyl-1,1,3,3-tetramethyldisilazane, or tert-butylchlorodiphenylsilane. For further details, see U.S. patent application Ser. No. 10/682,196, filed Oct. 10, 2003, and titled “METHOD AND SYSTEM FOR TREATING A DIELECTRIC FILM”, and U.S. patent application Ser. No. 10/379,984, filed Mar. 4, 2003, and titled “METHOD OF PASSIVATING LOW DIELECTRIC MATERIALS IN WAFER PROCESSING”, both incorporated by reference herein.


The processing system 200 can comprise the high-pressure fluid supply system 240. As shown in FIG. 2, the high-pressure fluid supply system 240 can be coupled to the recirculation system 220 using one or more lines 245, but this is not required. The inlet line 245 can be equipped with one or more back-flow valves, and/or heaters (not shown) for controlling the fluid flow from the high-pressure fluid supply system 240. In alternative embodiments, high-pressure fluid supply system 240 can be configured differently and coupled differently. For example, the high-pressure fluid supply system 240 can be coupled to the process module 210 or to the recirculation system 220 or to both.


The high-pressure fluid supply system 240 can comprise a carbon dioxide source (not shown) and a plurality of flow control elements (not shown) for generating a supercritical fluid. For example, the carbon dioxide source can include a CO2 feed system, and the flow control elements can include supply lines, valves, filters, pumps, and heaters. The high-pressure fluid supply system 240 can comprise an inlet valve (not shown) that is configured to open and close to allow or prevent the stream of supercritical carbon dioxide from flowing into the process chamber 208. For example, controller 280 can be used to determine fluid parameters such as pressure, temperature, process time, and flow rate.


The processing system 200 can also comprise a pressure control system 250. As shown in FIG. 2, the pressure control system 250 can be coupled to the process module 210 using one or more lines 255, but this is not required. Line 255 can be equipped with one or more back-flow valves, pumps, and/or heaters (not shown) for controlling the fluid flow to pressure control system 250. In alternative embodiments, pressure control system 250 can be configured differently and coupled differently. For example, the pressure control system 250 can also include one or more pumps (not shown), and a sealing means (not shown) for sealing the process chamber 208. In addition, the pressure control system 250 can comprise means for raising and lowering the substrate 205 and/or the chuck 218. The pressure control system 250 can include one or more pressure valves (not shown) for exhausting the process chamber 208 and/or for regulating the pressure within the process chamber 208. Alternatively, the pressure control system 250 can also include one or more pumps (not shown).


Furthermore, the processing system 200 can comprise an exhaust control system 260. As shown in FIG. 2, the exhaust control system 260 can be coupled to the process module 210 using one or more lines 265, but this is not required. Line 255 can be equipped with one or more back-flow valves, and/or heaters (not shown) for controlling the fluid flow to the exhaust control system 260. In alternative embodiments, exhaust control system 260 can be configured differently and coupled differently. The exhaust control system 260 can include an exhaust gas collection vessel (not shown) and can be used to remove contaminants from the processing fluid. Alternatively, the exhaust control system 260 can be used to recycle the processing fluid.


In one embodiment, controller 280 can comprise a processor 282 and a memory 284. Memory 284 can be coupled to processor 282, and can be used for storing information and instructions to be executed by processor 282. Alternatively, different controller configurations can be used. In addition, controller 280 can comprise a port 285 that can be used to couple processing system 200 to another system (not shown). Furthermore, controller 280 can comprise input and/or output devices (not shown).


In addition, one or more of the processing elements (210, 220, 230, 240, 250, 260, and 280) may include memory (not shown) for storing information and instructions to be executed during processing and processors for processing information and/or executing instructions. For example, the memory 284 may be used for storing temporary variables or other intermediate information during the execution of instructions by the various processors in the system. One or more of the processing elements can comprise a means for reading data and/or instructions from a computer readable medium. In addition, one or more of the processing elements can comprise a means for writing data and/or instructions to a computer readable medium.


Memory devices can include at least one computer readable medium or memory for holding computer-executable instructions programmed according to the teachings of the invention and for containing data structures, tables, records, or other data described herein.


The processing system 200 can perform a portion or all of the processing steps of the invention in response to the controller 280 executing one or more sequences of one or more computer-executable instructions contained in the memory 284. Such instructions may be received by the controller 280 from another computer, a computer readable medium, or a network connection.


Stored on any one or on a combination of computer readable media, the present invention includes software for controlling the processing system 200, for driving a device or devices for implementing the invention, and for enabling the processing system 200 to interact with a human user and/or another system, such as a factory system. Such software may include, but is not limited to, device drivers, operating systems, development tools, and applications software. Such computer readable media further includes the computer program product of the present invention for performing all or a portion (if processing is distributed) of the processing performed in implementing the invention.


The term “computer readable medium” as used herein refers to any medium that participates in providing instructions to a processor for execution and/or that participates in storing information before, during, and/or after executing an instruction. A computer readable medium may take many forms, including, but not limited to, non-volatile media, volatile media, and transmission media. The term “computer-executable instruction” as used herein refers to any computer code and/or software that can be executed by a processor, that provides instructions to a processor for execution and/or that participates in storing information before, during, and/or after executing an instruction.


Controller 280, processor 282, memory 284 and other processors and memory in other system elements as described thus far can, unless indicated otherwise below, be constituted by components known in the art or constructed according to principles known in the art. The computer readable medium and the computer executable instructions can also, unless indicated otherwise below, be constituted by components known in the art or constructed according to principles known in the art.


Controller 280 can use port 285 to obtain computer code and/or software from another system (not shown), such as a factory system. The computer code and/or software can be used to establish a control hierarchy. For example, the processing system 200 can operate independently, or can be controlled to some degree by a higher-level system (not shown).


The controller 280 can receive data from and/or send data to the other parts of the system 200. Controller 280 can use pre-process data, process data, and post-process data. For example, pre-process data can be associated with an incoming substrate. This pre-process data can include lot data, batch data, run data, composition data, and history data. The pre-process data can be used to establish an input state for a wafer. Process data can include process parameters. Post processing data can be associated with a processed substrate.


The controller 280 can use the pre-process data to predict, select, or calculate a set of process parameters to use to process the substrate 205. For example, this predicted set of process parameters can be a first estimate of a process recipe. A process model can provide the relationship between one or more process recipe parameters or set points and one or more process results. A process recipe can include a multi-step process involving a set of process modules. Post-process data can be obtained at some point after the substrate has been processed. For example, post-process data can be obtained after a time delay that can vary from minutes to days. The controller 280 can compute a predicted state for the substrate 205 based on the pre-process data, the process characteristics, and a process model. For example, a cleaning rate model can be used along with a contaminant level to compute a predicted cleaning time. Alternatively, a rinse rate model can be used along with a contaminant level to compute a processing time for a rinse process.


It will be appreciated that the controller 280 can perform other functions in addition to those discussed here. The controller 280 can monitor the pressure, temperature, flow, or other variables associated with the processing system 200 and take actions based on these values. For example, the controller 280 can process measured data, display data and/or results on a GUI screen, determine a fault condition, determine a response to a fault condition, and alert an operator. The controller 280 can comprise a database component (not shown) for storing input and output data.


In a supercritical cleaning/rinsing process, the desired process result can be a process result that is measurable using an optical measuring device, such as a scanning electron microscope (SEM) and/or a transmission electron microscope (TEM). For example, the desired process result can be an amount of residue and/or contaminant in a via or on the surface of a substrate below a predetermined threshold. After one or more cleaning process run, the desired process can be measured. In other case the desired process result can be a required dielectric constant.



FIG. 3 illustrates an exemplary graph 300 of pressure versus time for a supercritical process step in accordance with an embodiment of the invention. In the illustrated embodiment, the graph 300 of pressure versus time is shown, and the graph 300 can be used to represent a supercritical cleaning process step, a supercritical rinsing process step, or a supercritical curing process step, or a combination thereof. Alternatively, different pressures, different timing, and different sequences may be used for different processes.


Now referring to both FIGS. 2 and 3, prior to an initial time T0, the substrate 205 to be processed can be placed within the process chamber 208 and the process chamber 208 can be sealed. For example, during cleaning and/or rinsing processes, a substrate can have post-etch and/or post-ash residue thereon. The substrate 205, the process chamber 208, and the other elements in the recirculation loop 215 (FIG. 2) can be heated to an operational temperature. For example, the operational temperature can range from 40 to 300 degrees Celsius. For example, the process chamber 208, the recirculation system 220, and piping coupling the recirculation system 220 to the process chamber 208 can form the recirculation loop 215.


From the initial time T0 through a first duration of time T1, the elements in the recirculation loop 215 (FIG. 2) can be pressurized. As illustrated in the embodiment shown in FIG. 3, from the time T0 during the first duration of time T1, the pressure is increased from P0 to P1. During a first portion of the time T1, a temperature-controlled fluid can be provided into the recirculation loop 215 (FIG. 2). In one embodiment, the high-pressure fluid supply system 240 can be operated during a pressurization process and can be used to fill the recirculation loop 215 with temperature-controlled fluid. The high-pressure fluid supply system 240 can comprise means for filling the recirculation loop 215 with the temperature-controlled fluid, and the temperature variation of the temperature-controlled fluid can be controlled to be less than approximately 10 degrees Celsius during the pressurization process. Alternatively, the temperature variation of the temperature-controlled fluid can be controlled to be less than approximately 5 degrees Celsius during the pressurization process. In alternative embodiments, the high-pressure fluid supply system 240 and/or the pressure control system 250 can be operated during a pressurization process and can be used to fill the recirculation loop 215 with temperature-controlled fluid.


For example, a supercritical fluid, such as substantially pure CO2, can be used to pressurize the elements in the recirculation loop 215 (FIG. 2). During time T1, a pump (not shown) in the recirculation system 220 (FIG. 2) can be started and can be used to circulate the temperature controlled fluid through the process chamber 208 and the other elements in the recirculation loop 215 (FIG. 2).


In one embodiment, when the pressure in the process chamber 208 reaches an operational pressure Po (approximately 2,500 psi), process chemistry can be injected into the process chamber 208, using the process chemistry supply system 230. In an alternative embodiment, process chemistry can be injected into the process chamber 208, using the process chemistry supply system 230 when the pressure in the process chamber 208 exceeds a critical pressure, such as 1,070 psi. In other embodiments, process chemistry may be injected into the process chamber 208 before the pressure exceeds the critical pressure Pc using the process chemistry supply system 230. In other embodiments, process chemistry is not injected during the T1 period.


In one embodiment, process chemistry is injected in a linear fashion (e.g., at regular time intervals, at a steady rate, at a steadily increasing rate, etc.), and the injection time can be based on a recirculation time. For example, the recirculation time can be determined based on the length of a recirculation path and the flow rate. In other embodiments, process chemistry may be injected in a non-linear fashion (e.g., at non-regular time intervals or at a varying rate). For example, process chemistry can be injected in one or more steps.


The process chemistry can include a cleaning agent, a rinsing agent, or a curing agent, or a combination thereof that is injected into the supercritical fluid. One or more injections of process chemistries can be performed over the duration of time T1 to generate a supercritical processing solution with the desired concentrations of chemicals. The process chemistry, in accordance with the embodiments of the invention, can also include one more or more carrier solvents.


When dielectric material is being treated, the process chemistry can include a passivating agent and a solvent that is injected into the supercritical fluid. The processing chemistry preferably includes hexamethyldisilazane (HMDS), chlorotrimethylsilane (TMCS), trichloromethylsilane (TMCS) and combinations thereof. The processing chemistry can also include one or more carrier solvents.


Still referring to both FIGS. 2 and 3, during a second time T2, the supercritical processing solution can be re-circulated over the substrate 205 and through the process chamber 208 using the recirculation system 220, such as described above. In one embodiment, the process chemistry supply system 230 can be switched off, and process chemistry is not injected into the recirculation loop 215 during the second time T2. Alternatively, the process chemistry supply system 230 may be switched on one or more times during T2, and process chemistry may be injected into the process chamber 208 during the second time T2 or after the second time T2.


The process chamber 208 can operate at a pressure above 1,500 psi during the second time T2. For example, the pressure can range from approximately 2,500 psi to approximately 3,100 psi, but can be any value so long as the operating pressure is sufficient to maintain supercritical conditions. As illustrated in the embodiment of FIG. 3, during the second time T2 the pressure is maintained at approximately P1. The supercritical processing solution is circulated over the substrate 205 and through the process chamber 208 using the recirculation system 220, such as described above. The supercritical conditions within the process chamber 208 and the other elements in the recirculation loop 215 (FIG. 2) are maintained during the second time T2, and the supercritical processing solution continues to be circulated over the substrate 205 and through the process chamber 208 and the other elements in the recirculation loop 215 (FIG. 2). The recirculation system 220 (FIG. 2) can be used to regulate the flow of the supercritical processing solution through the process chamber 208 and the other elements in the recirculation loop 215 (FIG. 2).


Still referring to both FIGS. 2 and 3, during a third time T3, one or more push-through processes can be performed. As illustrated in the embodiment of FIG. 3, during the third time T3, the pressure is maintained at approximately P2. In one embodiment, the high-pressure fluid supply system 240 can be operated during a push-through process and can be used to fill the recirculation loop 215 with temperature-controlled fluid. The high-pressure fluid supply system 240 can comprise means for providing a first volume of temperature-controlled fluid during a push-through process, and the first volume can be larger than the volume of the recirculation loop 215. Alternatively, the first volume can be less than or approximately equal to the volume of the recirculation loop 215. In addition, the temperature differential within the first volume of temperature-controlled fluid during the push-through process can be controlled to be less than approximately 10 degrees Celsius. Alternatively, the temperature variation of the temperature-controlled fluid can be controlled to be less than approximately 5 degrees Celsius during a push-through process.


In other embodiments, the high-pressure fluid supply system 240 can comprise means for providing one or more volumes of temperature controlled fluid during a push-through process; each volume can be larger than the volume of the process chamber 208 or the volume of the recirculation loop 215; and the temperature variation associated with each volume can be controlled to be less than 10 degrees Celsius.


For example, during the third time T3, one or more volumes of temperature controlled supercritical carbon dioxide can be fed into the process chamber 208 and the other elements in the recirculation loop 215 from the high-pressure fluid supply system 240, and the supercritical cleaning solution along with process residue suspended or dissolved therein can be displaced from the process chamber 208 and the other elements in the recirculation loop 215 through the exhaust control system 260. In an alternative embodiment, supercritical carbon dioxide can be fed into the recirculation system 220 from the high-pressure fluid supply system 240, and the supercritical cleaning solution along with process residue suspended or dissolved therein can also be displaced from the process chamber 208 and the other elements in the recirculation loop 215 through the exhaust control system 260.


Providing temperature-controlled fluid during the push-through process prevents process residue suspended or dissolved within the fluid being displaced from the process chamber 208 and the other elements in the recirculation loop 215 from dropping out and/or adhering to the process chamber 208 and the other elements in the recirculation loop 215. In addition, during the third time T3, the temperature of the fluid supplied by the high-pressure fluid supply system 240 can vary over a wider temperature range than the range used during the second time T2.


In the illustrated embodiment shown in FIG. 3, a single second time T2 is followed by a single third time T3, but this is not required. In alternative embodiments, other time sequences may be used to process a substrate.


After the push-through process is complete, a pressure cycling process can be performed. Alternatively, one or more pressure cycles can occur during the push-through process. In other embodiments, a pressure cycling process is not required. During a fourth time T4, the process chamber 208 can be cycled through a plurality of decompression and compression cycles. The pressure can be cycled between a first pressure P3 and a second pressure P4 one or more times. In alternative embodiments, the first pressure P3 and the second pressure P4 can vary. In one embodiment, the pressure can be lowered by venting through the exhaust control system 260. For example, this can be accomplished by lowering the pressure to below approximately 1,500 psi and raising the pressure to above approximately 2,500 psi. The pressure can be increased by using the high-pressure fluid supply system 240 and/or the pressure control system 250 to provide additional high-pressure fluid.


The high-pressure fluid supply system 240 and/or the pressure control system 250 can comprise means for providing a first volume of temperature-controlled fluid during a compression cycle, and the first volume can be larger than the volume of the recirculation loop 215. Alternatively, the first volume can be less than or approximately equal to the volume of the recirculation loop 215. In addition, the temperature differential within the first volume of temperature-controlled fluid during the compression cycle can be controlled to be less than approximately 10 degrees Celsius. Alternatively, the temperature variation of the temperature-controlled fluid can be controlled to be less than approximately 5 degrees Celsius during a compression cycle.


In addition, the high-pressure fluid supply system 240 and/or the pressure control system 250 can comprise means for providing a second volume of temperature-controlled fluid during a decompression cycle, and the second volume can be larger than the volume of the recirculation loop 215. Alternatively, the second volume can be less than or approximately equal to the volume of the recirculation loop 215. In addition, the temperature differential within the second volume of temperature-controlled fluid during the decompression cycle can be controlled to be less than approximately 10 degrees Celsius. Alternatively, the temperature variation of the temperature-controlled fluid can be controlled to be less than approximately 5 degrees Celsius during a decompression cycle.


In other embodiments, the high-pressure fluid supply system 240 and/or the pressure control system 250 can comprise means for providing one or more volumes of temperature controlled fluid during a compression cycle and/or decompression cycle; each volume can be larger than the volume of the process chamber 208 or the volume of the recirculation loop 215; the temperature variation associated with each volume can be controlled to be less than 10 degrees Celsius; and the temperature variation can be allowed to increase as additional cycles are performed.


Furthermore, during the fourth time T4, one or more volumes of temperature controlled supercritical carbon dioxide can be fed into the process chamber 208 and the other elements in the recirculation loop 215, and the supercritical cleaning solution along with process residue suspended or dissolved therein can be displaced from the process chamber 208 and the other elements in the recirculation loop 215 through the exhaust control system 260. In an alternative embodiment, supercritical carbon dioxide can be fed into the recirculation system 220, and the supercritical cleaning solution along with process residue suspended or dissolved therein can also be displaced from the process chamber 208 and the other elements in the recirculation loop 215 through the exhaust control system 260.


Providing temperature-controlled fluid during the pressure cycling process prevents process residue suspended or dissolved within the fluid being displaced from the process chamber 208 and the other elements in the recirculation loop 215 from dropping out and/or adhering to the process chamber 208 and the other elements in the recirculation loop 215. In addition, during the fourth time T4, the temperature of the fluid supplied can vary over a wider temperature range than the range used during the second time T2.


In the illustrated embodiment shown in FIG. 3, a single third time T3 is followed by a single fourth time T4, but this is not required. In alternative embodiments, other time sequences may be used to process a substrate.


In an alternative embodiment, the exhaust control system 260 can be switched off during a portion of the fourth time T4. For example, the exhaust control system 260 can be switched off during a compression cycle.


During a fifth time T5, the process chamber 208 can be returned to a lower pressure. For example, after the pressure cycling process is completed, then the process chamber 208 can be vented or exhausted to atmospheric pressure.


The high-pressure fluid supply system 240 and/or the pressure control system 250 can comprise means for providing a volume of temperature-controlled fluid during a venting process, and the volume can be larger than the volume of the recirculation loop 215. Alternatively, the volume can be less than or approximately equal to the volume of the recirculation loop 215. In addition, the temperature differential within the volume of temperature-controlled fluid during the venting process can be controlled to be less than approximately 20 degrees Celsius. Alternatively, the temperature variation of the temperature-controlled fluid can be controlled to be less than approximately 15 degrees Celsius during a venting process.


In other embodiments, the high-pressure fluid supply system 240 and/or the pressure control system 250 can comprise means for providing one or more volumes of temperature controlled fluid during a venting process; each volume can be larger than the volume of the process chamber 208 or the volume of the recirculation loop 215; the temperature variation associated with each volume can be controlled to be less than 20 degrees Celsius; and the temperature variation can be allowed to increase as the pressure approaches a final processing pressure.


Furthermore, during the fifth time T5, one or more volumes of temperature controlled supercritical carbon dioxide can be fed into the recirculation loop 215, and the remaining supercritical cleaning solution along with process residue suspended or dissolved therein can be displaced from the process chamber 208 and the other elements in the recirculation loop 215 through the exhaust control system 260. In an alternative embodiment, supercritical carbon dioxide can be fed into the process chamber 208 and/or the recirculation system 220, and the remaining supercritical cleaning solution along with process residue suspended or dissolved therein can also be displaced from the process chamber 208 and the other elements in the recirculation loop 215 through the exhaust control system 260.


Providing temperature-controlled fluid during the venting process prevents process residue suspended or dissolved within the fluid being displaced from the process chamber 208 and the other elements in the recirculation loop 215 from dropping out and/or adhering to the process chamber 208 and the other elements in the recirculation loop 215.


In the illustrated embodiment shown in FIG. 3, a single fourth time T4 is followed by a single fifth time T5, but this is not required. In alternative embodiments, other time sequences may be used to process a substrate.


In one embodiment, during a portion of the fifth time T5, a recirculation pump (not shown) can be switched off. In addition, the temperature of the fluid supplied by the high-pressure fluid supply system 240 can vary over a wider temperature range than the range used during the second time T2. For example, the temperature can range below the temperature required for supercritical operation.


For substrate processing, the chamber pressure can be made substantially equal to the pressure inside of a transfer chamber (not shown) coupled to the process chamber 208. In one embodiment, the substrate can be moved from the process chamber 208 into the transfer chamber, and moved to a second process apparatus or module to continue processing.


In the illustrated embodiment shown in FIG. 3, at the end of the fifth time T5 the pressure returns to an initial pressure P0, but this is not required for the invention. In alternative embodiments, the pressure does not have to return to P0, and the process sequence can continue with additional time steps such as those shown in time steps T1, T2, T3, T4, or T5.


The graph 300 is provided for exemplary purposes only. For example, a low-k layer can be treated using 1 to 10 passivation steps each taking less than approximately 3 minutes, as described above. It will be understood by those skilled in the art that a supercritical processing step can have any number of different time/pressures or temperature profiles without departing from the scope of the invention. Further, any number of cleaning, rinsing, and/or curing process sequences with each step having any number of compression and decompression cycles are contemplated. In addition, as stated previously, concentrations of various chemicals and species within a supercritical processing solution can be readily tailored for the application at hand and altered at any time within a supercritical processing step.



FIG. 4 shows a simplified flow diagram outlining steps for treating a silicon oxide-based low-k layer in accordance with the embodiments of the invention. In the illustrated embodiment, a method 400 is shown for treating a substrate structure comprising a patterned low-k layer and post-etch residue thereon using a supercritical cleaning and passivating solution.


In the step 402, the substrate structure comprising a dielectric layer and the post-etch residue is placed within a process chamber, which is then sealed.


In the step 404, the process chamber is pressurized with supercritical CO2 and passivating chemistry is added to the supercritical CO2 to generate a supercritical cleaning and passivating solution. In one embodiment, the cleaning and passivating chemistry comprises at least one organosilicon compound.


In the step 406, the substrate structure is maintained in the supercritical processing solution for a period of time sufficient to remove at least a portion of the residue from the substrate structure and passivate surfaces exposed after the residue is removed. In addition, the supercritical cleaning and passivating solution is circulated through the process chamber and/or otherwise flowed to move the supercritical cleaning and passivating solution over surfaces of the substrate structure.


Still referring to FIG. 4, after at least a portion of the residue is removed from the substrate structure, the process chamber is partially exhausted in the step 408. The cleaning process comprising steps 404 and 406 can be repeated any number of times, as indicated by the arrow connecting the steps 408 to 404, required to remove the residue from the substrate structure and passivate the surfaces exposed. The processing comprising the steps 404 and 406, in accordance with the embodiments of the invention, use fresh supercritical carbon dioxide, fresh chemistry, or both. Alternatively, the concentration of the cleaning chemistry is modified by diluting the process chamber with supercritical carbon dioxide, by adding additional charges of cleaning chemistry or a combination thereof.


Still referring to FIG. 4, after the processing steps 404, 406 and 408 are complete, in the step 410 the substrate structure is preferably treated to a supercritical clean and/or rinse solution. The supercritical clean and/or rinse solution preferably comprises supercritical CO2 and one or more organic solvents, but can be pure supercritical CO2.


After the substrate structure is cleaned in the steps 404, 406 and 408 and rinsed in the step 410, in the step 412, the process chamber is depressurized, and the substrate structure is removed from the process chamber. Alternatively, the substrate structure can be cycled through one or more additional cleaning/rinse processes comprising the steps 404, 406, 408 and 410 as indicated by the arrow connecting steps 410 and 404. Alternatively, or in addition to cycling the substrate structure through one or more additional cleaning/rinse cycles, the substrate structure is treated to several rinse cycles prior to removing the substrate structure from the process chamber in the step 412, as indicated by the arrow connecting the steps 410 and 408.


As described previously, the substrate structure can be dried and/or pretreated prior to passivating the low-k layer thereon by using a supercritical solution comprising supercritical carbon dioxide and one or more solvents such as methanol, ethanol, n-hexane, and/or combinations thereof. In addition, it will be clear of one skilled in the art that a substrate comprising a post-etch residue and/or a patterned low-k dialectic layer can be treated to any number of cleaning and passivating steps and/or sequences.


It will be understood by one skilled in the art, that while the method of passivating low-k material has been primarily described herein with reference to a post-etch treatment and/or a post-etch cleaning treatment, the method of the present invention can be used to directly passivate low-k materials. Further, it will be appreciated that when treating a low-k material, in accordance with the method of the present invention, a supercritical rinse step is not always necessary and simply drying the low-k material prior to treating the low-k material with a supercritical passivating solution can be appropriate for some applications.


The present invention has the advantages of being capable of passivating a low-k surface and being compatible with other processing steps, such as removing post-etch residues (including, but not limited to, spin-on polymeric anti-reflective coating layers and photopolymers) for patterned low-k layers in a supercritical processing environment. The present invention also has been observed to restore or partially restore k-values of materials lost after patterning steps and has been shown to produce low-k layers that are stable over time.


While the invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention, such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention. Specifically, while supercritical CO2 is the preferred medium for cleaning and/or passivating, other supercritical media alone or in combination with supercritical CO2 can also be used.

Claims
  • 1. A method of treating a patterned surface of a dielectric material comprising: removing post-etch residue from a plurality of patterned features in a dielectric material with a passivating solution comprising a fluid and an amount of a silylating agent comprising organic groups; andremoving the passivating solution, wherein at least one of the plurality of patterned features is at least partially passivated with the organic groups, thereby restoring the k-value of the dielectric material to a pre-patterned value and resulting in the dielectric material being at least partially hydrophobic.
  • 2. The method of claim 1, wherein the dielectric material comprises a low-k material.
  • 3. The method of claim 1, wherein the dielectric material comprises an ultra-low-k material.
  • 4. The method of claim 1, wherein the fluid comprises a supercritical fluid.
  • 5. The method of claim 4, wherein the supercritical fluid comprises supercritical CO2.
  • 6. The method of claim 1, wherein the organic groups comprise alkyl groups.
  • 7. The method of claim 1, wherein the organic groups comprise less than six carbon atoms.
  • 8. The method of claim 1, wherein the organic groups comprise an organosilicon compound.
  • 9. The method of claim 8, wherein the organosilicon compound is selected from the group consisting of hexamethyldisilazane (HMDS), chlorotrimethylsilane (TMCS), trichloromethylsilane (TCMS), and combinations thereof.
  • 10. The method of claim 1, wherein the passivating solution further comprises a carrier solvent.
  • 11. The method of claim 10, wherein the carrier solvent is selected from the group consisting of N, N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, alkane and combinations thereof.
  • 12. The method of claim 1, wherein the dielectric material is maintained at temperatures in a range of approximately 40 degrees Celsius to approximately 250 degrees Celsius.
  • 13. The method of claim 1, wherein the passivating solution is maintained at temperatures in a range of approximately 40 degrees Celsius to approximately 250 degrees Celsius.
  • 14. The method of claim 1, wherein the removing post-etch residue from a plurality of patterned features in a dielectric material with a passivating solution further comprises circulating the passivating solution over the low-k surface.
  • 15. The method of claim 1, wherein the passivating solution is maintained at pressures in a range of approximately 1,000 psi to approximately 9,000 psi.
  • 16. The method of claim 1, further comprising drying at least one surface of the dielectric material prior to removing post-etch residue from a plurality of patterned features in a dielectric material with a passivating solution.
  • 17. The method of claim 16, wherein the drying at least one surface comprises treating the at least one surface to a supercritical drying solution comprising supercritical carbon dioxide.
  • 18. The method of claim 1, wherein the dielectric material comprises silicon-oxide.
  • 19. The method of claim 1, wherein the dielectric material comprises a material selected from the group consisting of a carbon doped oxide (COD), a spin-on-glass (SOG), a fluoridated silicon glass (FSG), and combinations thereof.
  • 20. A method of treating a patterned surface of a dielectric material, comprising: removing post ash residue from at least one patterned surface of a dielectric material with a supercritical cleaning solution; andtreating the dielectric material with a passivating solution comprising a passivating agent in the supercritical cleaning solution to form a passivated dielectric surface, thereby restoring the k-value of the dielectric material to a pre-patterned value and resulting in the dielectric material being at least partially hydrophobic.
  • 21. The method of claim 20, wherein the post ash residue comprises a polymer.
  • 22. The method of claim 21, wherein the polymer is a photoresist polymer.
  • 23. The method of claim 22, wherein the photoresist polymer comprises an anti-reflective dye.
  • 24. The method of claim 20, wherein the dielectric material comprises a low-k material.
  • 25. The method of claim 20, wherein the dielectric material comprises an ultra-low-k material.
  • 26. The method of claim 20, wherein the post ash residue comprises an anti-reflective coating.
  • 27. The method of claim 26, wherein the anti-reflective coating comprises an organic spin-on anti-reflective material.
  • 28. The method of claim 20, wherein the passivating agent comprises an organosilicon compound.
  • 29. The method of claim 28, wherein the organosilicon compound is selected from the group consisting of hexamethyldisilazane (HMDS), chlorotrimethylsilane (TMCS), trichloromethylsilane (TCMS) and combinations thereof.
  • 30. A method of forming an at least partially hydrophobic patterned dielectric layer, the method comprising; depositing a continuous layer of dielectric material with an initial k-value;forming a photoresist mask over the continuous layer of dielectric material;patterning the continuous layer of dielectric material through the photoresist mask;removing the photoresist mask, thereby forming a post-ash residue and causing the dielectric material to have an intermediate k-value greater than the initial k-value; and
  • 31. The method of claim 30, wherein the supercritical fluid comprises supercritical carbon dioxide.
  • 32. The method of claim 30, wherein the silicon-based passivating agent comprises an organosilicon compound.
  • 33. The method of claim 30, wherein the supercritical fluid further comprises a carrier solvent.
  • 34. The method of claim 33, wherein the carrier solvent is selected from the group consisting of N, N-dimethylacetamide (DMAc), gamma-butyrolactone (BLO), dimethyl sulfoxide (DMSO), ethylene carbonate (EC), N-methylpyrrolidone (NMP), dimethylpiperidone, propylene carbonate, alkane and combinations thereof.
  • 35. The method of claim 30, wherein the initial k-value is a low k-value.
  • 36. The method of claim 30, wherein the initial k-value is an ultra-low k-value.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Patent Application is a continuation-in-part (CIP) of the U.S. patent application Ser. No. 10/379,984 filed Mar. 4, 2003 now U.S. Pat. No. 7,270,941, and entitled “METHODS OF PASSIVATING POROUS LOW-K DIELECTRIC FILM” which claims priority under 35 U.S.C. 119 (e) of the U.S. Provisional Patent Application Ser. No. 60/361,917 filed Mar. 4, 2002, and entitled “METHODS OF PASSIVATING POROUS LOW-K DIELECTRIC FILM” and the U.S. Provisional Patent Application Ser. No. 60/369,052 filed Mar. 29, 2002, and entitled “USE OF SUPERCRITICAL CO2 PROCESSING FOR INTEGRATION AND FORMATION OF ULK DIELECTRICS”. The co-pending U.S. patent application Ser. No. 10/379,984 filed Mar. 4, 2003, and entitled “METHODS OF PASSIVATING POROUS LOW-K DIELECTRIC FILM”; the Provisional Patent Application Ser. No. 60/361,917 filed Mar. 4, 2002, and entitled “METHODS OF PASSIVATING POROUS LOW-K DIELECTRIC FILM”; and the Provisional Patent Application Ser. No. 60/369,052 filed Mar. 29, 2002, and entitled “USE OF SUPERCRITICAL CO2 PROCESSING FOR INTEGRATION AND FORMATION OF ULK DIELECTRICS” are all hereby incorporated by reference.

US Referenced Citations (466)
Number Name Date Kind
2439689 Hyde et al. Apr 1948 A
2617719 Stewart Nov 1952 A
2625886 Browne Jan 1953 A
2873597 Fahringer Feb 1959 A
2993449 Harland Jul 1961 A
3135211 Pezzillo Jun 1964 A
3521765 Kauffman et al. Jul 1970 A
3623627 Bolton Nov 1971 A
3642020 Payne Feb 1972 A
3646948 Athey Mar 1972 A
3681171 Toku Hojo et al. Aug 1972 A
3744660 Gaines et al. Jul 1973 A
3890176 Bolon Jun 1975 A
3900551 Bardoncelli et al. Aug 1975 A
3968885 Hassan et al. Jul 1976 A
4029517 Rand Jun 1977 A
4091643 Zucchini May 1978 A
4145161 Skinner Mar 1979 A
4219333 Harris Aug 1980 A
4245154 Uehara et al. Jan 1981 A
4316750 Gengler Feb 1982 A
4341592 Shortes et al. Jul 1982 A
4349415 DeFilippi et al. Sep 1982 A
4355937 Mack et al. Oct 1982 A
4367140 Wilson Jan 1983 A
4391511 Akiyama et al. Jul 1983 A
4406596 Budde Sep 1983 A
4422651 Platts Dec 1983 A
4426358 Johansson Jan 1984 A
4474199 Blaudszun Oct 1984 A
4475993 Blander et al. Oct 1984 A
4522788 Sitek et al. Jun 1985 A
4549467 Wilden et al. Oct 1985 A
4574184 Wolf et al. Mar 1986 A
4592306 Gallego Jun 1986 A
4601181 Privat Jul 1986 A
4618769 Johnson et al. Oct 1986 A
4626509 Lyman Dec 1986 A
4670126 Messer et al. Jun 1987 A
4682937 Credle, Jr. Jul 1987 A
4693777 Hazano et al. Sep 1987 A
4730630 Ranft Mar 1988 A
4749440 Blackwood et al. Jun 1988 A
4778356 Hicks Oct 1988 A
4788043 Kagiyama et al. Nov 1988 A
4789077 Noe Dec 1988 A
4823976 White, III et al. Apr 1989 A
4825808 Takahashi et al. May 1989 A
4827867 Takei et al. May 1989 A
4838476 Rahn Jun 1989 A
4865061 Fowler et al. Sep 1989 A
4877530 Moses Oct 1989 A
4879004 Oesch et al. Nov 1989 A
4879431 Bertoncini Nov 1989 A
4917556 Stark et al. Apr 1990 A
4923828 Gluck et al. May 1990 A
4924892 Kiba et al. May 1990 A
4925790 Blanch et al. May 1990 A
4933404 Beckman et al. Jun 1990 A
4944837 Nishikawa et al. Jul 1990 A
4951601 Maydan et al. Aug 1990 A
4960140 Ishijima et al. Oct 1990 A
4983223 Gessner Jan 1991 A
5009738 Gruenwald et al. Apr 1991 A
5011542 Weil Apr 1991 A
5013366 Jackson et al. May 1991 A
5044871 Davis et al. Sep 1991 A
5062770 Story et al. Nov 1991 A
5068040 Jackson Nov 1991 A
5071485 Matthews et al. Dec 1991 A
5091207 Tanaka Feb 1992 A
5105556 Kurokawa et al. Apr 1992 A
5143103 Basso et al. Sep 1992 A
5158704 Fulton et al. Oct 1992 A
5167716 Boitnott et al. Dec 1992 A
5169296 Wilden Dec 1992 A
5169408 Biggerstaff et al. Dec 1992 A
5174917 Monzyk Dec 1992 A
5185058 Cathey, Jr. Feb 1993 A
5185296 Morita et al. Feb 1993 A
5186594 Toshima Feb 1993 A
5186718 Tepman et al. Feb 1993 A
5188515 Horn Feb 1993 A
5190373 Dickson et al. Mar 1993 A
5191993 Wanger et al. Mar 1993 A
5193560 Tanaka et al. Mar 1993 A
5195878 Sahiavo et al. Mar 1993 A
5196134 Jackson Mar 1993 A
5197800 Saidman et al. Mar 1993 A
5201960 Starov Apr 1993 A
5213485 Wilden May 1993 A
5213619 Jackson et al. May 1993 A
5215592 Jackson Jun 1993 A
5217043 Novakovi Jun 1993 A
5221019 Pechacek Jun 1993 A
5222876 Budde Jun 1993 A
5224504 Thompson et al. Jul 1993 A
5225173 Wai Jul 1993 A
5236602 Jackson Aug 1993 A
5236669 Simmons et al. Aug 1993 A
5237824 Pawliszyn Aug 1993 A
5238671 Matson et al. Aug 1993 A
5240390 Kvinge et al. Aug 1993 A
5242641 Horner et al. Sep 1993 A
5243821 Schuck et al. Sep 1993 A
5246500 Samata et al. Sep 1993 A
5250078 Saus et al. Oct 1993 A
5251776 Morgan, Jr. et al. Oct 1993 A
5252041 Schumack Oct 1993 A
5259731 Dhindsa et al. Nov 1993 A
5261965 Moslehi Nov 1993 A
5266205 Fulton et al. Nov 1993 A
5267455 Dewees et al. Dec 1993 A
5269815 Schlenker et al. Dec 1993 A
5269850 Jackson Dec 1993 A
5274129 Natale et al. Dec 1993 A
5280693 Heudecker Jan 1994 A
5285352 Pastore et al. Feb 1994 A
5288333 Tanaka et al. Feb 1994 A
5290361 Hayashida et al. Mar 1994 A
5294261 McDermott et al. Mar 1994 A
5298032 Schlenker et al. Mar 1994 A
5304515 Morita et al. Apr 1994 A
5306350 Hoy et al. Apr 1994 A
5312882 DeSimone et al. May 1994 A
5313965 Palen May 1994 A
5314574 Takahashi May 1994 A
5316591 Chao et al. May 1994 A
5320742 Fletcher et al. Jun 1994 A
5328722 Ghanayem et al. Jul 1994 A
5331986 Lim et al. Jul 1994 A
5334332 Lee Aug 1994 A
5334493 Fujita et al. Aug 1994 A
5337446 Smith et al. Aug 1994 A
5339539 Shiraishi et al. Aug 1994 A
5339844 Stanford, Jr. et al. Aug 1994 A
5352327 Witowski Oct 1994 A
5355901 Mielnik et al. Oct 1994 A
5356538 Wai et al. Oct 1994 A
5364497 Chau et al. Nov 1994 A
5368171 Jackson Nov 1994 A
5370740 Chao et al. Dec 1994 A
5370741 Bergman Dec 1994 A
5370742 Mitchell et al. Dec 1994 A
5374829 Sakamoto et al. Dec 1994 A
5377705 Smith, Jr. et al. Jan 1995 A
5378311 Nagayama et al. Jan 1995 A
5397220 Akihisa et al. Mar 1995 A
5401322 Marshall Mar 1995 A
5403621 Jackson et al. Apr 1995 A
5403665 Alley et al. Apr 1995 A
5404894 Shiraiwa Apr 1995 A
5412958 Iliff et al. May 1995 A
5417768 Smith, Jr. et al. May 1995 A
5433334 Reneau Jul 1995 A
5434107 Paranjpe Jul 1995 A
5447294 Sakata et al. Sep 1995 A
5456759 Stanford, Jr. et al. Oct 1995 A
5470393 Fukazawa Nov 1995 A
5474410 Ozawa et al. Dec 1995 A
5474812 Truckenmuller et al. Dec 1995 A
5482564 Douglas et al. Jan 1996 A
5486212 Mitchell et al. Jan 1996 A
5494526 Paranjpe Feb 1996 A
5500081 Bergman Mar 1996 A
5501761 Evans et al. Mar 1996 A
5503176 Dunmire et al. Apr 1996 A
5505219 Lansberry et al. Apr 1996 A
5509431 Smith, Jr. et al. Apr 1996 A
5514220 Wetmore et al. May 1996 A
5522938 O'Brien Jun 1996 A
5526834 Mielnik et al. Jun 1996 A
5533538 Marshall Jul 1996 A
5540554 Masuzawa Jul 1996 A
5547774 Gimzewski et al. Aug 1996 A
5550211 DeCrosta et al. Aug 1996 A
5571330 Kyogoku Nov 1996 A
5580846 Hayashida et al. Dec 1996 A
5589082 Lin et al. Dec 1996 A
5589105 DeSimone et al. Dec 1996 A
5589224 Tepman et al. Dec 1996 A
5621982 Yamashita et al. Apr 1997 A
5629918 Ho et al. May 1997 A
5632847 Ohno et al. May 1997 A
5635463 Muraoka Jun 1997 A
5637151 Schulz Jun 1997 A
5641887 Beckman et al. Jun 1997 A
5644855 McDermott et al. Jul 1997 A
5649809 Stapelfeldt Jul 1997 A
5656097 Olesen et al. Aug 1997 A
5665527 Allen et al. Sep 1997 A
5669251 Townsend et al. Sep 1997 A
5672204 Habuka Sep 1997 A
5676705 Jureller et al. Oct 1997 A
5679169 Gonzales et al. Oct 1997 A
5679171 Saga et al. Oct 1997 A
5683473 Jureller et al. Nov 1997 A
5683977 Jureller et al. Nov 1997 A
5688617 Mikami et al. Nov 1997 A
5688879 DeSimone Nov 1997 A
5700379 Biebl Dec 1997 A
5702228 Tamai et al. Dec 1997 A
5706319 Holtz Jan 1998 A
5714299 Combes et al. Feb 1998 A
5725987 Combes et al. Mar 1998 A
5726211 Hedrick et al. Mar 1998 A
5730874 Wai et al. Mar 1998 A
5736425 Smith et al. Apr 1998 A
5739223 DeSimone Apr 1998 A
5746008 Yamashita et al. May 1998 A
5766367 Smith et al. Jun 1998 A
5769588 Toshima Jun 1998 A
5772783 Stucker Jun 1998 A
5783082 DeSimone et al. Jul 1998 A
5797719 James et al. Aug 1998 A
5798126 Fujikawa et al. Aug 1998 A
5798438 Sawan et al. Aug 1998 A
5804607 Hedrick et al. Sep 1998 A
5807607 Smith et al. Sep 1998 A
5817178 Mita et al. Oct 1998 A
5847443 Cho et al. Dec 1998 A
5850747 Roberts et al. Dec 1998 A
5858107 Chao et al. Jan 1999 A
5865602 Nozari Feb 1999 A
5866005 DeSimone et al. Feb 1999 A
5868856 Douglas et al. Feb 1999 A
5868862 Douglas et al. Feb 1999 A
5872061 Lee et al. Feb 1999 A
5872257 Beckman et al. Feb 1999 A
5873948 Kim Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5881577 Sauer et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5888050 Fitzgerald et al. Mar 1999 A
5890501 Kaneko et al. Apr 1999 A
5893756 Berman et al. Apr 1999 A
5896870 Huynh et al. Apr 1999 A
5898727 Fujikawa et al. Apr 1999 A
5900107 Murphy et al. May 1999 A
5900354 Batchelder May 1999 A
5904737 Preston et al. May 1999 A
5906866 Webb May 1999 A
5908510 McCullough et al. Jun 1999 A
5928389 Jevtic Jul 1999 A
5932100 Yager et al. Aug 1999 A
5934856 Asakawa et al. Aug 1999 A
5934991 Rush Aug 1999 A
5943721 Lerette et al. Aug 1999 A
5944996 DeSimone et al. Aug 1999 A
5946945 Kegler et al. Sep 1999 A
5954101 Drube et al. Sep 1999 A
5955140 Smith et al. Sep 1999 A
5965025 Wai et al. Oct 1999 A
5970554 Shore et al. Oct 1999 A
5971714 Schaffer et al. Oct 1999 A
5975492 Brenes Nov 1999 A
5976264 McCullough et al. Nov 1999 A
5979306 Fujikawa et al. Nov 1999 A
5980648 Adler Nov 1999 A
5981399 Kawamura et al. Nov 1999 A
5989342 Ikeda et al. Nov 1999 A
5992680 Smith Nov 1999 A
5994696 Tai et al. Nov 1999 A
6005226 Aschner et al. Dec 1999 A
6017820 Ting et al. Jan 2000 A
6021791 Dryer et al. Feb 2000 A
6024801 Wallace et al. Feb 2000 A
6029371 Kamikawa et al. Feb 2000 A
6035871 Eui-Yeol Mar 2000 A
6037277 Masakara et al. Mar 2000 A
6041817 Guertin Mar 2000 A
6045331 Gehm et al. Apr 2000 A
6048494 Annapragada Apr 2000 A
6053348 Morch Apr 2000 A
6056008 Adams et al. May 2000 A
6062853 Shimazu et al. May 2000 A
6063714 Smith et al. May 2000 A
6067728 Farmer et al. May 2000 A
6070440 Malchow et al. Jun 2000 A
6077053 Fujikawa et al. Jun 2000 A
6077321 Adachi et al. Jun 2000 A
6082150 Stucker Jul 2000 A
6085762 Barton Jul 2000 A
6085935 Malchow et al. Jul 2000 A
6089377 Shimizu Jul 2000 A
6097015 McCullough et al. Aug 2000 A
6099619 Lansbarkis et al. Aug 2000 A
6100198 Grieger et al. Aug 2000 A
6103638 Robinson Aug 2000 A
6110232 Chen et al. Aug 2000 A
6114044 Houston et al. Sep 2000 A
6122566 Nguyen et al. Sep 2000 A
6123510 Greer et al. Sep 2000 A
6128830 Bettcher et al. Oct 2000 A
6140252 Cho et al. Oct 2000 A
6145519 Konishi et al. Nov 2000 A
6149828 Vaarststra Nov 2000 A
6159295 Maskara et al. Dec 2000 A
6164297 Kamikawa Dec 2000 A
6171645 Smith et al. Jan 2001 B1
6186722 Shirai Feb 2001 B1
6190459 Takeshita et al. Feb 2001 B1
6200943 Romack et al. Mar 2001 B1
6203582 Berner et al. Mar 2001 B1
6216364 Tanaka et al. Apr 2001 B1
6221781 Siefering et al. Apr 2001 B1
6224774 DeSimone et al. May 2001 B1
6228563 Starov et al. May 2001 B1
6228826 DeYoung et al. May 2001 B1
6232238 Chang et al. May 2001 B1
6232417 Rhodes et al. May 2001 B1
6235145 Li et al. May 2001 B1
6235634 White et al. May 2001 B1
6239038 Wen May 2001 B1
6241825 Wytman Jun 2001 B1
6242165 Vaartstra Jun 2001 B1
6244121 Hunter Jun 2001 B1
6251250 Keigler Jun 2001 B1
6255732 Yokoyama et al. Jul 2001 B1
6262510 Lungu Jul 2001 B1
6264752 Curtis et al. Jul 2001 B1
6264753 Chao et al. Jul 2001 B1
6270531 DeYoung et al. Aug 2001 B1
6270948 Sato et al. Aug 2001 B1
6277753 Mullee et al. Aug 2001 B1
6284558 Sakamoto Sep 2001 B1
6286231 Bergman et al. Sep 2001 B1
6305677 Lenz Oct 2001 B1
6306564 Mullee Oct 2001 B1
6319858 Lee et al. Nov 2001 B1
6331487 Koch Dec 2001 B2
6333268 Starov et al. Dec 2001 B1
6334266 Moritz et al. Jan 2002 B1
6344174 Miller et al. Feb 2002 B1
6344243 McClain et al. Feb 2002 B1
6355072 Racette et al. Mar 2002 B1
6358673 Namatsu Mar 2002 B1
6361696 Spiegelman et al. Mar 2002 B1
6363292 McLoughlin Mar 2002 B1
6367491 Marshall et al. Apr 2002 B1
6380105 Smith et al. Apr 2002 B1
6388317 Reese May 2002 B1
6389677 Lenz May 2002 B1
6406782 Johnson et al. Jun 2002 B2
6418956 Bloom Jul 2002 B1
6425956 Cotte et al. Jul 2002 B1
6436824 Chooi et al. Aug 2002 B1
6454519 Toshima et al. Sep 2002 B1
6454945 Weigl et al. Sep 2002 B1
6458494 Song et al. Oct 2002 B2
6461967 Wu et al. Oct 2002 B2
6464790 Sherstinsky et al. Oct 2002 B1
6465403 Skee Oct 2002 B1
6485895 Choi et al. Nov 2002 B1
6486078 Rangarajan et al. Nov 2002 B1
6492090 Nishi et al. Dec 2002 B2
6497239 Farmer et al. Dec 2002 B2
6500605 Mullee et al. Dec 2002 B1
6508259 Tseronis et al. Jan 2003 B1
6509141 Mullee Jan 2003 B2
6521466 Castrucci Feb 2003 B1
6532772 Robinson Mar 2003 B1
6537916 Mullee et al. Mar 2003 B2
6541278 Morita et al. Apr 2003 B2
6546946 Dunmire Apr 2003 B2
6550484 Gopinath et al. Apr 2003 B1
6558475 Jur et al. May 2003 B1
6561213 Wang et al. May 2003 B2
6561220 McCullough et al. May 2003 B2
6561481 Filonczuk May 2003 B1
6561767 Berger et al. May 2003 B2
6562146 DeYoung et al. May 2003 B1
6564826 Shen May 2003 B2
6596093 DeYoung et al. Jul 2003 B2
6612317 Costantini et al. Sep 2003 B2
6613105 Moore Sep 2003 B1
6616414 Yoo et al. Sep 2003 B2
6635565 Wu et al. Oct 2003 B2
6641678 DeYoung et al. Nov 2003 B2
6642140 Moore Nov 2003 B1
6669785 DeYoung et al. Dec 2003 B2
6712081 Uehara et al. Mar 2004 B1
6722642 Sutton et al. Apr 2004 B1
6736149 Biberger et al. May 2004 B2
6764212 Nitta et al. Jul 2004 B1
6764552 Joyce et al. Jul 2004 B1
6805801 Humayun et al. Oct 2004 B1
6815922 Yoo et al. Nov 2004 B2
6848458 Shrinivasan et al. Feb 2005 B1
6851148 Preston et al. Feb 2005 B2
6874513 Yamagata et al. Apr 2005 B2
6890853 Biberger et al. May 2005 B2
6905555 DeYoung et al. Jun 2005 B2
6921456 Biberger et al. Jul 2005 B2
6966967 Curry et al. Nov 2005 B2
7044143 DeYoung et al. May 2006 B2
20010019857 Yokoyama et al. Sep 2001 A1
20010024247 Nakata Sep 2001 A1
20010041455 Yun et al. Nov 2001 A1
20010041458 Ikakura et al. Nov 2001 A1
20010050096 Costantini et al. Dec 2001 A1
20020001929 Biberger et al. Jan 2002 A1
20020014257 Chandra et al. Feb 2002 A1
20020046707 Biberger et al. Apr 2002 A1
20020055323 McClain et al. May 2002 A1
20020074289 Sateria et al. Jun 2002 A1
20020081533 Simons et al. Jun 2002 A1
20020088477 Cotte et al. Jul 2002 A1
20020098680 Goldstein et al. Jul 2002 A1
20020106867 Yang et al. Aug 2002 A1
20020112740 DeYoung et al. Aug 2002 A1
20020112746 DeYoung et al. Aug 2002 A1
20020115022 Messick et al. Aug 2002 A1
20020117391 Beam Aug 2002 A1
20020123229 Ono et al. Sep 2002 A1
20020127844 Grill et al. Sep 2002 A1
20020132192 Namatsu Sep 2002 A1
20020141925 Wong et al. Oct 2002 A1
20020142595 Chiou Oct 2002 A1
20020150522 Heim et al. Oct 2002 A1
20020164873 Masuda et al. Nov 2002 A1
20020189543 Biberger et al. Dec 2002 A1
20030003762 Cotte et al. Jan 2003 A1
20030005948 Matsuno et al. Jan 2003 A1
20030008155 Hayashi et al. Jan 2003 A1
20030008238 Goldfarb et al. Jan 2003 A1
20030008518 Chang et al. Jan 2003 A1
20030013311 Chang et al. Jan 2003 A1
20030036023 Moreau et al. Feb 2003 A1
20030047533 Reid et al. Mar 2003 A1
20030051741 DeSimone et al. Mar 2003 A1
20030081206 Doyle May 2003 A1
20030106573 Masuda et al. Jun 2003 A1
20030125225 Xu et al. Jul 2003 A1
20030161734 Kim Aug 2003 A1
20030198895 Toma et al. Oct 2003 A1
20030205510 Jackson Nov 2003 A1
20030217764 Masuda et al. Nov 2003 A1
20040011386 Seghal Jan 2004 A1
20040018452 Schilling Jan 2004 A1
20040020518 DeYoung et al. Feb 2004 A1
20040045588 DeYoung et al. Mar 2004 A1
20040048194 Breyta et al. Mar 2004 A1
20040050406 Sehgal Mar 2004 A1
20040087457 Korzenski et al. May 2004 A1
20040103922 Inoue et al. Jun 2004 A1
20040112409 Schilling Jun 2004 A1
20040134515 Castrucci Jul 2004 A1
20040157463 Jones Aug 2004 A1
20040168709 Drumm et al. Sep 2004 A1
20040175958 Lin et al. Sep 2004 A1
20040177867 Schilling Sep 2004 A1
20040211440 Wang et al. Oct 2004 A1
20040213676 Phillips et al. Oct 2004 A1
20040255978 Fury et al. Dec 2004 A1
20040259357 Saga Dec 2004 A1
20050014370 Jones Jan 2005 A1
20050026547 Moore et al. Feb 2005 A1
20050111987 Yoo et al. May 2005 A1
20050141998 Yoo et al. Jun 2005 A1
20050158178 Yoo et al. Jul 2005 A1
20050191184 Vinson, Jr. Sep 2005 A1
20050191865 Jacobsen et al. Sep 2005 A1
20060003592 Gale et al. Jan 2006 A1
20060130966 Babic et al. Jun 2006 A1
20060180175 Parent Aug 2006 A1
Foreign Referenced Citations (69)
Number Date Country
0 244 951 Nov 1987 EP
0 272 141 Jun 1988 EP
0 283 740 Sep 1988 EP
0 391 035 Oct 1990 EP
0 453 867 Oct 1991 EP
0 518 653 Dec 1992 EP
0 536 752 Apr 1993 EP
0 572 913 Dec 1993 EP
0 620 270 Oct 1994 EP
0 641 611 Aug 1995 EP
0 679 753 Nov 1995 EP
0 711 864 May 1996 EP
0 726 099 Aug 1996 EP
0 727 711 Aug 1996 EP
0 743 379 Nov 1996 EP
0 822 583 Feb 1998 EP
0 903 775 Mar 1999 EP
2 003 975 Mar 1979 GB
2 193 482 Feb 1988 GB
60-192333 Sep 1985 JP
62-111442 May 1987 JP
63-179530 Jul 1988 JP
1-045131 Feb 1989 JP
2-122520 May 1990 JP
2-209729 Aug 1990 JP
2-304941 Dec 1990 JP
03-080537 Apr 1991 JP
4-17333 Jan 1992 JP
5-283511 Oct 1993 JP
7-24679 Mar 1995 JP
7-142333 Jun 1995 JP
8-186140 Jul 1996 JP
8-222508 Aug 1996 JP
8-252549 Oct 1996 JP
9-43857 Feb 1997 JP
10-144757 May 1998 JP
10-260537 Sep 1998 JP
11-204514 Jul 1999 JP
11-260809 Sep 1999 JP
11-274132 Oct 1999 JP
2000-114218 Apr 2000 JP
WO 8707309 Dec 1987 WO
WO 9006189 Jun 1990 WO
WO 9112629 Aug 1991 WO
WO 9314255 Jul 1993 WO
WO 9314259 Jul 1993 WO
WO 9320116 Oct 1993 WO
WO 9627704 Sep 1996 WO
WO 9918603 Apr 1999 WO
WO 9949998 Oct 1999 WO
WO 0036635 Jun 2000 WO
WO 0073241 Dec 2000 WO
WO 0110733 Feb 2001 WO
WO 0122016 Mar 2001 WO
WO 0133613 May 2001 WO
WO 0133615 May 2001 WO
WO 0155628 Aug 2001 WO
WO 0168279 Sep 2001 WO
WO 0174538 Oct 2001 WO
WO 0178911 Oct 2001 WO
WO 0185391 Nov 2001 WO
WO 0187505 Nov 2001 WO
WO 0194782 Dec 2001 WO
WO 0209147 Jan 2002 WO
WO 0209894 Feb 2002 WO
WO 0211191 Feb 2002 WO
WO 0215251 Feb 2002 WO
WO 0216051 Feb 2002 WO
WO 03030219 Oct 2003 WO
Related Publications (1)
Number Date Country
20050191865 A1 Sep 2005 US
Provisional Applications (2)
Number Date Country
60369052 Mar 2002 US
60361917 Mar 2002 US
Continuation in Parts (1)
Number Date Country
Parent 10379984 Mar 2003 US
Child 11092031 US