1. Field of the Invention
The present invention relates to a wire bonding method for connecting a first bonding point and a second bonding point through a wire, a wire bonding apparatus for carrying out the method, a wire loop having a certain shape and a semiconductor device having such a wire loop incorporated therein.
2. Description of the Related Art
Conventionally, in a process of fabricating a semiconductor device, as shown in
The wire loop having a trapezoidal shape shown in 7A is formed by a sequence of steps as shown in FIG. 8. First, in step (a) of
In general, such an operation of the capillary 4 to be moved in the direction opposite from the second bonding point Z is referred to as a “reverse operation”. As a result, the portion of the wire 3 between the points A and C is formed to be inclined and the wire 3 is formed at an upper end of the inclined portion thereof with a kink 3a by a lower end of the capillary 4. The portion of the wire 3 between the points A and C thus delivered corresponds to the height of a neck portion H (or a portion of the wire 3 between the pad 2a and the kink 3a) and will constitute the neck portion H.
Subsequently, in step (d) of
This inclined portion of the wire 3 thus delivered will constitute an upper base portion L (or a portion of the wire 3 between the kinks 3a and 3b) of the wire loop having a trapezoidal shape shown in FIG. 7A. Thereafter, in step (f) of
The wire loop having a triangular shape shown in 7B is formed by a sequence of steps as shown in FIG. 9. Since the wire loop having a triangular shape is not provided with an upper base portion (L) unlike the wire loop having a trapezoidal shape described above, in forming the wire loop of a triangular shape, the second reverse operation in steps (d) and (e) of
However, in the above-described techniques, as the wire loop includes the neck portion H having a somewhat large height, the wire loop becomes high and thus is rendered to be unstable. In addition, in a case where a wire loop is formed without any reverse operation of the capillary in order to make the height of a neck portion H thereof small and the height of the neck portion H is reduced to a certain level or below, the neck portion H is liable to be damaged in drawing or moving the wire 3 to arrange it in place because of the wire 3 vertically extending from the first bonding point A.
The present invention has been made in view of the foregoing disadvantages of the prior art.
Accordingly, it is an object of the present invention to provide a wire loop having a low profile which is stable and of which a neck portion is hard to be damaged.
It is another object of the present invention to provide a semiconductor device having said wire loop incorporated therein.
It is still another object of the present invention to provide a wire bonding method capable of forming said wire loop.
It is a further object of the present invention to provide a wire bonding apparatus capable of carrying out said wire bonding method.
In accordance with one aspect of the present invention, a wire loop is provided. The wire loop comprises: a wire connecting a first bonding point and a second bonding point therethrough; the wire including a ball bonded to the first bonding point, a neck portion adjacent to the ball and a major portion extending from the neck portion to the second bonding point; wherein the major portion of the wire has a crushed part formed in proximity to the neck portion by crushing the part of the wire together with a top portion of the ball.
In a preferred embodiment of the present invention, the neck portion includes a first kink formed by a part of the neck portion being doubled over.
In a preferred embodiment of the present invention, the major portion of the wire includes a horizontal portion extending in a substantially horizontal direction from the neck portion and an inclined portion which extends from the horizontal portion to the second bonding point and which has an end thereof bonded to the second bonding point; and the inclined portion is connected to the horizontal portion through a second kink formed in a part of the wire therebetween.
In a preferred embodiment of the present invention, the neck portion includes at least one additional doubled over kink like the first kink.
In accordance with another aspect of the present invention, a wire bonding method for bonding a wire between a first bonding point and a second bonding point using a capillary is provided. The wire bonding method comprises the steps of:
bonding a ball formed on a tip end of the wire to the first bonding point;
moving the capillary horizontally and vertically while carrying out loop control, to thereby form a kink in a neck portion of the wire adjacent to the ball;
bonding the wire to a top or the vicinity of the top of the ball bonded to the first bonding point; and
thereafter, moving the capillary horizontally and vertically to the second bonding point while delivering the wire from the capillary and carrying out loop control, and then bonding the wire to the second bonding point;
wherein the step includes crushing a part of the wire and the top of the ball with the capillary to form a crushed part in the wire.
In a preferred embodiment of the present invention, in the steps (b) and (c), the-neck portion of the wire is doubled over to form the kink.
In a preferred embodiment of the present invention, the steps (b) and (c) are repeatedly carried out a plurality of times to form at least one additional doubled over kink in the neck portion.
In a preferred embodiment of the present invention, the step (d) includes operating the capillary to form an additional kink in a portion of the wire located between the crushed part and the second bonding point.
In accordance with still another aspect of the present invention, a wire bonding apparatus for carrying out the wire bonding method is provided. The wire bonding apparatus comprises: a capillary having the wire inserted therethrough to deliver the wire from the capillary; a clamp for releasably clamping the wire; a moving means for moving the capillary horizontally and vertically; a control unit for controlling the movement of the capillary; and a means for manually inputting height of the capillary to be raised into the control unit, whereby the movement of the capillary is automatically controlled.
In accordance with a further aspect of the present invention, a semiconductor device is provided. The semiconductor device comprises: a first bonding point; a second bonding point; a wire bonded to the first bonding point and the second bonding point to connect the first bonding point and the second bonding point therethrough; wherein the wire includes a ball bonded to the first bonding point, a neck portion adjacent to the ball and a major portion extending from the neck portion to the second bonding point; and wherein the major portion of the wire has a crushed part formed in proximity to the neck portion by crushing the part of the wire together with a top portion of the ball.
These and other objects and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings; wherein:
Now, a wire loop, a semiconductor device, a wire bonding method and a wire bonding apparatus according to the present invention will be described hereinafter with reference to the accompanying drawings in which like parts in each of the several figures are identified by the same reference character or numeral.
Referring first to
Such construction of the illustrated embodiment is approximately the same as that of a conventional semiconductor device. However, in the illustrated embodiment, a crushed part 3c is formed in the wire 3 in the vicinity of the first bonding point A. More specifically, the crushed part 3c is formed in the horizontal upper portion L of the wire 3 adjacent to the kink 3a by crushing the part of the wire 3 together with a top portion of the ball 30. As the wire loop has the crushed part 3c thus formed adjacent to the kink 3a, the kink 3a is stably deformed, resulting in the wire loop having a low profile and exhibiting a strong shape retention.
Referring now to
First, steps (a) to (d) of
Thereafter, the capillary 4 is vertically raised to a point D1 which may be selected as desired while the wire 3 is delivered. Then, important or characteristic steps of the embodiment of the present invention are performed. More specifically, in step (e) of
Then, in step (h) of
Subsequently, steps (j) and (k) of
As described above, the second bonding of the wire 3 to the point M1 located almost the above the first bonding point A or in the vicinity thereof is carried out in step (f) of
Furthermore, in order to control the height of the neck portion H immediately above the first bonding point A or control a damage possibly caused to the neck portion H, the operations in steps (b) to (f) of
The wire loop shown in
The wire loop shown in
As described above, in the embodiments of the wire bonding method according to the present invention, the bonding operation in accordance with steps (b) to (f) of
The bonding method of the present invention is performed, for example, by a wire bonding apparatus shown in FIG. 6. The bonding apparatus includes a base 20, an X-Y table 22 mounted on the base 20, a z-axis moving mechanism 24, a control unit 32 and a servo driving and controlling section 33 for controlling the X-Y table 22 and the z-axis moving mechanism 24 through x-, y- and z-axis motors 21, 23 and 26. The apparatus also includes a bonding stage 28 on which a lead frame 1 is placed. The z-axis moving mechanism 24 is provided with an arm 27 which has a capillary 4 attached to a distal end thereof while a wire 3 is inserted through the capillary 4. A clamp 5 is arranged above the capillary 4 so as to clamp and release the wire 3. Such construction permits the capillary 4 to be moved between a pad 2a (or a first bonding point A) of a semiconductor chip 2 attached to the lead frame 1 and a lead 1a (or a second bonding point Z) of the lead frame 1 while loop control is carried out. The z-axis moving mechanism 24 is supported by a pivot 25 such that the distal end of the arm 27 is vertically moved by the z-axis motor 26.
The control unit 32 is adapted to output a control signal to the servo driving and controlling section 33 on the basis of parameters which are previously set therein such that the servo driving and controlling section 33 moves the capillary 4 to and from the first and second bonding points A and Z along a predetermined path and operates the capillary 4 and the clamp 5. The control unit 32 is provided with a manual input section 34 attached thereto to input parameters, such as positions of the capillary 4 in horizontal and vertical direction during the wire bonding operation, in the control unit 32. Thus, the height of the capillary 4 to be raised is manually inputted into the control unit 32 through the manual input section 34, whereby the movement of the capillary 4 is automatically controlled. In
The apparatus thus constructed suitably performs the wire bonding as described above with reference to the embodiment of the method of the present invention.
As can been seen from the foregoing, in the wire bonding method and the wire bonding apparatus, the wire loop connecting the first bonding point and the second bonding point therethrough is provided on the neck portion thereof with the crushed part which is formed by crushing a part of the wire in proximity to the neck portion together with the top portion of the ball bonded to the first bonding point. Such construction can provide a wire loop having a low profile which is stable and strong in shape retention. Such a shape of the wire loop can be readily obtained by, after bonding the ball of the wire to the first bonding point, raising the capillary slightly, carrying out loop control, and thereafter bonding the wire to the top or the vicinity of the top of the ball.
Therefore, not only a wire loop having a short wiring distance but also a wire loop having a long wiring distance can be obtained as a stable wire loop having a low profile. In addition, the wire loop thus formed has a strong shape retention which withstands a force or pressure exerting on the wire loop from outside. Therefore, the wire loop can perform an excellent shock absorbing function against a shock, such as a shock caused by contact of the capillary or emission of an ultrasonic wave during bonding the wire to the second bonding point, vibration of the wire, an external force generated by flow of a molding material during injection of the molding material and the like, with the result that bending or tilting of the wire and a breakage in the neck portion of the wire loop can be effectively prevented.
While preferred embodiments of the invention have been described with a certain degree of particularly with reference to the drawings, obvious modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
Number | Date | Country | Kind |
---|---|---|---|
2002-338296 | Nov 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5299729 | Matsushita et al. | Apr 1994 | A |
5566876 | Nishimaki et al. | Oct 1996 | A |
5735030 | Orcutt | Apr 1998 | A |
5961029 | Nishiura et al. | Oct 1999 | A |
6036080 | Takahashi et al. | Mar 2000 | A |
6062462 | Gillotti et al. | May 2000 | A |
6079610 | Maeda et al. | Jun 2000 | A |
6080651 | Takahashi et al. | Jun 2000 | A |
6268662 | Test et al. | Jul 2001 | B1 |
6315190 | Nishiura | Nov 2001 | B1 |
6815836 | Ano | Nov 2004 | B2 |
20010002624 | Khandros et al. | Jun 2001 | A1 |
20020050653 | Masumoto et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
0 753 891 | Jan 1997 | EP |
03183139 | Aug 1991 | JP |
9-51011 | Feb 1997 | JP |
09051011 | Feb 1997 | JP |
2000-36512 | Feb 2000 | JP |
2000-277558 | Oct 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20040104477 A1 | Jun 2004 | US |