The present invention relates to line narrowing modules used in high power very high repetition rate narrow banded gas discharge lasers, e.g., excimer and molecular fluorine gas discharge lasers and particularly optical components relating to such modules.
Gas discharge ultraviolet lasers used as light sources for integrated circuit lithography typically are line narrowed. A preferred prior art line narrowing technique is to use a grating based line-narrowing unit along with an output coupler to form the laser resonator cavity. The gain medium within this cavity is produced by electrical discharges into a circulating laser gas such as krypton, fluorine and neon (for a KrF laser); argon, fluorine and neon (for an ArF laser); or fluorine and helium and/or neon (for an F2 laser).
Such a prior art system 1 is shown in
For many years, designers for line narrowed lasers have believed that distortions of the laser beam could be caused by gas flow near the face of the grating 16. Therefore, laser designers in the past have made special efforts to keep the purge nitrogen from flowing directly on the face of the grating 16. Several examples of these efforts are described in the Japan Patent 2,696,285 referred to above. In the example shown in extracted
Line narrowed ultraviolet laser light sources currently in use in the integrated circuit industry typically produce about 10 mJ per pulse at repetition rates of about 4000 Hz and duty factors (duty cycles) of about 20 percent. Increased integrated circuit production can be achieved at higher repetition rates and greater duty cycles. Applicants' employer is currently selling a 4000 Hz gas discharge lithography laser, including some, e.g., in a MOPA configuration. Higher repetition rates along with higher duty cycle demands and requirements of ever narrower bandwidths, can, even in MOPA configurations, place sever constraints on optical components, e.g., the LNP 50 to be able to maintain consistent narrow bandwidths. A significant portion of the problem arises from the requirements to maintain rather strict parameter controls on the laser beams traveling through the system, e.g., including wavefront control, which can impact the performance of the LNP among other optical and lasing components of the system 2.
A need exists for more reliable line narrowing packages 50 and other optical elements of the laser system 2 to accommodate such requirements as high repetition rate, high duty cycle, bandwidth stability, included not exceeding some specific bandwidth and/or not allowing the bandwidth to go below some lower limit in addition to not exceeding some upper limit, exposure dose stability, and the like for gas discharge lasers of the type disclosed in the present application.
It has also been known to mount the mirror 64 on a mirror mount as shown in
It has been found that the prior art mounting just described can cause several problems most notably in negatively impacting the LNP 50 in performing its functions within the very stringent requirements for, e.g., wavelength and bandwidth accuracy and stability. What has been discovered to be occurring is that differing thermal expansion of the mirror 154 and the mount 154 tends to force the mirror to slide across the mounting ball surfaces, as was the original design intent. However, the glass surface of the mirror 154 has been found to intermittently and unpredictably sometimes adhere to the mounting ball surfaces or at least one of them causing intermittent and unpredictable distortions in the face of the mirror 154 with concomitant disastrous results in the maintenance of wavelength and/or bandwidth stability. An aspect of an embodiment of the present invention is for the purpose of resolving this problem and related species of problems that similarly impact the contribution of the mirror 64 in the LNP in the performance of its functions.
It has also been noted that as optical elements, e.g., the grating 16 is the LNP 50 are being subjected to higher fluence environments grating 16 failures have increasingly been observed. The observation is also that these failures, by in large, are a result of oxidation of the aluminum reflective layer that forms the reflecting surface of the grating. An aspect of an embodiment of the present invention is directed to a solution to this increasingly more significant problem.
A prior art line narrowed gas discharge laser, e.g., a KrF excimer laser or an ArF excimer laser, operating at relatively low average power, typically less than 5 W, will produce a laser beam centered, respectively at about 248 nm or 193 nm with a bandwidth of less than 0.6 pm. Such lasers can run without problems at repetition rates, up to 2000 Hz and even above that as long as average power is below 5 W. More modern lasers with, e.g., a MOPA configuration can operate at repetition rates exceeding 4000 and with even higher power. However, this, combined with duty cycle requirements, and in some cases customers have been known to operate such laser lithography light sources at near 100% duty cycle over long stretches of time, days or weeks. A typical lithography gas discharge laser has a pulse energy of 10 mJ. By way of example, such lasers can be run at 2 kHz in bursts of 200 pulses with pause between bursts of about, e.g., 0.4-0.45 seconds. Such an operation will produce an average power of:
When the interburst delay is decreased, e.g., with the laser running the same 200 pulse bursts with a 0.1 second interburst delay will have an average power of:
At maximum, the laser is run in continuous mode which, at 2000 Hz and 10 mJ pulse energy, is equivalent to 20 W average power. These factors simply go up with increases in repetition rates, e.g., to and above 4000, increasing such things as the thermal loading in optical components, including particularly the line narrowing package. The increases on thermal loading only serve to make the problems of maintaining precision operation of such elements as the reflecting mirror 64 and the grating 16 more difficult at the very time when the requirements for precision in operations are becoming even more stringent.
As noted in the above referenced U.S. Pat. No. 6,496,528, the cause of beam quality deterioration with increasing beam energy, the cause was not initially readily apparent, however, applicants recognized that differential thermal expansion was causing an undesirable bending of the grating 16 which was causing, e.g., the deterioration in beam quality. As a result, applicants designed several modifications in the LNP to solve this problem as discussed in the above referenced U.S. Pat. No. 6,496,528.
One such improvement known in the art is shown in
The mount 16A″ is screwed securely to the bottom of the LNP 50 enclosure using threaded holes 130 shown in
A third embodiment according to the prior art can be described by reference to
Preferred designs of grating mounts 16A-16A′″ of the prior art take into consideration the material used for the mount. For example, in the
In the
Turning now to
Applicants have proposed in the past to carry out active control of the wavefront of a laser produced from a gas discharge, e.g., excimer or molecular fluorine, laser using, e.g., a bending screw and a stepper motor. In the past, this solution may have been too expensive for the amount of benefit to the laser performance being within required specifications. However, as noted above, the requirements are becoming exceptionally more demanding and wavefront, particularly in its impact on line narrowing, e.g., in an eschelle grating type line narrowing unit as described above, is becoming more critical to control. Currently in many lasers in the field, a grating bending screw is set at a compromise position empirically determined between a hot and cold position of the grating and then left alone, so-called set and forget. However, this solution if becoming increasingly less satisfactory and the requirements being placed on the laser systems, particularly, e.g., due to lithography light source requirements, a stepper motor active control may not even be satisfactory. An aspect of an embodiment of the present invention seeks to resolve these issues.
Applicants have also discovered that even with a flexure mounting, the forces exerted on the optical element in simply moving the flexure element can be sufficient to introduce discernable and unacceptable effects on such things as beam profile, wavelength, bandwidth or the like. Therefore another aspect of an embodiment of the present invention is meant to correct this problem.
It is also known to protect laser optics, particularly containing metal halide crystal glass, e.g., MgF2, using a silicon oxyfluoride coating, e.g., fluorine doped fused, i.e., amorphous, silica, as discussed e.g., in U.S. Pat. No. 6,466,365, entitled FILM COATED OPTICAL LITHOGRAPHY ELEMENTS AND METHOD OF MAKING, issued to Maier et al. on Oct. 15, 2002, for purposes of, e.g., providing a protective coating that is adequately transmissive in the VUV range of wavelengths. Such coatings serve, e.g., to prevent the introduction of impurities into the crystal structure voids from the surrounding ambient atmosphere, with resultant damaging effects to the optical performance of the optical element. Similarly, applicant assignee has used such coatings to prevent DUV damage to transmissive optical elements, as discussed, e.g., in United States Published Patent Application No. 2003/0219056 A1, entitled HIGH POWER DEEP ULTRAVIOLET LASER WITH LONG LIFE OPTICS, with inventors Yager et al., published on Nov. 27, 2003, based on an application Ser. No. 10/384,967, filed on Mar. 8, 2003. The coating serves to provide fluorine atoms to replace fluorine atoms removed from, or perhaps displaced in the crystal structure of the fluoride glass due to high fluence of DUV radiation through the glass, e.g., in laser chamber window, thereby preventing fluence related optical damage to the glass of the optical element. Applicants herein propose yet another utilization for such protective coatings in relation to laser optical systems.
It has been known for some time that line narrowing module gratings are subject to failures, which have been identified as relating to oxidation of the metallic reflective coating, e.g., aluminum on the grating surface. Currently coatings on metallic reflecting surfaces exposed to DUV light, e.g., at 193 nm consist of fluoride coating materials, e.g., MgF2, due to the resistance of such materials to damage in the DUV range of fluence and high transmissivity, i.e., transparency, of such coatings. However, such coatings have not been successful in protecting gratings exposed to high fluence of DUV light. An aspect of an embodiment of the present invention addresses this problem.
It is well known that organic materials, e.g., certain polymers, cannot be used in portions of laser systems according to those employing various embodiments of the present invention. Not only do they typically not react well to UV light, but also are highly chemically reactive to laser gases, e.g., fluorine or chlorine. However, in certain applications in such laser systems in the optical path, but sealed from exposure to the reactive gases, organic materials, e.g., Teflon, may be necessary for use due to the large differences in price between such seals and the, e.g., metal c-ring seals used in contact with the reactive laser gases. An aspect of an embodiment of the present invention deals with the solution of certain problems arising from using such organic materials in seals in the optical path, e.g., external to the laser chamber.
A high power narrow band, high repetition rate laser light source optical improvement apparatus and methods are disclosed which may comprise a fast moving angularly positionable tuning mirror comprising: a mirror mounting frame comprising a first material and a relatively flat mounting surface area; a reflective optic comprising a second material having a coefficient of thermal expansion different from that of the first material of the mounting frame; at least two attachment points of attachment between the mounting frame and the reflective optic on the mounting frame surface; and, at least one flexure mount formed in the mounting frame that is flexible in a flexure axis corresponding to a longitudinal axis of thermal expansion of the mounting frame and the reflective optic, positioned at one of the at least two points of attachment. The flexure mount may comprise: a flexure body formed from the material of the mirror mounting frame and separated from the material of the mirror mounting frame to allow relative movement between the flexure and the mirror mounting frame; at least one flexure arm formed from the material of the mirror mounting frame and attached at one end to the mirror mounting frame and at the other end to the flexure. The apparatus and method may further comprise a flexure force mechanism made of the second material or a third material having a coefficient of thermal expansion that is essentially the same as that of the second material; the flexure force mechanism comprising an elongated rod; a flexure force mechanism slot generally aligned with the flexure axis and sized to snuggly fit the flexure force mechanism between a slot wall at one end of the flexure force mechanism slot and the flexure body at the other end of the flexure force mechanism slot. The force mechanism may pre-stress the flexure. The mirror may be a grating. The grating may have a metallic reflective surface and a protective coating over the reflective coating comprising a dense glassy material that is essentially non-porous to undesired contaminants exposure of which to the reflective coating is desired to be prevented, which may comprise an amorphous silica, a doped amorphous silica, which may be halide doped and the halide may be fluorine. The grating may be actively tuned using an electro- or magneto-sensitive element. Oxides of the metal in the reflective layer may be removed by a hydrogen purge. Exposed optical sealing members sensitive to DUV light may be shielded by an annular protection shield placed on the optic.
According to an embodiment of the present invention shown partly schematically in
Thus formed, the flexure mount 180 can easily translate under force induced by any sticking action between the mirror 154 and the mounting ball 158 in the cylindrical opening 180a. Thus the mirror 154 is still optically firmly and snugly held in place by the spring clip 164 (not shown in
Turning now to
Turning now to
Turning now to
In addition the grating mount 200 may also comprise a longitudinal flexure mount 240 and a lateral flexure mount 234 for attaching the grating to the mount body 202, as described above. The longitudinal flexure mount 250 may be formed of a flexure 250 and arms 252 formed by cutting lateral slots 242 and lateral openings 244 in the body to form the flexure 250 and arms 252, as is known in the art. Similarly the lateral flexure 234 may be formed as is known in the art. As is also known in the art, the grating may be attached to the flexure 250 and the flexure 234 to account for differential thermal expansion of the mount body 202 with respect to the grating (not shown in
Applicants have discovered that along with the beneficial results of the flexure mounting of the grating (not shown) to the grating mounting body 202 as just described certain problems manifest themselves with this arrangement as requirements being placed on the laser systems using such line narrowing units, e.g., for lithography uses, e.g., regarding does stability and control, bandwidth stability and control and wavelength stability and control, operate to place ever continuing requirements for such thins as tighter and tighter wavefront control, e.g., within the line narrowing module. Applicants have examined, e.g., wavefront instabilities, e.g., over time and with duty cycle changes influencing the fluence seen by the grating and the differential thermal expansion of the grating and the mounting and have determined that even the flexure mounting discussed above is insufficient to account for beam fluctuation due to the thermal loading on the grating and the grating mount.
Applicants have also determined that the cause is due to the fact that even the forces exerted on the grating by the action of the flexure mountings, particularly the longitudinal axis flexure mounting 250 in flexing are enough to cause sufficient distortion in the grating reflecting slots, longitudinally and laterally, to be seen in a failure of the laser output light to meat or remain within specifications. According to an aspect of an embodiment of the present invention, applicants have proposed a solution to this problem, as shown in
As can be seen from
Turning now to
Turning now to
The window mount 270 may also include, e.g., an inner sealing ring 282, which may be attached to the inner window mount 272 by a plurality of sealing ring attachment screws 292 and also have a foil coated metal c-ring seal 284 within a sealing groove 285 to form a seal between the inner window mount 272 and the inner sealing ring 282. The inner sealing ring 282 may also have a foil covered metal seal ring 286 contained in a sealing ring groove 287 to provide a seal between the inner sealing ring 282 and an outer sealing ring (not shown) also held in place by the sealing ring attachment screws 292.
The inner window mount may be formed with in internal beam passage 300 through which the output laser beam produced in the laser chamber (not shown) exits the chamber. Also included may be, e.g., an outer window mounting 274 having an internal beam passage 302 and a window receiving recess 312. The outer window mount may include, e.g., mounting screws 322 to attach the outer window mounting 274 to the inner window mounting 272 with alignment pegs 287 inserted into corresponding alignment openings 288 in the outer window mounting.
The recess 312 is sized and shaped to contain therein when the inner window mount 272 is attached to the outer window mount 274 a window optic 304, an o-ring seal 306 and a support foil 308, e.g., made of relatively compliant tin to support the window optic 304 without putting undue stress on the window optic 304. The window 304 is held in place by the inner window mount 272 and the outer window mount 274 at an angle to the beam passage 300 so as to insure almost complete transmissivity of the beam through the window 304. The passage 302 is offset laterally to the optical path of the laser beam from the passage 300 to account for the refractive offset of the beam passing through the window.
Due to the angled nature of the window mounting 272 and the geometries involved some areas of the o-ring seal 306 may be exposed to UV light fluence. This can be very damaging to such o-ring, typically made from organic materials, e.g., polymers or elastomers, e.g., Teflon and can be decomposed from this exposure. This can cause seal failure over time or in a worst case introduce elastomer debris into the laser gas environment inside the chamber with potentially very serious performance degradation issues. While the o-ring seal 306 is not directly exposed to DUV, back scattering and reflection from within the window mount 272 assembly, e.g., from the surfaces of the window 304 itself, has been found to be damaging the o-ring seals 306.
In order to solve this problem, applicants have placed a protective shielding coating 310, e.g., on the annulus of the window 304. This coating of, e.g., a thin film of aluminum deposited on the annulus of the window will shield the o-ring from the UV fluence. It will be understood that the protective shield coating need not be entirely annular in shape or even extend around the entire window circumference, but need only protect the o-ring seal 306 from the, e.g., back-scattered DUV light.
Turning now to
Turning now to
Turning now to
Applicants have found that damage to optical elements containing, e.g., reflective metallic surfaces, e.g., the grating in a line narrowing module of, e.g., a narrow band DUV light source, is, in part, induced by DUV excited photoemission of electrons from, e.g., the metallic coating, e.g., aluminum, e.g., where φ=4.08 eV and hν=5 eV, which can, e.g., cause photo-assisted oxidation of the metallic reflective coating, even under a protective coating. It is quite easy for oxygen present in the environment to take an electron from the aluminum forming, e.g., Al2O3. Without incident DUV photons oxidation proceeds at a more normal slower rate, given the protective coating, or even without a protective coating.
Applicants have found that a purge of, e.g., hydrogen, e.g., mixed in a more inert gas, e.g., in about a 5% by weight percentage will tend to remove the O2 from the oxidized surface of the optical element, e.g., a reflective grating 392. This purge will also tend to scavenge residual O2 within the enclosure, whether there due, e.g., to diffusion into or outgasing into the gas content of the enclosure, which may be a vacuum or may be, e.g., nitrogen. The reactions occurring may be, e.g., H═H═O→H2O+hν and H+H+O+hν=H2O. The H2O may then be conveniently removed through the purge gas outlet 396.
It will be understood that the enclosure 392 may be a sealed optical enclosure, e.g., part of a line narrowing module, containing, e.g., a grating 392 irradiated by DUV during actual laser operation or may be a vessel used to reclaim optical elements, e.g., gratings 392 by exposure to hydrogen and DUV apart from a line narrowing module enclosure or apart from the line narrowing module being irradiated during laser operation, i.e., of the entire line narrowing module is removed for optical element reclamation at a site remote from the laser on which the grating was irradiated during laser use.
Many other changes and modifications may be made to the presently disclosed embodiments and aspects of embodiments of the present invention, without departing from the concept and scope of the inventions. The appended claims, therefore, should not be considered to be limited to particular preferred embodiments and the claims should be interpreted to cover those disclosed embodiments and equivalents.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/173,190, filed Jun. 14, 2002, now U.S. Pat. No. 6,750,972, which is a continuation-in-part of Ser. No. 10/141,201 filed May 7, 2002, now U.S. Pat. No. 6,839,372, Ser. No. 10/000,991 filed Nov. 14, 2001, now U.S. Pat. No. 6,795,474, Ser. No. 09/716,041, filed Nov. 17, 2000, now U.S. Pat. No. 6,778,584, Ser. No. 09/854,097, filed May 11, 2001 now U.S. Pat. No. 6,757,316, and is related to U.S. patent application Ser. No. 09/895,664, filed on Jun. 29, 2001, entitled LINE NARROWING UNIT WITH FLEXURAL GRATING MOUNT, published on Mar. 21, 2002, Publication No. 2002/0034208, and now issued as U.S. Pat. No. 6,496,528, issued to Titus et al. on Dec. 17, 2002 and U.S. patent application Ser. No. 10/608,521, filed on Jun. 26, 2003, with inventor Rafac, et al., entitled METHOD AND APPARATUS FOR STABILIZING OPTICAL DIELECTRIC COATINGS, the disclosures of which, to the extend not incorporated herein are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2759106 | Wolter | Aug 1956 | A |
3150483 | Mayfield et al. | Sep 1964 | A |
3232046 | Meyer | Feb 1966 | A |
3279176 | Boden | Oct 1966 | A |
3746870 | Demarest | Jul 1973 | A |
3960473 | Harris | Jun 1976 | A |
3961197 | Dawson | Jun 1976 | A |
3969628 | Roberts et al. | Jul 1976 | A |
4042848 | Lee | Aug 1977 | A |
4088966 | Samis | May 1978 | A |
4143275 | Mallozzi et al. | Mar 1979 | A |
4162160 | Witter | Jul 1979 | A |
4203393 | Giardini | May 1980 | A |
4504964 | Cartz et al. | Mar 1985 | A |
4536884 | Weiss et al. | Aug 1985 | A |
4538291 | Iwamatsu | Aug 1985 | A |
4596030 | Herziger et al. | Jun 1986 | A |
4618971 | Weiss et al. | Oct 1986 | A |
4626193 | Gann | Dec 1986 | A |
4633492 | Weiss et al. | Dec 1986 | A |
4635282 | Okada et al. | Jan 1987 | A |
4751723 | Gupta et al. | Jun 1988 | A |
4752946 | Gupta et al. | Jun 1988 | A |
4837794 | Riordan et al. | Jun 1989 | A |
5023897 | Neff et al. | Jun 1991 | A |
5027076 | Horsley et al. | Jun 1991 | A |
5102776 | Hammer et al. | Apr 1992 | A |
5126638 | Dethlefsen | Jun 1992 | A |
5142166 | Birx | Aug 1992 | A |
5313481 | Cook et al. | May 1994 | A |
5377044 | Tomono et al. | Dec 1994 | A |
5411224 | Dearman et al. | May 1995 | A |
5448580 | Birx et al. | Sep 1995 | A |
5504795 | McGeoch | Apr 1996 | A |
5550669 | Patel | Aug 1996 | A |
5729562 | Birx et al. | Mar 1998 | A |
5763930 | Partlo | Jun 1998 | A |
5801891 | Lloyd | Sep 1998 | A |
5866871 | Birx | Feb 1999 | A |
5936988 | Partlo et al. | Aug 1999 | A |
5963616 | Silfvast et al. | Oct 1999 | A |
6031241 | Silfvast et al. | Feb 2000 | A |
6039850 | Schulz | Mar 2000 | A |
6051841 | Partlo | Apr 2000 | A |
6064072 | Partlo et al. | May 2000 | A |
6081544 | Zamel et al. | Jun 2000 | A |
6172324 | Birx | Jan 2001 | B1 |
6195272 | Pascente | Feb 2001 | B1 |
6360035 | Hurst et al. | Mar 2002 | B1 |
6452199 | Partlo et al. | Sep 2002 | B1 |
6466365 | Maier et al. | Oct 2002 | B1 |
6496528 | Titus et al. | Dec 2002 | B2 |
6511703 | Pan et al. | Jan 2003 | B2 |
6556364 | Meehan et al. | Apr 2003 | B2 |
6566667 | Partlo et al. | May 2003 | B1 |
6566668 | Rauch et al. | May 2003 | B2 |
6576912 | Visser et al. | Jun 2003 | B2 |
6586757 | Melnychuk et al. | Jul 2003 | B2 |
6614829 | Tuganov et al. | Sep 2003 | B1 |
6650810 | Lieberman et al. | Nov 2003 | B1 |
6661962 | Calvet et al. | Dec 2003 | B1 |
6760167 | Meehan et al. | Jul 2004 | B2 |
6873418 | Howey et al. | Mar 2005 | B1 |
6912052 | Rao et al. | Jun 2005 | B2 |
20010055364 | Kandaka et al. | Dec 2001 | A1 |
20020100882 | Partlo et al. | Aug 2002 | A1 |
20020163313 | Ness et al. | Nov 2002 | A1 |
20020168049 | Schriever et al. | Nov 2002 | A1 |
20030006383 | Melynchuk et al. | Jan 2003 | A1 |
20030068012 | Ahmad et al. | Apr 2003 | A1 |
20030219056 | Yager et al. | Nov 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040240506 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10173190 | Jun 2002 | US |
Child | 10808157 | US | |
Parent | 10141201 | May 2002 | US |
Child | 10173190 | US | |
Parent | 10000991 | Nov 2001 | US |
Child | 10141201 | US | |
Parent | 09716041 | Nov 2000 | US |
Child | 10000991 | US | |
Parent | 09854097 | May 2001 | US |
Child | 09716041 | US |