This invention relates to electrical interconnection of integrated circuit chips and, particularly, to interconnection of stacked die.
A typical semiconductor die has a front (“active”) side, in which the integrated circuitry is formed, a back side, and sidewalls. The sidewalls meet the front side at front edges and the back side at back edges. Semiconductor die typically are provided with interconnect pads (die pads) located at the front side for electrical interconnection of the circuitry on the die with other circuitry in the device in which the die is deployed. Some die as provided have die pads on the front side along one or more of the die margins, and these may be referred to as peripheral pad die. Other die as provided have die pads arranged in one or two rows at the front side near the center of the die, and these may be referred to as central pad die. The die may be “rerouted” to provide a suitable arrangement of interconnect pads at or near one or more of the margins of the die.
Semiconductor die may be electrically connected with other circuitry, for example in a printed circuit board, a package substrate or leadframe, or another die, by any of several means. Connection may be made, for example, by wire bonds, or by flip chip interconnects, or by tab interconnects.
A number of approaches have been proposed for increasing the density of active semiconductor circuitry in integrated circuit chip packages, while minimizing package size (package footprint, package thickness). In one approach to making a high density package having a smaller footprint, two or more semiconductor die, of the same or different functionality, are stacked one over another and mounted on a package substrate.
Wire bond interconnect requires both vertical clearance over the die surface at the front side margin, to accommodate the wire loop height, and horizontal clearance outside the die footprint, to accommodate the wire span. If the vertical clearance is insufficient, overlying features may interfere with or introduce electrical shorting to the wire loops. And, in practice, the lower interconnect pad or bond site must be located some distance away from the sidewall of the overlying die, so that the wire bonding tool does not impact the die edge during the bonding process, and so that the wire bond does not contact the front edge of the die.
Electrical interconnection of stacked semiconductor die presents a number of challenges. For instance, two or more die in a stack may be mounted on a substrate with their front sides facing away from the substrate, and connected by wire bonds die-to-substrate or die-to-die. Die-to-die wire bond interconnect may be made where an upper die is dimensioned or located so that the upper die does not overlie the margin of the lower die to which it is connected, and so that sufficient horizontal clearance is provided for the wire span. This condition may pertain, for example, where the footprint of the upper die is sufficiently narrower than the lower die; or, for example, where the upper die is arranged so that the footprint of the upper die is offset in relation to the margin of the lower die. Alternatively, the die in the stack may be indirectly interconnected by connecting them to a common substrate on which the stack is mounted. Where a lower die in a stack is wire bonded die-to-substrate, and where the footprint of an upper die overlies the margin of the lower die, a spacer may be interposed to provide sufficient vertical clearance between the lower and the upper die to accommodate the wire loops over the lower die. The spacer adds to the thickness of the stack and, consequently, of the package. Moreover, in such a configuration the wire bond die-to-substrate connection of the lower die must be completed before the spacer and the upper die are stacked over it; that is, the die must be stacked in situ on the substrate and the die must be stacked and connected serially.
In various general aspects the invention features die stack assembly configurations and interconnection means.
In some aspects two or more die are stacked one over another; adjacent die in the stack are provided with interconnect pads arranged at the front side along a die margin, and the edge at the margin of a first die is offset in relation to the margin of the second die; and interconnect pads on the die are electrically connected by traces of an electrically conductive polymer.
The offset reveals at least a fraction of the area of the interconnect pads on the lower die, so that the pads on the lower die are available for electrical connection with pads on a die situated above.
In some embodiments the die are provided with an electrical insulation over at least the portions of the die surfaces over which the conductive traces are situated. In some embodiments the die are provided with an electrical insulation over at least those one or more sidewalls adjacent the die margin or die margins on which the interconnect pads are arranged; in some such embodiments the die are additionally provided with an electrical insulation over the front surface adjacent the die margin or die margins on which the interconnect pads are arranged, and in some such embodiments the die are additionally provided with an electrical insulation over back surface; in some embodiments the die are provided with an electrical insulation over the front surface, the back surface, and the sidewall surfaces of the die.
In some such embodiments the electrical insulation includes an electrically insulative conformal coating. The conformal coating protects the die during assembly, and serves to electrically insulate the die from electrically conductive parts that it may contact. In some embodiments the material of the conformal coating includes a nonorganic polymer, such as for example a sol-gel glass deposit. In other embodiments the material of the conformal coating includes an organic polymer, such as for example a polyimid, a benzocyclobutene (BCB), an epoxy, or a cyanoacrylate; or a halogenated polymer such as for example a polymer of p-xylene or a derivative thereof, such as a polyxylylene polymer, e.g., a parylene C or a parylene N, or a parylene A, or a parylene SR. In some embodiments the conformal coating is formed by deposition, for example by vapor deposition, or liquid phase deposition, or by solid phase deposition.
Openings in the electrical insulation expose at least selected die pads or interconnect terminals. The openings may in some embodiments be made following formation of the insulation. For example where the electrical insulation includes a conformal coating, such as a parylene, openings may be made by removing spots of the conformal coating over the selected die pads. A laser may be used to effect targeted removal of the conformal coating. In embodiments where the openings are made following formation of the insulation, the openings can optionally be made following stacking the die.
The electrical insulation may be applied to the die prior to stacking; or, the electrical insulation may be applied to the stack of die after stacking; or, the electrical insulation may be applied to the die prior to stacking as well as to the stack.
In some embodiments the interconnect material is an electrically conductive polymer, such as a curable conductive epoxy, for example. In some embodiments the interconnect material is applied using an application tool such as, for example, a syringe or a nozzle or a needle. The material exits the tool in a deposition direction generally toward the die pads or interconnect terminals, and the tool is moved over the presented stack face in a work direction to form a trace. The material may be extruded from the tool in a continuous flow; or, the extrusion of the material may be pulsed; or, the flow may be interrupted by valving; or, the material may exit the tool dropwise. In some embodiments the material exits the tool as a jet of droplets, and is deposited as dots which coalesce upon contact, or following contact, with a stack face surface. Various modes of pulse dispense are described in U.S. application Ser. No. 12/124,097, cited above. In some embodiments the deposition direction is generally perpendicular to the die edge surface, and in other embodiments the deposition direction is at an angle off perpendicular to the die edge surface. The tool may be moved in a generally linear work direction, or in a zig-zag work direction, depending upon the location on the various die of the corresponding terminals to be connected. The trace may be branched or forked (for example, a “Y” trace), or unbranched.
In some embodiments the traces are formed one at a time. In some embodiments more than one interconnect trace is formed in a single interconnect operation, and in some such embodiments all the interconnect traces on a given stacked assembly are formed in a single operation (or in a number of operations fewer than the number of traces). The application tool may in such instances include a number of needles or nozzles ganged together in a row generally parallel to the die edges. In some embodiments interconnect traces between pairs of vertically adjacent die are made simultaneously, rather than serially, as suggested in
In some embodiments the interconnects are applied by printing, for example using a print head (which may have a suitable array of nozzles), or for example by screen printing or stencil printing, or using a mask. Printing may in some embodiments be carried out using a print head having an array of print nozzles, and the material may be ejected from the nozzles using a mechanism similar t an “ink jet” printing mechanism, employing for example piezoelectric or thermal bubble propulsion.
In another general aspect the invention features stacked die units or stacked die assemblies electrically interconnected with circuitry in a device for use. In some embodiments the stacked die assembly is interconnected such that the active side of the die faces toward the underlying circuitry; in other embodiments the stacked die assembly is interconnected such that the back side of the die faces toward the underlying circuitry; in some embodiments the stacked die assembly includes one or more die arranged so that the back side of the die faces toward the underlying circuitry, and one or more other die are arranged so that the active side of the die faces toward the underlying circuitry.
The stacked die units or stacked die assemblies may in various embodiments have various stacking configurations. In some embodiments, for example, each die has interconnect pads situated in a margin along at least a first die edge, and succeeding die in the stack may be arranged so that their respective first die edges face toward the same face of the stack. This configuration presents as a stairstep die stack, and the interconnections are made over the steps. In other embodiments, for example, each die has interconnect margins along at least a first die edge, but succeeding die in the stack are arranged so that their respective first die edges face toward a different (e.g., opposite) face of the stack. Where the first die edges face toward an opposite stack face, this configuration presents as a staggered die stack, where (numbering the die sequentially from the bottom of the stack) the first die edges of odd-numbered die face toward one stack face and the first dies edges of even-numbered die face toward the opposite stack face. In a staggered stack, the first die edges of the odd-numbered die are vertically aligned at one stack face, and corresponding over lying pads can be connected by a vertical interconnect; and the even-numbered die are vertically aligned at the opposite stack face, and corresponding overlying pads can be connected by another vertical interconnect. In the staggered stack configuration the even-numbered die act as spacers between the odd-numbered die, and the odd-numbered die act as spacers between the even-numbered die. Because the spaces between the die are comparatively high, (approximately the thickness of the interposed die), the interconnect traces are formed to traverse portions of the interconnect distance unsupported. In still other embodiments, for example, die having an X-dimension greater than a Y-dimension are stacked, with succeeding die in the stack oriented at 90° in relation to vertically adjacent die below or above. In such embodiments each die has interconnect pads situated in a margin along at least a first narrower die edge (typically along both narrower die edges), and (numbering the die sequentially from the bottom of the stack) the first die edge of the even-numbered die may face toward one face of the stack, and the first die edge of the odd-numbered die may face toward a second stack face, at 90° to the first stack face. In any of these embodiments each die may additionally have interconnect pads situated in a margin along a second die edge in addition to the first, and the second die edge may be an opposite edge or an adjacent (at 90°) die edge.
The assemblies according to the invention can be used in any electronic system, particularly in a small-format application such as a portable or hand-held device; for example the assemblies can be used for building computers such as personal computers, telecommunications equipment, and consumer and industrial electronics devices.
21C is a diagrammatic sketch showing another embodiment of an interconnected stacked die assembly as in
The invention will now be described in further detail by reference to the drawings, which illustrate alternative embodiments of the invention. The drawings are diagrammatic, showing features of the invention and their relation to other features and structures, and are not made to scale. For improved clarity of presentation, in the FIGs. illustrating embodiments of the invention, elements corresponding to elements shown in other drawings are not all particularly renumbered, although they are all readily identifiable in all the FIGs. Also for clarity of presentation certain features are not shown in the FIGs., where not necessary for an understanding of the invention.
As
Each of
Stacked die in configurations as shown for example in
The invention provides stacked die assemblies having improved stacking arrangements, particularly for die having interconnect terminals situated at the front side of the die, and improved die-to-die interconnection within the stacks. Adjacent die in the stack are offset, and pads on the various die are interconnected using an electrically conductive polymer, such as a conductive epoxy, which is deposited in a pattern constituting traces contacting successive pads.
In the example shown in
Die pads in processed semiconductor wafers as provided, or in singulated die, may not be arranged along one die edge, or along two adjacent die edges. The pads may be arranged in one or two rows near a centerline of the die, for example; or, if arranged along die edges, they may be arranged along two opposite die edges or along all four die edges, for example. Or, whatever the arrangement of pads on the wafer or on the die as provided, they may not be arranged in a suitable manner for a given end use; they may be located in an unsuitable sequence, or at an unsuitable pitch, for example). In such instances, the wafer or die as provided may be if desired be further processed to reroute the original pads to new pad positions along one die edge or along two die edges, prior to mounting the die in stacks for interconnection according to the invention.
Also typically, a wafer as provided, or a singulated die, may optionally have a dielectric layer (such as glass, silicon nitride, polyimide, or a benzcyclobutene (BCB) polymer, for example) formed over the integrated circuitry except over the original die pads. This may suffice to provide electrical insulation of circuitry in the active side of the die from electrical conductors (including, for example, a first layer of rerouting circuitry) that may be formed over the front side of the die or wafer. Optionally a dielectric layer (such as glass, silicon nitride, polyimide, or a benzcyclobutene (BCB) polymer, for example) may additionally be formed over the rerouting circuitry except over the new (rerouted) interconnect pads. In such instances additional insulation between the front side of a die and the back side of a die stacked over it may be unnecessary.
In the example shown in
As
The interconnect material may be an electrically conductive polymer, such as a polymer filled with particles of an electrically conductive material. The material may a curable polymer, for example, such as electrically conductive epoxy (for example, as silver filled epoxy); and, the interconnect process may include forming traces of the uncured material in a prescribed pattern and thereafter curing the polymer to secure the electrical contacts with the terminals and the mechanical integrity of the traces between them. Or, the interconnect material may be an electrically conductive ink.
For the interconnect process in the examples shown in
Die stacks having resulting traces of interconnect material are shown by way of illustration at 62 in
Assemblies of electrically interconnected stacked die can optionally be tested prior to further processing. Complete assemblies can be mounted on a support, and interconnected die in the stack can be connected with underlying circuitry associated with the support by way of secured electrical contact with the interconnections. For example, a printed circuit board or package substrate can be provided, having bond pads arranged at a die attach side to correspond with the ends 61 or 63 of the die stack interconnects. Referring to
Alternatively, die can be stacked on a support, or stacked die assemblies can be mounted on a support prior to interconnection. In such embodiments interconnection of the die in the stack and of the underlying circuitry with the die are carried out at the same time, or concurrently.
The die may be all of the same size, as shown in the
Stacked die assemblies according to the invention may have as many die as may be desired, and there may as a matter of mechanical design be no upper limit. The illustrated examples show seven die in each stack, but assemblies having two or more die in the stack are contemplated. Particularly, for example, assemblies having four, or six, or eight, or 9, or 16 or 17 die may be made in the manner illustrated in
Additionally, or alternatively, larger stacked die assemblies may be made by constructing stacked die units in a modular design, and then stacking units, as illustrated for example in
A spacer may be provided between the stacked modular units in an assembly as shown in
In other embodiments an assembly as shown for example in
The stackable modular units can be robust and testable. For example, particular two-die units and four die units may constitute modules; from these modules a six-die assembly may be made by stacking a two-die unit and a four-die unit, or an eight-die assembly may be made by stacking two four-die units, for example.
As noted above, the die as provided (or as processed to reroute the interconnect pad locations) may have a dielectric layer over the front side (except over the interconnect pads, which are exposed for interconnection), and for such die electrical insulation between adjacent die in the stack, as would be provided by the conformal die coating, is unnecessary. That is, the die as provided or as rerouted, insulated with a dielectric layer over the front side, may be stacked one directly upon another in an offset configuration, as shown for example in
Alternatively, where insulation is required between adjacent die in the stack, an electrically insulative adhesive may be applied between adjacent uncoated die in the stack. The adhesive may be a curable dielectric polymer for example, such as a die attach epoxy; this may be applied onto a surface of one of the die and then the die put together to form a uniform adhesive layer between them. Or, alternatively, for example, the adhesive may be an epoxy preform or dielectric film adhesive (die attach film); this may be applied to a surface of one of the die, and the die may be mounted together. Where a dielectric film adhesive is used, it may be applied at the wafer level or at the die array level, and cut to size on the die during die singulation or separation.
Stacked die units or assemblies constructed according to the invention can be electrically interconnected with circuitry in a device for use. For example, a stacked die unit can be mounted upon the active side of another die, and electrically interconnected by connection of all or selected ones of the interconnect ends of the unit with pads on the die. Or, for example, a die stack assembly can be mounted on a support having electrical interconnection sites (such as a package substrate or a leadframe, or a printed circuit board, for example), and electrically interconnected by connection of all or selected ones of the interconnect ends of the unit with sites in the substrate.
Reference is made to
Referring now to
As noted above with reference to
In the example shown in
Referring now to
As noted above, in some embodiments the interconnect material is formed by stencil printing, and this technique may be particularly useful for interconnecting offset die stacks. A stencil having suitable openings (an array of narrow slots, for example) may be aligned over the stack, and the interconnect material may be passed through the openings to the stacked offset die edges beneath. Where the die are sufficiently thin, the vertical elevation of the stencil above the support may be low enough so that the interconnect material is directed accurately to the interconnect terminals and the interconnect sites on the support.
As noted above, the conformal coating may be applied at any of various stages in the process. In
Referring now to
As
Any of various conductive materials may be suitable as the globs or knobs on the interconnect terminals. The knob may be a metal bump, for example, such as a stud bump formed of gold using a wire bonding tool; or, the knob may be a solder bump, which may be formed as a deposit of a solder paste, for example, which may be formed by printing or dispensing; or, the knob may be metal, formed for example in a plating process; or, the knob may be a deposit of an electrically conductive polymer. Where the knob is a glob of an electrically conductive polymer, the material can include any of the various materials that are suitable for the interconnect trace material itself, and can be formed by, for example, any of the techniques described for forming the interconnect traces, as described above.
Interconnect materials suitable for the traces 201, 202 include, for example, curable conductive polymers such as conductive epoxies. Because the interconnect traces in these embodiments are not externally supported between the interconnect sites on the substrate and the die, or between the spaced-apart die, the interconnect material must be sufficiently firm in the uncured state to maintain the columnar shape and the contact with the knobs or globs. Suitable polymers have a high thixotropic index, usually 6.5 or greater; and a high viscosity, usually 30,000 cps or greater. (The thixotropic index and viscosity must not be so high as to make the material unworkable or so that incursion of the material over the die edge to make contact with the knobs is not possible.) Formation of the columns may be made by a pulse dispense procedure, as described in U.S. application Ser. No. 12/124,097, (cited above).
As may be appreciated, rotation of one die in each pair in relation to the other results in a non-parallel position of the corresponding interconnect terminals. For instance where there are 32 pads along the margin of the die, die pad #1 in one die is situated opposite die pad #32 in the other die in the pair. This can be resolved by suitable routing of the circuitry in the support. This may call for an additional layer in the substrate, which can significantly increase costs. Alternatively this can be avoided by designing the die so that there are two types (right-handed ones, in which the pads are numbered, for example, #1-#32; and left-handed ones, in which the pads are numbered #32-#1. This requires maintaining an inventory of right- and left-handed die.
As a further alternative, all the die may be designed with a first set of pads (numbered, for example, #1-#32) along one margin and a second set of pads (numbered #32-#1) along the opposite margin.
A further stacking arrangement is shown in the embodiment shown in
Still another embodiment of a stacked die configuration is shown by way of example in
As noted above (with reference, for example, to
In other embodiments the individual die are provided prior to stacking and adhesion with a conformal coating over at least a contact area; the coated die are stacked to form an assembly of coated die; and the assembly of coated die is subjected to a further conformal coating process to encapsulate the stack and, optionally, to effect adhesion of the die in the stack and/or the stack to an additional stack or to a non-die support.
A greater or lesser number of spacer elements may be required to provide adequate support, depending for example upon the flexibility of the die (thinner die may require more support) and upon the height of the stack and the number of die in the stack.
The spacer elements may be, for example, glass or nonconductive polymer spheres; and they may be scattered over the surface of each die. Or, for example, the spacers may be small polymer dots, which may be adhesive to some extent (they may be a polymer adhesive, for example an epoxy) to affix the adjacent die temporarily, so that the die in the stack do not shift during processing steps leading up to the completion of the conformal coating over the stack; and they may be printed (for example screen printed or mask printed) onto the die surface, or dispensed onto the die surface using a needle or nozzle, for example.
As may be appreciated, to obtain adhesion of a die to a support, whether the support be another die, a substrate, a motherboard, or other surface, the coating need be situated only within an area where contact of the surface of the coated die and the surface of the substrate is expected. For example, where the backside of the coated die contacts a surface of the substrate, for adhesion purposes the coating may be only within the die attach area of the die.
Other embodiments are within the scope of the invention. For example, stacking and interconnection of any of a variety of die (having various functionalities, for example) in any of a variety of configurations may be made.
This application claims priority from U.S. Provisional Application No. 60/970,903, titled “Electrically interconnected stacked die assemblies,” which was filed Sep. 7, 2007; and this application claims priority in part from U.S. Provisional Application No. 60/943,252, titled “Coinstack method for optimized integrated circuit chip interconnection,” which was filed Jun. 11, 2007; and in part from U.S. Provisional Application No. 60/981,457, titled “Electrical interconnect formed by dot dispense,” which was filed Oct. 19, 2007. This application is related to U.S. application Ser. No. 12/124,097, titled “Electrical interconnect formed by pulsed dispense,” which claims priority from U.S. Provisional Application No. 60/981,457 (cited above), and which is being filed on the same date as this application. The above-referenced applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4323914 | Berndlmaier et al. | Apr 1982 | A |
4336551 | Fujita et al. | Jun 1982 | A |
4363076 | McIver | Dec 1982 | A |
4500905 | Shibata | Feb 1985 | A |
4784972 | Hatada | Nov 1988 | A |
5107325 | Nakayoshi | Apr 1992 | A |
5138438 | Masayuki et al. | Aug 1992 | A |
5200362 | Lin et al. | Apr 1993 | A |
5218234 | Thompson et al. | Jun 1993 | A |
5311401 | Gates, Jr. et al. | May 1994 | A |
5331591 | Clifton | Jul 1994 | A |
5334872 | Ueda et al. | Aug 1994 | A |
5434745 | Shokrgozar et al. | Jul 1995 | A |
5466634 | Beilstein, Jr. et al. | Nov 1995 | A |
5538758 | Beach et al. | Jul 1996 | A |
5571754 | Bertin et al. | Nov 1996 | A |
5616953 | King et al. | Apr 1997 | A |
5629566 | Doi et al. | May 1997 | A |
5691248 | Cronin et al. | Nov 1997 | A |
5698895 | Pedersen et al. | Dec 1997 | A |
5721151 | Padmanabhan et al. | Feb 1998 | A |
5731631 | Yama et al. | Mar 1998 | A |
5737191 | Horiuchi et al. | Apr 1998 | A |
5870351 | Ladabaum et al. | Feb 1999 | A |
5879965 | Jiang et al. | Mar 1999 | A |
5891761 | Vindasius et al. | Apr 1999 | A |
5910687 | Chen et al. | Jun 1999 | A |
5946545 | Bertin et al. | Aug 1999 | A |
5965947 | Nam et al. | Oct 1999 | A |
6030854 | Mashimoto et al. | Feb 2000 | A |
6034438 | Petersen | Mar 2000 | A |
6087716 | Ikeda | Jul 2000 | A |
6107164 | Ohuchi | Aug 2000 | A |
6175158 | Degani et al. | Jan 2001 | B1 |
6228686 | Smith et al. | May 2001 | B1 |
6255726 | Vindasius et al. | Jul 2001 | B1 |
6262476 | Vidal | Jul 2001 | B1 |
6271598 | Vindasius et al. | Aug 2001 | B1 |
6297657 | Thiessen et al. | Oct 2001 | B1 |
6303977 | Schroen et al. | Oct 2001 | B1 |
6315856 | Asagiri et al. | Nov 2001 | B1 |
6326244 | Brooks et al. | Dec 2001 | B1 |
6326689 | Thomas | Dec 2001 | B1 |
6338980 | Satoh | Jan 2002 | B1 |
6351030 | Havens et al. | Feb 2002 | B2 |
6472746 | Taniguchi et al. | Oct 2002 | B2 |
6476467 | Nakamura et al. | Nov 2002 | B2 |
6569709 | Derderian | May 2003 | B2 |
D475981 | Michii | Jun 2003 | S |
6580165 | Singh | Jun 2003 | B1 |
6582992 | Poo et al. | Jun 2003 | B2 |
6593648 | Emoto | Jul 2003 | B2 |
6607938 | Kwon et al. | Aug 2003 | B2 |
6607941 | Prabhu et al. | Aug 2003 | B2 |
6621155 | Perino et al. | Sep 2003 | B1 |
6621172 | Nakayama et al. | Sep 2003 | B2 |
6656827 | Tsao et al. | Dec 2003 | B1 |
6667543 | Chow et al. | Dec 2003 | B1 |
6670701 | Matsuura et al. | Dec 2003 | B2 |
6674159 | Peterson et al. | Jan 2004 | B1 |
6686655 | Moden et al. | Feb 2004 | B2 |
6706971 | Albert et al. | Mar 2004 | B2 |
6722213 | Offen et al. | Apr 2004 | B2 |
6730997 | Beyne et al. | May 2004 | B2 |
6737743 | Urakawa | May 2004 | B2 |
6747348 | Jeung et al. | Jun 2004 | B2 |
6750547 | Jeung et al. | Jun 2004 | B2 |
6756252 | Nakanishi | Jun 2004 | B2 |
6802446 | Chaudhuri et al. | Oct 2004 | B2 |
6844623 | Peterson et al. | Jan 2005 | B1 |
6849802 | Song et al. | Feb 2005 | B2 |
6908784 | Farnworth et al. | Jun 2005 | B1 |
6910268 | Miller | Jun 2005 | B2 |
6940022 | Vinciarelli et al. | Sep 2005 | B1 |
6956283 | Peterson | Oct 2005 | B1 |
6964915 | Farnworth et al. | Nov 2005 | B2 |
6972480 | Zilber et al. | Dec 2005 | B2 |
6973718 | Sheppard, Jr. et al. | Dec 2005 | B2 |
6984885 | Harada et al. | Jan 2006 | B1 |
7005324 | Imai | Feb 2006 | B2 |
7029949 | Farnworth et al. | Apr 2006 | B2 |
7061125 | Cho et al. | Jun 2006 | B2 |
7115986 | Moon et al. | Oct 2006 | B2 |
7180168 | Imai | Feb 2007 | B2 |
7190060 | Chiang | Mar 2007 | B1 |
7196262 | Gronet | Mar 2007 | B2 |
7208335 | Boon et al. | Apr 2007 | B2 |
7208345 | Meyer et al. | Apr 2007 | B2 |
7215018 | Vindasius et al. | May 2007 | B2 |
7221051 | Ono et al. | May 2007 | B2 |
7245021 | Vindasius et al. | Jul 2007 | B2 |
7259455 | Seto | Aug 2007 | B2 |
7279363 | Cherukuri et al. | Oct 2007 | B2 |
7285865 | Kwon et al. | Oct 2007 | B2 |
7335533 | Derderian | Feb 2008 | B2 |
7355274 | Lim | Apr 2008 | B2 |
7405138 | Ohuchi et al. | Jul 2008 | B2 |
7408243 | Shiffer | Aug 2008 | B2 |
7452743 | Oliver et al. | Nov 2008 | B2 |
7514350 | Hashimoto | Apr 2009 | B2 |
7521288 | Arai et al. | Apr 2009 | B2 |
7535109 | Robinson et al. | May 2009 | B2 |
7564142 | Hashimoto | Jul 2009 | B2 |
7595222 | Shimoishizaka et al. | Sep 2009 | B2 |
7601039 | Eldridge et al. | Oct 2009 | B2 |
7638869 | Irsigler et al. | Dec 2009 | B2 |
7662670 | Noma et al. | Feb 2010 | B2 |
7704794 | Mess et al. | Apr 2010 | B2 |
7732912 | Damberg | Jun 2010 | B2 |
7768795 | Sakurai et al. | Aug 2010 | B2 |
7829438 | Haba et al. | Nov 2010 | B2 |
7888185 | Corisis et al. | Feb 2011 | B2 |
7901989 | Haba et al. | Mar 2011 | B2 |
7919846 | Hembree | Apr 2011 | B2 |
7952195 | Haba | May 2011 | B2 |
8022527 | Haba et al. | Sep 2011 | B2 |
8076788 | Haba et al. | Dec 2011 | B2 |
20010012725 | Maeda et al. | Aug 2001 | A1 |
20010031548 | Elenius et al. | Oct 2001 | A1 |
20020006686 | Cloud et al. | Jan 2002 | A1 |
20020027257 | Kinsman et al. | Mar 2002 | A1 |
20020045290 | Ball | Apr 2002 | A1 |
20020096349 | Hedler et al. | Jul 2002 | A1 |
20020127775 | Haba et al. | Sep 2002 | A1 |
20020168798 | Glenn et al. | Nov 2002 | A1 |
20020180010 | Tsubosaki et al. | Dec 2002 | A1 |
20020185725 | Moden et al. | Dec 2002 | A1 |
20020187260 | Sheppard et al. | Dec 2002 | A1 |
20030038353 | Derderian | Feb 2003 | A1 |
20030038356 | Derderian | Feb 2003 | A1 |
20030038357 | Derderian | Feb 2003 | A1 |
20030060034 | Beyne et al. | Mar 2003 | A1 |
20030071338 | Jeung et al. | Apr 2003 | A1 |
20030071341 | Jeung et al. | Apr 2003 | A1 |
20030080403 | Jeung et al. | May 2003 | A1 |
20030096454 | Poo et al. | May 2003 | A1 |
20030099085 | Duva | May 2003 | A1 |
20030122243 | Lee et al. | Jul 2003 | A1 |
20030209772 | Prabhu | Nov 2003 | A1 |
20040113283 | Farnworth et al. | Jun 2004 | A1 |
20040142509 | Imai | Jul 2004 | A1 |
20040150095 | Fraley et al. | Aug 2004 | A1 |
20040195667 | Karnezos | Oct 2004 | A1 |
20040198033 | Lee et al. | Oct 2004 | A1 |
20040212083 | Yang | Oct 2004 | A1 |
20040217446 | Headley et al. | Nov 2004 | A1 |
20040238933 | Chen et al. | Dec 2004 | A1 |
20040251520 | Sasaki et al. | Dec 2004 | A1 |
20040262035 | Ko et al. | Dec 2004 | A1 |
20050013927 | Yamazaki | Jan 2005 | A1 |
20050067680 | Boon et al. | Mar 2005 | A1 |
20050067694 | Pon et al. | Mar 2005 | A1 |
20050082651 | Farnworth et al. | Apr 2005 | A1 |
20050085050 | Draney et al. | Apr 2005 | A1 |
20050101039 | Chen et al. | May 2005 | A1 |
20050104179 | Zilber et al. | May 2005 | A1 |
20050148160 | Farnworth et al. | Jul 2005 | A1 |
20050230802 | Vindasius et al. | Oct 2005 | A1 |
20050248021 | Morkner | Nov 2005 | A1 |
20050258530 | Vindasius et al. | Nov 2005 | A1 |
20050287705 | Yang | Dec 2005 | A1 |
20060003552 | Okada | Jan 2006 | A1 |
20060035408 | Derderian | Feb 2006 | A1 |
20060055050 | Numata et al. | Mar 2006 | A1 |
20060068567 | Beyne et al. | Mar 2006 | A1 |
20060076690 | Khandros et al. | Apr 2006 | A1 |
20060094165 | Hedler et al. | May 2006 | A1 |
20060097356 | Fujii et al. | May 2006 | A1 |
20060121645 | Ball | Jun 2006 | A1 |
20060138626 | Liew et al. | Jun 2006 | A1 |
20060220262 | Meyer et al. | Oct 2006 | A1 |
20060267173 | Takiar et al. | Nov 2006 | A1 |
20060273365 | Cross et al. | Dec 2006 | A1 |
20060278971 | Barnes et al. | Dec 2006 | A1 |
20070065987 | Mess et al. | Mar 2007 | A1 |
20070102801 | Ishida et al. | May 2007 | A1 |
20070132082 | Tang et al. | Jun 2007 | A1 |
20070158799 | Chiu et al. | Jul 2007 | A1 |
20070158807 | Lu et al. | Jul 2007 | A1 |
20070170572 | Liu et al. | Jul 2007 | A1 |
20070181989 | Corisis et al. | Aug 2007 | A1 |
20070194462 | Kim et al. | Aug 2007 | A1 |
20070222054 | Hembree | Sep 2007 | A1 |
20070252262 | Robinson et al. | Nov 2007 | A1 |
20070284716 | Vindasius et al. | Dec 2007 | A1 |
20080083976 | Haba et al. | Apr 2008 | A1 |
20080083977 | Haba et al. | Apr 2008 | A1 |
20080112150 | Jones | May 2008 | A1 |
20080166836 | Jobetto | Jul 2008 | A1 |
20080173792 | Yang et al. | Jul 2008 | A1 |
20080180242 | Cottingham | Jul 2008 | A1 |
20080203566 | Su | Aug 2008 | A1 |
20080206915 | Yamazaki | Aug 2008 | A1 |
20080208043 | Smith et al. | Aug 2008 | A1 |
20080251913 | Inomata | Oct 2008 | A1 |
20080284044 | Myers | Nov 2008 | A1 |
20080308921 | Kim | Dec 2008 | A1 |
20090020889 | Murayama et al. | Jan 2009 | A1 |
20090065948 | Wang | Mar 2009 | A1 |
20090102038 | McElrea et al. | Apr 2009 | A1 |
20090146137 | Kim et al. | Jun 2009 | A1 |
20090160065 | Haba et al. | Jun 2009 | A1 |
20090230528 | McElrea et al. | Sep 2009 | A1 |
20090316378 | Haba et al. | Dec 2009 | A1 |
20100140753 | Hembree | Jun 2010 | A1 |
20100207277 | Bauer et al. | Aug 2010 | A1 |
20110006432 | Haba et al. | Jan 2011 | A1 |
20110031629 | Haba et al. | Feb 2011 | A1 |
20110033979 | Haba et al. | Feb 2011 | A1 |
20110049696 | Haba et al. | Mar 2011 | A1 |
20110187007 | Haba et al. | Aug 2011 | A1 |
20110248410 | Avsian et al. | Oct 2011 | A1 |
20120061846 | Rathburn | Mar 2012 | A1 |
20120080807 | Haba et al. | Apr 2012 | A1 |
20120133057 | Haba et al. | May 2012 | A1 |
20130099392 | McElrea et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
102004039906 | Aug 2005 | DE |
1041624 | Oct 2000 | EP |
1 763 894 A | Mar 2007 | EP |
2704690 | Nov 1994 | FR |
07-509104 | Oct 1995 | JP |
11-260851 | Sep 1999 | JP |
2000269411 | Sep 2000 | JP |
2001210782 | Aug 2001 | JP |
2003-142518 | May 2003 | JP |
2003163324 | Jun 2003 | JP |
2004-119473 | Apr 2004 | JP |
2004153130 | May 2004 | JP |
2004158536 | Jun 2004 | JP |
2004-214548 | Jul 2004 | JP |
2005005529 | Jan 2005 | JP |
2006-351793 | Dec 2006 | JP |
2009-026969 | Feb 2009 | JP |
20-1994-0004952 | Jul 1994 | KR |
10-1999-0008537 | Feb 1999 | KR |
20010062722 | Jul 2001 | KR |
20050009036 | Jan 2005 | KR |
20070018057 | Feb 2007 | KR |
100813624 | Mar 2008 | KR |
20080045259 | May 2008 | KR |
20080069549 | Jul 2008 | KR |
9425987 | Nov 1994 | WO |
9907015 | Feb 1999 | WO |
9909599 | Feb 1999 | WO |
0164344 | Sep 2001 | WO |
2005101492 | Oct 2005 | WO |
2009052150 | Apr 2009 | WO |
2009114670 | Sep 2009 | WO |
Entry |
---|
International Search Report for PCT Application No. PCT/US2008/065793, mailed Dec. 22, 2008. |
International Search Report for PCT Application No. PCT/US2008/065788, mailed Sep. 30, 2008. |
International Search Report & Written Opinion, Application No. PCT/US2008.066561, dated Dec. 31, 2008. |
Amendment filed Jul. 26, 2010 in response to May 24, 2010 Office Action, U.S. Appl. No. 12/124,097. |
EP Supplementary Search Report mailed Jun. 12, 2008, EP App. No. 05735136.3. |
Final Office Action mailed Jul 1, 2010, U.S. Appl. No. 11/744,153. |
Notice of Allowance mailed Feb. 27. 2009, U.S. Appl. No. 11/744,153. |
Amendment filed Jul. 30, 2009 in response to Dec. 30, 2009 Office Action, U.S. Appl. No. 12/143,157. |
International Search Report and Written Opinion, Appl. No. PCT/US2008/067722, dated Feb. 25, 2009. |
Final Office Action mailed Mar. 2, 2011, U.S. Appl. No. 12/251,624. |
International Search Report and Written Opinion dated Mar. 17, 2009, App. No. PCT/US2008/079948. |
International Search Report and Written Opinion dated Mar. 6, 2009, App. No. PCT/US2008/73365. |
International Search Report and Written Opinion dated Oct. 6, 2009 , App. No. PCT/US2009/36921. |
International Search Report and Written Opinion dated Apr. 12, 2010 , App. No. PCT/US2009/55421. |
International Search Report and Written Opinion dated Jan. 26, 2011, App. No. PCT/US2010/39639. |
Final Office Action, mailed Aug. 5, 2010, U.S. Appl. No. 12/143,157. |
International Search Report and Written Opinion for Application No. PCT/US2009/047389 dated Jan. 14, 2010. |
International Search Report for Application No. PCT/US2009/067386 dated Jul. 1, 2010. |
International Search Report for Application No. PCT/US2010/039639 dated Jan. 26, 2011. |
International Search Report for Application No. PCT/US2010/055472 dated Jul. 27, 2011. |
International Search Report mailed Mar. 23, 2009, International Application No. PCT/US2008/74450. |
Ko, et al., Development of three-dimensional memory die stack packages using polymer insulated sidewall technique, 1999. |
Notice of Allowability, mailed Oct. 19, 2006, U.S. Appl. No. 11/090,969. |
Notice of Allowability, mailed Oct. 19, 2006 U.S. Appl. No. 11/090,969. |
Notice of Allowance mailed Dec. 17, 2009, U.S. Appl. No. 11/016,558. |
Notice of Allowance mailed Feb. 27, 2009, U.S. Appl. No. 11/744,153. |
Notice of Allowance, mailed Feb. 12, 2007, U.S. Appl. No. 11/097,829. |
Notice of Appeal filed Sep. 16, 2010 in response to Mar. 18, 2010 Office Action, U.S. Appl. No. 11/744,142. |
Notice to File Corrected Papers, mailed Mar. 30, 2007, U.S. Appl. No. 11/097,829. |
Office Action (Restriction) mailed Jan. 21, 2010, U.S. Appl. No. 12/046,651. |
Office Action (Restriction) mailed Oct. 7, 2009, U.S. Appl. No. 11/849,162. |
Office Action (Restriction) mailed Jun. 24, 2009, U.S. Appl. No. 11/849,162. |
Office Action (Restriction) mailed Apr. 20, 2009, U.S. Appl. No. 11/744,142. |
Office Action (Restriction) mailed Dec. 28, 2010, U.S. Appl. No. 12/403,175. |
Office Action (Restriction) mailed Feb. 4, 2010, U.S. Appl. No. 12/251,624. |
Office Action (Restriction) mailed May 24, 2010, U.S. Appl. No. 12/124,097. |
Office Action (Restriction) mailed Oct. 7, 2009, U.S. Appl. No. 12/143,157. |
Office Action mailed Jan. 27, 2009, U.S. Appl. No. 11/849,162. |
Office Action mailed Dec. 15, 2008, U.S. Appl. No. 11/016,558. |
Office Action mailed Dec. 22, 2006, U.S. Appl. No. 11/016,558. |
Office Action mailed Dec. 31, 2007, U.S. Appl. No. 11/744,153. |
Office Action mailed Feb. 7, 2006, U.S. Appl. No. 11/097,829. |
Office Action mailed Mar. 19, 2008, EP Application No. 05736129.7. |
Office Action mailed Mar. 27, 2008, U.S. Appl. No. 11/016,558. |
Office Action mailed Jul. 15, 2009, U.S. Appl. No. 11/016,558. |
Office Action mailed Jul. 21, 2010 U.S. Appl. No. 11/849,162. |
Office Action mailed Aug. 18, 2010, App. No. 12/046,651. |
Office Action mailed Aug. 3, 2009, U.S. Appl. No. 11/744,142. |
Office Action mailed Dec. 30, 2009, U.S. Appl. No. 12/143,157. |
Office Action mailed Jun. 9, 2010, U.S. Appl. No. 12/251,624. |
Office Action mailed Mar. 1, 2011, U.S. Appl. No. 12/143,157. |
Office Action mailed Oct. 14, 2010, U.S. Appl. No. 12/124,097. |
Response filed Oct. 19, 2007 to Oct. 10, 2007 Advisory Action, U.S. Appl. No. 11/016,558. |
Response filed Aug. 5, 2009 in response to Jul. 15, 2009 Office Action, U.S. Appl. No. 11/016,558. |
Supplemental Amendement filed Aug. 5, 2009, App. No. 111849,162. |
U.S. Appl. No. 12/124,097, filed May 20, 2008. |
Written Opinion of the International Searching Authority for Application No. No. PCT/US2010/055472 dated Jul. 27, 2011. |
Written Opinion of the International Searching Authority for Application No. PCT/US2009/067386 dated Jul. 1, 2010. |
Written Opinion of the International Searching Authority for Application No. PCT/US2010/039639 dated Jan. 26, 2011. |
Advisory Action mailed Oct. 10, 2007, U.S. Appl. No. 11/016,558. |
Advisory Action, mailed Oct. 20, 2008, App. No. 111744,153. |
Advisory Action, mailed Oct. 20, 2008, U.S. Appl. No. 11/744,153. |
Amendment A filed Aug. 7, 2006 in response to Feb. 7, 2006 Office Action, U.S. Appl. No. 11/097,829. |
Amendment A filed Aug. 7, 2006 in response to Feb. 7, 2006 Quayle Action, U.S. Appl. No. 11/090,969. |
Amendment and RCE filed Nov. 26, 2008 in response to Oct. 20, 2008 Advisory Action, U.S. Appl. No. 11/744,153. |
Amendment and RCE filed Mar. 16, 2011 in response to Mar. 18, 2010 Office Action, U.S. Appl. No. 11/744,142. |
Amendment and RCE filed Feb. 7, 2011 in repsonse to Aug. 5, 2010 Office Action, U.S. Appl. No. 12/143,157. |
Amendment filed Jan. 18, 2011 in response to Aug. 18, 2010 Office Action, U.S. Appl. No. 12/046,651. |
Amendment filed Jan. 21, 2011 in response to Jul. 21, 2010 Office Action, U.S Appl. No. 11/849,162. |
Amendment filed Jan. 22, 2007 in response to Jul. 19, 2007 Office Action, U.S. Appl. No. 11/016,558. |
Amendment filed Oct. 1, 2008 in response to Jul. 1, 2010 Office Action, U.S. Appl. No. 11/744,153. |
Amendment filed Oct. 14, 2008 in response to Sep. 15, 2008 Office Action, U.S. Appl. No. 11/016,558. |
Amendment filed Nov. 9, 2009 in response to Oct. 7, 2009 Office Action, U.S. Appl. No. 11/849,162. |
Amendment filed Dec. 3, 2009 in response to Aug. 3, 2009 Office Action, U.S. Appl. No. 11/744,142. |
Amendment filed Feb. 22, 2010 in response to Feb. 21, 2010 Office Action, U.S. Appl. No. 12/046,651. |
Amendment filed Mar. 27, 2009 in response to Jan. 27, 2009 Office Action, U.S. Appl. No. 11/849,162. |
Amendment filed Apr. 1, 2008 in response to Dec. 31, 2007 Office Action , U.S. Appl. No. 11/744,153. |
Amendment filed Apr. 8, 2009 in response to Dec. 15, 2008 Office Action, U.S. Appl. No. 11/016,558. |
Amendment filed Jun. 21, 2007 in response to Dec. 22, 2006 Office Action, U.S. Appl. No. 11/016,558. |
Amendment filed Jun. 27, 2008 in response to Mar. 27, 2008 Office Action, U.S. Appl. No. 11/016,558. |
Amendment filed Jul. 8, 2009 in response to Jun. 24, 2009 Office Action, U.S. Appl. No. 11/849,162. |
Amendment filed Sep. 19, 2007 in response to Jul. 19, 2007 Office Action, U.S. Appl. No. 11/016,558. |
Amendment filed Apr. 11, 2008 in response to Dec. 31, 2007 Office Action, U.S. Appl. No. 11/744,153. |
Amendment filed Dec. 9, 2010 in response to Jun. 9, 2010 Office Action, U.S. Appl. No. 12/251,624. |
Amendment filed Feb. 14, 2011 in response to Oct. 14, 2010 Office Action, U.S. Appl. No. 12/124,097. |
Amendment filed Jan. 24, 2007 in response to Jan. 8, 2007 Office Action, U.S. Appl. No. 11/097,829. |
Amendment filed Jan. 29, 2010 in response to Dec. 28, 2010 Office Action, U.S. Appl. No. 12/403,175. |
Amendment filed Jun. 26, 2010 in response to May 24, 2010 Office Action, U.S. Appl. No. 12/124,097. |
Amendment filed Jun. 30, 2009 in response to Dec. 30, 2009 Office Action, U.S. Appl. No. 12/143,157. |
Amendment filed Mar. 4, 2010 in response to Feb. 4, 2010 Office Action, U.S. Appl. No. 12/251,624. |
Amendment filed May 22, 2009 in response to Apr. 20, 2009 Office Action, U.S. Appl. No. 11/744,142. |
Amendment filed May 29, 2007 in response to Mar. 30, 2007 Notice, U.S. Appl. No. 11/097,829. |
Amendment filed Nov. 9, 2009 in response to Oct. 7, 2009 Office Action, U.S. Appl. No. 12/143,157. |
EP Supplemental Search Report mailed Nov. 5, 2007, EP Application No. 05736129.7. |
EP Supplementary Search Report mailed Jun. 5, 2008, EP App. No. 05735136.3. |
Ex Parte Quayle Action mailed 217/06, U.S. Appl. No. 11/090,969. |
Final Office Action mailed Mar. 18, 2010, U.S. Appl. No. 11/744,142. |
Final Office Action mailed Jul. 1, 2010, U.S. Appl. No. 11/744,153. |
Final Office Action mailed Jul. 19, 2007, U.S. Appl. No. 11/016,558. |
Final Office Action mailed Sep. 15, 2008, U.S. Appl. No. 11/016,558. |
Final Office Action mailed Jan. 8, 2007, U.S. Appl. No. 11/097,829. |
Final Office Action mailed Mar. 1, 2011, U.S. Appl. No. 12/251,624. |
International Search Report and Written Opinion for Application No. PCT/US2010/054325 dated Jul. 28, 2011. |
Japanese Office Action for Application No. 2010-550853 dated Sep. 18, 2013. |
Number | Date | Country | |
---|---|---|---|
20080303131 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60970903 | Sep 2007 | US | |
60943252 | Jun 2007 | US | |
60981457 | Oct 2007 | US |