This disclosure relates generally to inductors, and more specifically, to spiral inductors formed in a semiconductor substrate.
The current revolution in wireless communications and the need for smaller wireless communications devices has spawned significant efforts directed to the optimization and miniaturization of radio communications electronic devices. Passive components, such as inductors, capacitors and transformers, play a necessary role in the devices' operation and thus efforts have been directed toward reducing the size and improving the performance and fabrication efficiency of such components.
An inductor is an electromagnetic component employed in alternating current and radio frequency applications such as oscillators, amplifiers and signal filters, to provide frequency dependent effects. A discrete conventional inductor comprises a plurality of windings typically enclosing a core constructed of a magnetic material. Use of a magnetic core yields a higher inductance value, but is not necessarily required. The inductance is also a function of the number of coil turns (specifically, the inductance is proportional to the square of the number of turns) and the core area. Conventional discrete inductors are formed as a helix (also referred to as a solenoidal shape) or a torroid. The core is typically formed of a ferromagnetic material (e.g., iron, cobalt, nickel) having a plurality of magnetic domains. The application of a magnetic field to the core material when the inductor is energized causes domain alignment and a resulting increase in the material permeability, which in turn increases the inductance.
With the continued expansion of communications services into higher frequency bands, the inductors are required to operate at higher frequencies. But it is known that inductor losses increase as the operational frequency increases due to larger eddy currents and the skin effect. To avoid these losses at relatively low operational frequencies, the inductive effect can be simulated by certain active devices. But the active devices cannot provide acceptable inductive effects at higher frequencies, have a limited dynamic range and can inject additional unwanted noise into the operating circuits.
Forming inductors in semiconductor circuits can be problematic, especially as integrated circuit size shrinks to improve device performance. Compared with current device sizes and line widths, inductors and capacitors are large structures that consume valuable space on the semiconductor surface and are therefore not easily integrated into semiconductor devices. Ideally, the inductors should be formed on a relatively small surface area of a semiconductor substrate, using methods and procedures that are conventional in the semiconductor processing art. Further, the inductor must be operational at the high frequencies used in today's communications devices and exhibit limited power losses.
Typically, inductors formed on an integrated substrate surface have a spiral shape where the spiral is in a plane parallel to the substrate surface. Many techniques are known for forming the spiral inductor, such as by patterning and etching a conductive material formed on the substrate surface. Multiple interconnected spiral inductors can be formed to provide desired inductive properties and/or simplify the inductor fabrication process. See for example, U.S. Pat. No. 6,429,504 describing a multi-layer spiral inductor and U.S. Pat. No. 5,610,433 describing a plurality of spaced-apart stacked circular conductors interconnected by vias to form a plurality of spiral conductors.
Problems encountered when forming an inductor on the surface of a semiconductor substrate include self-resonance caused by a parasitic capacitance between the (spiral) inductor and the underlying substrate, and the consumption of excess power by the conductor forming the inductor and the inductor's parasitic resistance. Both of these effects can limit the high frequency performance of the inductor.
The Q (quality factor) of an inductor is a ratio of inductive reactance to resistance and is related to the inductor's bandwidth. High Q inductors (i.e., exhibiting a relatively low inductive resistance) present a narrow Q peak as a function of the input signal frequency, with the peak representing the inductor resonant frequency. High Q inductors are especially desirable for use in frequency-dependent circuits operating with narrow bandwidths. Because the Q value is an inverse function of inductor resistance, minimizing the resistance increases the Q.
One technique for minimizing the resistance increases the cross-sectional area of the conductive material forming the inductor. However, increasing the cross-sectional area increases the conductor aspect ratio (i.e., the ratio of the conductor height above a semiconductor substrate plane to the conductor width along the plane). Such high aspect ratio conductors formed on the semiconductor substrate can lead to difficulties in subsequent etching, cleaning, and passivating processes due to steps formed between an upper surface of the relatively thick conductor and an upper surface of the substrate. Such inductors also consume valuable space on the semiconductor substrate. Formation of high aspect ratio inductors can also promote dielectric gaps, which may lead to device failures, between the inductor's closely spaced conductive lines. Although there are known processes for attempting to fill these gaps, such processes are not always successful.
One embodiment as provided is directed to a method for forming an inductor in a semiconductor integrated circuit. The method includes forming a first inductor line on a metallization dielectric layer where the first inductor line has terminal end pads, and a dielectric layer is formed over the first inductor line and the terminal end pads. A first opening if formed over the dielectric layer to expose the first inductor line. The length of the opening is substantially co-extensive with the first inductor line. The first opening is filled with a conductive material to form a second inductor line that is in electrical communication and substantially co-extensive with the first inductor line. The first and second inductor lines are cooperable to produce an inductive effect. Second openings are formed in the dielectric layer to expose the terminal end pads subsequent to forming the second inductor line, and the second openings are filled with a conductive material to form contacts for the first and second inductor lines.
This disclosure can be more easily understood and the advantages and uses thereof more readily apparent, when the following detailed description of this disclosure is read in conjunction with the figures wherein:
In accordance with common practice, the various described device features are not drawn to scale, but are drawn to emphasize specific features relevant to the invention. Reference characters denote like elements throughout the figures and text.
Before describing in detail one exemplary process for forming an inductor and an inductor formed thereby according to this disclosure, it should be observed that the disclosure resides in a novel and non-obvious combination of elements and process steps. So as not to obscure the disclosure with details that will be readily apparent to those skilled in the art, certain conventional elements and steps have been presented with lesser detail, while the drawings and the specification describe in greater detail other elements and steps pertinent to understanding the disclosure.
According to a first embodiment of the disclosure, an aluminum interconnect layer, i.e., an (n−1)th interconnect layer of a semiconductor integrated circuit, is formed according to known process steps on a material layer 104 (see
A reference character 105 in
An interlayer dielectric 122 is formed over the conductive line 114, and a chemical/mechanical polishing process planarizes an upper surface 124 of the interlayer dielectric 122. The resulting structure is illustrated in
Using conventional photolithographic masking, patterning and etching steps, a continuous generally spiral-shaped trench is formed in the interlayer dielectric 122 overlying the conductive line 114 and having the same general shape thereof. According to this embodiment, the trench is not formed over two regions 114A and 114B (see
As is conventional in the art, a barrier layer 126 (preferably of tantalum or tantalum nitride) and a seed layer (not shown) are formed in the trench and over the upper surface 124. The barrier layer 126 prevents copper diffusion into the interlayer dielectric 122. The seed layer promotes formation of copper within the trench. According to the known damascene process, copper is electroplated in the trench and overlying the upper surface 124.
Chemical/mechanical polishing removes copper overfill and excess barrier/seed layer from the upper surface 124, leaving a continuous generally spiral-shaped conductor 134 in electrical communication with the underlying conductive line 114, thereby completing formation of a spiral inductor 135. A passivation layer 136 (to prevent copper surface diffusion during subsequent temperature exposures to the substrate 100) is formed overlying the spiral inductor 135 and the surrounding regions of the upper surface 124. The final structure is illustrated in
Conventional masking, patterning and etching steps are employed to form openings 138 to access the two regions 114A and 114B of the conductive line 114. See
Those skilled in the art recognize that the openings 138 are formed to connect the substrate 100 to package leads of a package into which the substrate 100 is assembled. Any of the well known packaging and lead connection techniques can be employed in conjunction with this disclosure, such as bump bonding, flip chip solder bonding wire bonding, etc.
Advantageously, the inductor 135 constructed as described above offers a lower resistance (and thus a higher Q factor) due to use of copper to form an upper layer (i.e., the conductor 134) of the inductor 135, as compared with inductors of the prior art.
Another embodiment of this disclosure begins with formation of an (n−1)th aluminum metallization layer followed by masking, patterning and etching steps to form a conductive line in a generally spiral shape. These process steps are similar to those described above in conjunction with
The present embodiment begins with the formation of tungsten plugs 160 as illustrated in
An aluminum stack (also referred to as the nth metallization layer) comprising, from bottom to top, a titanium layer 174, a titanium nitride layer 176, an aluminum layer 178 and an anti-reflective cap layer 180, is deposited and etched to form conductive pads 182 in
An interlayer dielectric 188, illustrated in
Using known photolithographic masking, patterning, and etching steps, a trench is formed in the interlayer dielectric layer 188, wherein the trench overlies the conductive line 114 and thus is generally spiral shaped. A barrier layer 196 (preferably of tantalum or tantalum nitride) and a seed layer (not shown) are formed in the trench and on the upper surface 190. See
A passivation layer 201 is formed over the upper surface 190 and the conductive runner 200.
An inductor 202 comprises the conductive runner 200, the conductive line 114 and the interconnecting tungsten plugs 160.
The conductive pads 182 function as inductor terminals for electrically connecting the inductor 202 to other circuit elements. Access to the conductive pads 182 is provided by forming openings overlying the pads 182 and forming the under-bump layers 139 and the solder bump 140 in each opening, such as described above in conjunction with
Preferably, as described and illustrated, the conductive runner 200 is vertically aligned with the conductive line 114, although this is not necessarily required according to this disclosure. However, at least a portion of the conductive runner 200 should be vertically aligned with the conductive line 114 for accommodating interconnection via the tungsten plugs 160.
According to this exemplary embodiment, the inductor 202 is formed in two vertically adjacent metallization layers (the nth and (n−1)th layers) interconnected by the tungsten plugs 160. In another embodiment, the inductor is formed in adjacent metallization layers other than the n and (n−1)th layers. In yet another embodiment, the inductor is formed in non-adjacent metallization layers interconnected by tungsten plugs.
Other embodiments of this disclosure comprise differently shaped inductors, such as a zigzag or a helix formed in successive conductive layers and appropriately interconnected. Such inductors offer specific operational properties as determined from the shape and dimensions of the aluminum conductors and the conductive runners.
While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalent elements may be substituted for elements thereof without departing from the scope of this disclosure. The scope of this disclosure further includes any combination of the elements from the various embodiments set forth herein. In addition, modifications may be made to adapt a particular situation to the teachings of this disclosure without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This patent application is a divisional of Ser. No. 11/414,902, filed on May 1, 2006, currently allowed which claims the benefit of application Ser. No. 10/953,475, filed on Sep. 29, 2004, issued as U.S. Pat. No. 7,068,139 on Jun. 27, 2006, which claims the benefit of the provisional patent application filed on Sep. 30, 2003, and assigned application No. 60/507,335.
Number | Name | Date | Kind |
---|---|---|---|
5446311 | Ewen et al. | Aug 1995 | A |
5610433 | Merrill et al. | Mar 1997 | A |
6002161 | Yamazaki | Dec 1999 | A |
6008102 | Alford et al. | Dec 1999 | A |
6031445 | Marty et al. | Feb 2000 | A |
6037649 | Liou | Mar 2000 | A |
6054329 | Burghartz et al. | Apr 2000 | A |
6083802 | Wen et al. | Jul 2000 | A |
6114937 | Burghartz et al. | Sep 2000 | A |
6329234 | Ma et al. | Dec 2001 | B1 |
6342424 | Pichler | Jan 2002 | B1 |
6395637 | Park et al. | May 2002 | B1 |
6429504 | Beaussart et al. | Aug 2002 | B1 |
6472285 | Liou | Oct 2002 | B1 |
6504227 | Matsuo et al. | Jan 2003 | B1 |
6573148 | Bothra | Jun 2003 | B1 |
6650220 | Sia et al. | Nov 2003 | B2 |
6830984 | Schultz et al. | Dec 2004 | B2 |
6847066 | Tahara et al. | Jan 2005 | B2 |
7068139 | Harris et al. | Jun 2006 | B2 |
7135951 | Sidhu et al. | Nov 2006 | B1 |
7167072 | Hung et al. | Jan 2007 | B2 |
20060192647 | Harris et al. | Aug 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090100668 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11414902 | May 2006 | US |
Child | 12340813 | US | |
Parent | 10953475 | Sep 2004 | US |
Child | 11414902 | US |