1. Field of the Invention
The invention relates to the field of electronics, more particularly to the wire bonds incorporated into an integrated circuit package.
2. Description of the Related Prior Art
As will be understood by those skilled in the art, an integrated circuit (IC), sometimes called a chip or microchip is a semiconductor material on which thousands of tiny resistors, capacitors, and transistors are fabricated in a particular configuration to perform a desired electronic function. For example, a chip can function as an amplifier, oscillator, timer, counter, computer memory or microprocessor. A particular chip is categorized as either digital or analogue, depending on its intended application.
In the manufacture of a chip a semiconductor wafer (typically 300 mm diameter for silicon) is doped to enhance its electron transfer properties and then etched to provide the desired circuitry. The resulting wafer is diced using scribing tools into dies or chips. The end product is delicate in nature so is incorporated into some form of packaging. Lower quality packages are plastic while higher quality packages are ceramic. The packaging serves a variety of functions, including: (a) physical protection of the chip; (b) the provision of electrical connectivity from the chip to the printed circuit board to which it is mounted; (c) dissipation of heat generated by the chip. Additionally, the electrical characteristics of the package itself are designed to minimally impact device performance.
Several well known packaging techniques have been developed, with two of the most popular being quad flat pack (QFP) and ball grid array (BGA). As shown in
As will also be appreciated, flip-chip assembly is an alternate packaging technique which can be used in a BGA-type assembly. As shown in
As highlighted above, the connection between the chip and the integrated circuit package can be achieved with flip-chip mounting inside the package (which is similar to the BGA between the package and the printed circuit board) or with wire bonds inside the package. Wire bonds are very short ribbons of wire, that are pressure welded from the chip pads to the package pads by machine. As will be appreciated by those in the art, a problem with wire bonds for high frequency circuits is that they also generate a small amount of inductance (e.g. 1 nanoHenry/millimetre of length). As those skilled in the art are aware, inductance is the characteristic of an electrical conductor which opposes a change in current flow. In the case of a wire bond, the inductance is often unpredictable because, typically, the exact length of the wire is inconsistent, as well as its location and termination point on either the chip or carrier pad. Both of these factors (and to some extent the thickness of the wire) affect its inherent inductance. The inconsistencies are largely a result of imprecise manufacturing techniques. As a result, this heretofore undesirable property of wire bonds has presented problems to integrated circuit designers who have tried to design around the inductance produced by wire bonds.
Where an inductor is required in one of the chip's operational circuits, it has heretofore been incorporated into the chip design itself (e.g. as a spiral inductor) and located on the chip (“on-die”) or in the package or printed circuit board (“off-die”). In either case, recognized problems are created for the circuit designer.
In light of the problems and deficiencies of wire bonds highlighted above, there is a need for an improved integrated circuit package in which the wire bond inductance is advantageously used to facilitate operation of the chip.
It is therefore the primary object of the present invention to take the normally undesirable wire bond inductance and use it in an operational circuit where positive inductance is required. The circuit in which the wire bond inductance is used is located primarily in the integrated circuit die housed in the integrated circuit package, but may also include off-die components. In one example, at least one wire bond is used as the required series inductance in a discrete circuit impedance inverter which consists of two shunt-to-ground negative inductances and one series positive inductance. One of the negative inductances is located on-die, while the other is located off-die.
In accordance with one aspect of the invention there is provided an integrated circuit package comprising: an integrated circuit die having at least one circuit etched thereon; and a housing containing said integrated circuit die, wherein said integrated circuit die is electrically coupled to said housing using at least one wire bond; and wherein said wire bond(s) has (have) an inductance associated therewith; and wherein said wire bond inductance is used to facilitate operation of said at least one circuit.
In accordance with another aspect of the invention there is provided a method of providing inductance to facilitate operation of a circuit contained in an integrated circuit package, the method comprising the step of making available wire bond inductance to said circuit.
In accordance with yet another aspect of the invention there is provided use of wire bond inductance in an integrated circuit package to facilitate operation of a circuit contained in an integrated circuit package.
The advantage of the present invention are readily apparent. Instead of being a problem which a designer must try to overcome the inductance inherent in wire bonds can be utilized as an integral component of a functional circuit on the chip.
A better understanding of the invention will be obtained by considering the detailed description below, with reference-to the following drawings in which:
In essence, the invention takes advantage of a physical property of a wire bond which had previously been considered undesirable. As a result of the advancement of manufacturing techniques the bond wires and ribbons can be made of a consistent length and bonded to electrical contacts on the package with sufficient precision to ensure that the inductance associated with the wire bond is predictable and therefore useable.
Advantageously, the positive inductance of the impedance inverter of
A lumped element impedance inverter as described in relation to
As will be understood by those skilled in the art, the present invention relates to integrated circuits in which a wire bond is used in combination with other components to form a useful circuit function for either analog or digital chips. The individual electronic and processing functions utilised in the foregoing described embodiment are, individually, well understood by those skilled in the art. It is to be understood by the reader that a variety of other implementations may be devised by skilled persons for substitution and the claimed invention herein is intended to encompass all such alternative implementations, substitutions and equivalents. Persons skilled in the field of electronic and communication design will be readily able to apply the present invention to an appropriate implementation for a given application.
Consequently, it is to be understood that the particular embodiments shown and described herein by way of illustration are not intended to limit the scope of the invention claimed by the inventors/assignee which is defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3854100 | Pouzadoux | Dec 1974 | A |
3931582 | Kato et al. | Jan 1976 | A |
3934099 | Elder, Jr. | Jan 1976 | A |
4764735 | Jones | Aug 1988 | A |
4924195 | Gonda | May 1990 | A |
4968949 | Torrano et al. | Nov 1990 | A |
5563762 | Leung et al. | Oct 1996 | A |
5612647 | Malec | Mar 1997 | A |
5844301 | Van Roosmalen | Dec 1998 | A |
5930128 | Dent | Jul 1999 | A |
6107684 | Busking et al. | Aug 2000 | A |
6166971 | Tamura et al. | Dec 2000 | A |
6285251 | Dent et al. | Sep 2001 | B1 |
6300829 | Luu | Oct 2001 | B1 |
6304137 | Pullen et al. | Oct 2001 | B1 |
6323733 | Gorcea et al. | Nov 2001 | B1 |
6331801 | Schmitt et al. | Dec 2001 | B1 |
6366770 | Seshita et al. | Apr 2002 | B1 |
6603352 | Wight | Aug 2003 | B2 |
6937096 | Wight et al. | Aug 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20040266059 A1 | Dec 2004 | US |