1. Field of the Invention
Embodiments of the invention generally relate to an electroless deposition system for semiconductor processing.
2. Description of the Related Art
Metallization of sub-100 nanometer sized features is a foundational technology for present and future generations of integrated circuit manufacturing processes. More particularly, in devices such as ultra large scale integration-type devices, i.e., devices having integrated circuits with several million logic gates, the multilevel interconnects that lie at the heart of these devices are generally formed by filling sub-micron high aspect ratio interconnect features with a conductive material, such as copper, wherein a high aspect ratio is greater than about 10:1. At these dimensions, conventional deposition techniques, such as chemical vapor deposition and physical vapor deposition, cannot reliably fill interconnect features like trenches or vias. As a result, plating techniques, i.e., electrochemical plating and electroless plating, have emerged as promising processes for void-free filling of sub-100 nanometer sized high aspect ratio interconnect features in integrated circuit manufacturing processes. Additionally, electrochemical and electroless plating processes have emerged as promising processes for depositing or repairing pre-plating seed layers and depositing post-plating layers, such as capping layers.
In order to further reduce the size of devices on integrated circuits, it has become necessary to use conductive materials having low resistivity and insulators having low k (dielectric constant<4.0) to reduce the capacitive coupling between adjacent metal lines. Currently, copper and its alloys have become the metals of choice for sub-micron interconnect technology because copper has a lower resistivity than aluminum, (1.7 μΩ-cm compared to 3.1 μΩ-cm for aluminum), and a higher current carrying capacity and significantly higher electromigration resistance. These characteristics are important for supporting the higher current densities experienced at high levels of integration and increased device speed. Further, copper has a good thermal conductivity and is available in a highly pure state.
Although copper is a popular interconnect material, copper suffers by diffusing into neighboring layers, such as dielectric layers. The resulting undesirable presence of copper causes dielectric layers to become conductive and electronic devices to fail. Therefore, barrier materials are used to control copper diffusion. The barrier layer typically includes a refractory metal nitride and/or silicide, such as titanium or tantalum. Of this group, tantalum nitride is one of the most desirable materials for use as a barrier layer. Tantalum nitride has one of the lowest electrical resistivities of the metal nitrides and is also a good barrier to prevent copper diffusion, even when relatively thin layers are formed (e.g., 20 Å or less). A tantalum nitride layer is typically deposited by conventional deposition techniques, such as physical vapor deposition (PVD), atomic layer deposition (ALD) and chemical vapor deposition (CVD). A negative characteristic of Tantalum nitride is poor adhesion to a copper layer deposited thereon. Poor adhesion of subsequent deposited copper layer(s) can lead to poor electromigration in the formed device and possibly process contamination issues in subsequent processing steps, such as chemical mechanical polishing (CMP). It is believed that exposure of the tantalum nitride layer to sources of oxygen and other contamination will cause the exposed surface of the tantalum nitride layer to oxidize, thus preventing the formation of a strong bond to the subsequently deposited copper layer. Also, dielectric deposition processes typically contain carbon, which becomes incorporated into the dielectric layer. Carbon incorporation is often detrimental to the completion of wet chemical processes since the deposited film tends to be hydrophobic, reducing or preventing fluids from wetting and depositing a film having desirable properties. Therefore, a process and apparatus is needed for depositing a barrier layer or adhesion layer that strongly bonds to carbon-containing dielectric layers and subsequently deposited copper layers.
Another problem with the use of copper and its alloys is that copper readily oxidizes when exposed to air and is also vulnerable to chemical corrosion and deterioration due to subsequent processing steps. Copper interconnects are adversely affected by oxidation and other forms of deterioration and seed layers suffer from widely different levels of oxidation when queue times vary between lots.
A method of protecting copper interconnects from subsequent processing steps is to form a capping layer over copper interconnects. One problem with previous capping layer methods is inadequate pre-treatment of the substrate prior to electroless deposition of the capping layer and inadequate post-treatment of the capping layer, which may cause contamination problems and/or selectivity problems. One example of contamination includes watermarks remaining on hydrophobic films that contain copper, cobalt, and other metals. The presence of this type of contamination can seriously affect subsequent electroless deposition as well as other processing steps. Another problem with using capping layers to protect interconnects is the potential creation of shorts between closely spaced interconnects.
Another problem facing manufacturers of ultra-large scale integrated circuits is the filling of very high and very low aspect ratio features on the same device at the same time.
Another problem related to oxidation is the formation of a native oxide on exposed electrical contacts during the fabrication of electronic devices. A native oxide typically forms when a substrate surface is exposed to oxygen. Oxygen exposure occurs when the substrate is moved between processing chambers at atmospheric conditions, or when removed from a substrate processing system between processing steps, or when a small amount of oxygen remaining in a processing chamber contacts the substrate surface. Native oxides may also result if the substrate surface is contaminated during etching. Native oxides typically form an undesirable film on the substrate surface. Native oxide films are usually very thin, such as between 5 and 20 angstroms, but thick enough to cause difficulties in subsequent fabrication processes. Such difficulties usually affect the electrical properties of semiconductor devices formed on the substrate. For example, a particular problem arises when native silicon oxide films are formed on exposed contact surfaces (e.g., source or drain connection points), such as those shown in
Ultra-large scale integrated circuits may also suffer from high contact resistance as devices on integrated circuits are further reduced in size. High contact resistance can be the result of native oxide formation on contact surfaces, contamination, the formation of seams and voids, and barrier layer resistance. As noted above, native oxide may form on exposed contact surfaces such as those present at the bottom of high aspect ratio features 111 and low aspect ratio feature 112 shown in
Yet another problem that occurs during the manufacture of ultra-large scale integrated circuits is the depletion of silicon at the silicon contact interface through silicidation, i.e., diffusion into the contact interface by the conductive material filling the contact feature and the subsequent formation of a silicide by the conductive fill material.
Further, a functional and efficient integrated platform for electroless deposition processes capable of depositing uniform layers with minimal defects has not been developed. Therefore, there is a need for methods and apparatus that incorporate electroless deposition processes onto substrate-processing platforms capable of:
Embodiments of the invention provide methods for integrating electroless seed layer deposition and ECP gap fill on a single platform, integrating electroless seed deposition and electroless gap fill on a single platform, depositing a capping layer over interconnects on a substrate without forming leakage paths between the interconnects, and integrating a brush box and vapor dryer into an electroless deposition system for post-deposition cleaning of substrates. One embodiment provides a method for filling high aspect ratio and low aspect ratio substrate features on a single platform. Another embodiment provides a method for cleaning silicon contacts and forming a stable silicide at the contacts without exposure to air. In some aspects, methods include pre-deposition cleaning treatments via plasma-enhanced dry etch or supercritical fluid chambers.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
FIGS. 21A-E are schematic cross-sectional views of a silicon contact illustrating a process of forming a silicide thereon using the inventive method.
For clarity, identical reference numerals have been used, where applicable, to designate identical elements that are common between figures.
Embodiments of the invention generally provide methods of depositing materials onto semiconductor substrates by using one or more electroless, ECP, CVD and/or ALD processing chambers. More particularly, embodiments of the invention allow formation of capping layers with low defects and low oxidation of interconnect features, deposition of a barrier layer on substrates, deposition and/or repair of seed layers on substrates, electroless fill of interconnect features, and sequential filling of high and low aspect ratio interconnect features on a substrate, using electroless and ECP processes. Other embodiments of the invention allow the removal of native oxides and other contaminants on exposed contacts at the bottom of high aspect ratio features and the subsequent deposition of cobalt and/or nickel to fill such contacts. In one aspect, nickel silicide is formed after an oxide cleaning step and before a cobalt fill step to prevent further silicidation of diffused cobalt into silicon contacts. In another aspect, a nickel or cobalt layer is deposited onto a silicon contact and subsequently annealed to form a stable first stage silicide that may be exposed to air without danger of oxidation.
A typical sequence for forming an interconnect includes depositing one or more non-conductive layers, etching at least one of the layer(s) to form one or more features therein, depositing a barrier layer in the feature(s) and depositing one or more conductive layers, such as copper, to fill the feature.
To prevent copper diffusion into dielectric layer 121, barrier layer 124 may be formed on the dielectric layer 121 and in aperture 122, as depicted in
Rather than directly depositing a bulk conductive material, such as copper, onto barrier layer 124 to fill aperture 122, a reducing layer 126 which promotes adhesion, may first be formed on barrier layer 124, as depicted in
To prepare substrate 120 for subsequent deposition of conductive layers via electroless and/or electrochemical plating, a catalytic layer 128 is deposited on barrier layer 124 as depicted in
Conductive layers such as seed layer 129 and/or bulk layer 130 may then be deposited on substrate 120 as shown in
General Cluster Tool Description
The cluster tool generally contains a wet processing platform in communication with a substrate loading area and together with the loading area, comprises a substrate plating system. The loading area, or “dry side”, is generally configured to receive substrate-containing cassettes and transfer substrates received from the cassettes to the wet processing platform for wet processing. The loading area typically includes “dry side” processing chambers for treatment of substrates before and/or after wet processing, such as barrier layer deposition chambers and anneal chambers. The dry side may also contain a robot configured to transfer substrates between the cassettes, the wet processing platform, and the dry side processing chambers. The wet processing platform generally includes at least one substrate transfer robot and a plurality of substrate processing chambers, for example, ECP cells, IBC chambers, SRD chambers, electroless plating cells, etc. The various embodiments may include different combinations of wet and dry substrate-processing chambers. In one aspect, the cluster tool will allow for pre-treatment of a dry substrate, such as barrier layer deposition, wet processing of the substrate, such as seed layer deposition, electrochemical and/or electroless gap fill, and surface and/or bevel cleaning and drying, and any necessary post-deposition processing, such as anneal. Applications of the above processes suitable for substrate structure deposition include barrier layer deposition, electroless seed deposition, electroless seed repair, electroless seed and electroless interconnect fill (e.g. bulk fill), electroless seed and ECP interconnect fill, electroless capping deposition, and electroless high aspect ratio interconnect fill followed by ECP low aspect ratio interconnect fill.
Wet processing platform 213, also referred to as the mainframe, includes a centrally positioned mainframe substrate transfer, such as mainframe robot 220. Mainframe robot 220 generally includes one or more blades 222 and 224 configured to support and transfer substrates. Additionally, mainframe robot 220 and the blades 222 and 224 are generally configured to independently extend, rotate, pivot, and vertically move so that the mainframe robot 220 may simultaneously insert and remove substrates to/from the plurality of processing stations 202, 204, 206, 208, 210, 212, 214 or 216 positioned on wet processing platform 213. Similarly, factory interface robot 232 also includes the ability to rotate, extend, pivot, and vertically move its substrate support blade, while also allowing for linear travel along the robot track 250b that extends from the factory interface 230 to the wet processing platform 213.
Generally, the processing stations 202, 204, 206, 208, 210, 212, 214, or 216 may be any of a number of processing chambers utilized in a substrate processing system. More particularly, the processing chambers on the integrated wet processing platform may be configured as ECP cells, rinsing chambers, IBC chambers, SRD chambers, substrate surface cleaning chambers (which collectively includes cleaning, rinsing, and etching chambers), electroless plating chambers (which includes pre- and post-clean chambers, activation chambers, deposition chambers, etc.), brush box chambers and vapor dryer chambers. Each of the various configurations of the wet processing platform and the factory interface will be discussed below.
Each of the respective processing stations 202, 204, 206, 208, 210, 212, 214 and 216 and factory interface robot 232 and mainframe robot 220 are generally in communication with a system controller 211, which may be a microprocessor-based control system configured to receive inputs from both a user and/or various sensors positioned on the cluster tool 200 and appropriately control the operation of cluster tool 200 in accordance with the inputs and/or a predetermined processing recipe. Additionally, the processing stations 202, 204, 206, 208, 210, 212, 214 and 216 are also in communication with a fluid delivery system (not shown) configured to supply the necessary processing fluids to the respective processing cell stations during processing, which is also generally under the control of system controller 211. An exemplary processing fluid delivery system may be found in commonly assigned U.S. patent application Ser. No. 10/438,624, entitled “Multi-Chemistry Electrochemical Processing System,” filed on May 14, 2003, which is hereby incorporated by reference in its entirety to the extent not inconsistent with the present invention.
Cluster Tool Configurations
In an effort to provide a cluster tool that can deposit a seed layer on substrate structures, fill high and low aspect ratio interconnect features with metal and/or selectively form a capping layer over interconnect features, various embodiments of cluster tools may be created. These embodiments are capable of performing one or more of the above processes with high throughput, low defects, minimal oxidation of copper interconnect features and superior adhesion between deposited layers.
A. Hybrid Electroless/Electrochemical Plating System
1. Applications of Cluster Tool Configuration
One embodiment, as illustrated in
This configuration of the cluster tool 200 has advantages over conventional barrier layer, seed layer and gap fill deposition sequences that are performed in separate substrate processing systems, since it reduces the total substrate processing time and hardware costs are greatly reduced. Also, this configuration of plating cluster tool 200 deposits metal layers with improved electrical properties, better defect performance and greater adhesion than metal layers formed on a substrate via multiple substrate processing systems. The sequential formation of a reducing and/or catalytic layer on the barrier layer in the same chamber (i.e., without breaking vacuum) greatly reduces exposure of the barrier layer to oxidation and moisture prior to seed layer deposition, thus improving adhesion of subsequent metal layers. Oxidation of the seed layer surface prior to gap fill deposition is controlled and minimized because gap fill is performed immediately after seed layer formation. Processing substrates in a single cluster tool results in fewer defects compared to processing substrates in multiple processing systems. Hence, this configuration provides better device performance, at a lower cost per substrate processed, and the process is less complicated than the prior art.
In one aspect, this configuration allows the sequential deposition of four layers on a substrate: a barrier layer and/or an electroless seed layer formed on substrate structures, followed by electroless fill of sub-micron high aspect ratio features on the substrate, such as high aspect ratio features 111 in
2. Description of Cluster Tool Configuration
In one embodiment, processing stations 202 and 204 are an electroless plating twin cell, processing stations 206 and 208 are standard IBC chambers, and processing stations 210 and 212 are two ECP cells. This configuration is also shown in
3. Process Sequences
a) Electroless Seed and ECP Gap Fill
An example of a typical substrate processing sequence for a hybrid electroless/electrochemical plating platform is detailed in the flow chart illustrated in
In Step 1000, if desired, native oxide and other contaminants are removed from the substrate in a dry etch chamber or supercritical clean chamber positioned at processing station 235a and the substrate is then pre-treated with a barrier layer, a reducing layer, and/or a catalytic layer in a chamber positioned at processing station 235 prior to wet processing. The processes for deposition of barrier, reducing and catalytic layers on substrates are described below in conjunction with
In step 1001, factory interface robot 232, also known as the “dry” robot, places a substrate at the in-station associated with processing stations 214 or 216. In step 1002, mainframe robot 220, also known as the “wet” robot, transfers the substrate to processing station 202 in the electroless plating twin cell. All electroless deposition processes take place in an electroless processing station, such as processing stations 202 and 204, with the substrate being transferred between processing stations 202 and 204 via internal substrate transfer shuttle 605 as necessary. In process sequences where activation type processes, e.g., preparatory cleaning, activation and post-activation clean steps, are performed, the activation type processes may be performed in the first processing station of the twin plating cell, processing station 202, and the electroless plating step may be performed in the second processing station, processing station 204.
In some process sequences, the reducing layer and catalytic layer formation steps may be performed in the first processing station, i.e. processing station 202, and the electroless plating step may be performed in the second processing station, i.e. processing station 204.
In cases where no chemical compatibility issues are present between the various cleaning, activation and plating solutions being used, all electroless deposition can take place in a single processing station. Processing stations 202 and 204 then act as two independent electroless plating cells. In this case, step 1002 includes transferring the substrate from one of the in-stations by mainframe robot 220 to either processing station 202 or 204. Further, if the substrate has been pre-treated with a catalytic layer in processing station 235 prior to wet processing, processing stations 202 and 204 may also act as two independent electroless plating cells.
In step 1003, mainframe robot 220 transfers the substrate to either of the ECP cells located at processing stations 210 or 212 so that an ECP gap fill process can be performed to fill the interconnect features such as parallel interconnects 101,102, and 103, illustrated in
In step 1004, upon completion of ECP deposition, the substrate is transferred to IBC chamber positioned at station 206 or 208 for removal of the unwanted deposition on the substrate edge and bevel. An exemplary IBC chamber and process are described below in conjunction with
In step 1005, mainframe robot 220 transfers the substrate to SRD chamber positioned at processing stations 214 or 216 for final rinsing and drying. An exemplary SRD chamber and process are described below in conjunction with
In step 1006, after the SRD process is complete, factory interface robot 232 removes the substrate from the SRD and the wet processing platform 213.
Hence, this embodiment of plating cluster tool 200 allows the sequential deposition of an electroless seed layer on a substrate followed by ECP fill of interconnect features on the substrate. Optionally, a barrier and or catalytic layer may be deposited on the substrate immediately prior to wet processing, improving adhesion of the subsequent metal layers. This configuration thus allows the amount and variation of oxidation of the seed layer prior to gap fill deposition to be minimized and also reduces the number of processing platforms required to complete three deposition steps on a substrate structure.
In one embodiment, in an effort to maximize substrate processing throughput, the cluster tool 200 may be configured to include two electroless twin plating cells instead of one electroless twin plating cell. In the configuration, the cluster tool may contain, for example, two electroless twin plating cells located at processing stations 202/204 and 206/208, two ECP cells located at processing stations 210/212, a single IBC chamber at processing station 216 and a single SRD chamber at processing station 214. The same substrate processing sequence in
b) Electroless Gap Fill and ECP Overfill
Alternately, the hybrid electroless/electrochemical plating configuration may be used for electroless gap fill of high aspect ratio features and then ECP overfill of low aspect ratio features, as illustrated in
In one aspect, the electroless gap fill of high aspect ratio contacts to a source or drain connection point may include the selective deposition of cobalt- or nickel-based alloys. Such a high aspect ratio contact is similar to aperture 122 and contact layer 123 in
In another aspect, the electroless gap fill of high aspect ratio features 111 shown in
4. Description of Process Chambers
Embodiments of the invention include the incorporation of multiple substrate processing chambers onto a single cluster tool, including ECP, IBC, SRD, electroless, plasma-enhanced dry etch, and ALD or CVD chambers. Examples of these chambers and the processes performed on substrates therein are provided below.
a) ECP Cell
In one aspect of the invention, process step 1003 is performed in ECP cells that are used to fill interconnect structures on substrates with a conductive material, such as copper. ECP plating processes are generally two stage processes. A seed layer is first formed over the surface features of the substrate via PVD, CVD, or ALD processes. Then the surface features of the substrate are exposed to an electrolyte solution while an electrical bias is applied between the seed layer and a copper anode positioned within the electrolyte solution. The electrolyte solution contains ions to be plated onto the surface of the substrate and the application of a cathodic type electrical bias causes these ions in the electrolyte solution to be plated onto the seed layer. Conventional electro-chemical plating cells generally utilize an overflow weir-type plater containing a plating solution, generally termed a catholyte solution. The substrate is positioned facedown in the catholyte solution during plating and an electrical plating bias is applied between the substrate and an anode positioned in a lower portion of the plating cell. This bias causes metal ions in the catholyte to go through a reduction that causes the ions to be plated on the substrate. Transferring substrates to and from such a facedown plating cell configuration generally requires a robot, such as mainframe robot 220, that is capable of rotating substrates from faceup to face down and vice versa.
In an exemplary ECP process, a substrate may be transferred into a plating cell, such as plating cell 200B for example, and positioned face-down on rotatable contact ring 211B. Plating head assembly 210B moves downward until the substrate is immersed in the catholyte solution filling inner basin 202B, typically while being rotated by the rotatable contact ring 211B between about 5 rpm and about 60 rpm. The catholyte solution may have between about 5 g/l and 50 g/l of sulfuric acid, a copper concentration between about 25 g/l and 70 g/l, and a chlorine concentration between about 30 ppm and about 60 ppm. The catholyte solution may also include additional additives, such as levelers, suppressors, or accelerators. During plating, a plating bias, typically between about 1 VDC and about 10 VDC, is applied to the substrate. The substrate may be rotated between about 10 rpm and about 100 rpm during the plating process step by rotatable contact ring 211B. Plating takes place for between about 30 sec and about 5 minutes, depending on the thickness of plated film desired. The plating bias is then removed and the substrate is positioned above the catholyte solution and uppermost point 206B of inner basin 202B for removal from plating cell 200B. Prior to removal from plating cell 200B, the substrate may be rotated between about 100 and 1000 rpm for between about 1 second and about 10 seconds in order to remove excess catholyte solution from the substrate. An exemplary ECP cell and plating process is further described in commonly assigned U.S. patent application Ser. No. 10/627,336 entitled “Electrochemical Processing Cell,” filed on Jul. 24, 2003, which is hereby incorporated by reference in its entirety to the extent not inconsistent with the present invention.
b) IBC Chamber
In one aspect of the invention, IBC chambers are used for removing deposition at the edge, or bevel, of a substrate and unwanted contamination from the backside of a substrate without damaging structures formed on one or more surfaces of the substrate. This process is generally performed on a substrate after a conductive material has been deposited on the substrate, such as ECP processes or electroless deposition processes. IBC chambers typically include a container, a rotatable substrate support disposed in the container and capable of rotating a substrate at a relatively high rotational velocity, i.e., 500 rpm or higher, and a fluid delivery assembly configured to precisely deliver a liquid etchant to a peripheral portion of the substrate and to deliver a rinsing agent, such as de-ionized (Dl) water, to the entire substrate.
In operation, the IBC chamber can be used to rinse and clean substrates. The cleaning operation may be conducted on both the production surface and the non-production surface of the substrate, or on either surface individually. The cleaning chamber may also be used to clean excess material from the bevel portion of the substrates, i.e., the portion of the conductive layer deposited near the perimeter on the production surface, or topside, and partially onto the backside of the substrate. This process is often termed bevel clean or edge bead removal in the semiconductor art. In another embodiment, the IBC chamber may be used as a combination IBC/SRD chamber, wherein the final rinse and dry function of an SRD chamber, described below and in conjunction with
In a typical bevel clean, or IBC process, a substrate is positioned face-up in an IBC chamber, such as IBC 300. The process of positioning a substrate in IBC 300 generally includes insertion, centering, and chucking. The insertion process is conducted by a substrate transfer robot, such as mainframe robot 220. Centering is performed by substrate centering pins 304. A vacuum chuck then holds substrate in place throughout processing. The pre-rinse process includes rotating the substrate between about 150 rpm and about 250 rpm between about 8 seconds and 20 seconds while Dl water is dispensed onto the topside of the substrate via rinsing solution dispensing arm 305 at a flow rate of between about 1 l/min and 2 l/min. The substrate is then rotated between about 2000 rpm and about 3500 rpm for about 5 seconds to remove residual Dl water. An etchant solution is then applied to the bevel of the substrate via etching solution dispensing arm 306 for between about 10 seconds and about 25 seconds at a flow rate of between about 20 cc/min and about 40 cc/min. The flow of etchant solution may be through a relatively fine nozzle having an aperture with an inner diameter between about 0.25 and 0.5 inches. The nozzle is positioned between about 1 mm and 3 mm from the substrate surface for precise dispensing of etchant solution onto the substrate bevel. A typical etchant solution consists of between about 15 and 25 parts H2SO4, between about 350 and 450 parts H2O2 and about 1400 parts H2O. After etchant dispense is complete, rinsing solution is dispensed onto the topside of the substrate at a flow rate of between about 1 l/min and about 2.5 l/min for between about 3 seconds and about 10 seconds while the substrate is rotated between about 100 rpm and 300 rpm. After this rinse step, all liquid dispense is terminated and the substrate is rotated between about 400 rpm and about 4000 rpm to partially or completely dry the substrate.
An exemplary IBC chamber and bevel cleaning method is described in more detail in commonly assigned U.S. patent application Ser. No. 10/826,492, entitled “Integrated Bevel Clean Chamber,” filed on Apr. 16, 2004, which is hereby incorporated by reference in its entirety to the extent not inconsistent with the present invention.
In addition to substrate bevel cleaning, rinsing, and drying, the IBC chamber described above in conjunction with
c) SRD Chamber
In one embodiment of the invention, ie., a hybrid electroless/ electrochemical plating platform, SRD chambers are used for the final rinse and spin dry of substrates after wet processing. In operation, SRD chambers generally operate to receive a substrate therein, rinse the substrate with a rinsing fluid, and dry the substrate via spinning the substrate to centrifugally urge fluid off of the substrate surface, while optionally dispensing a drying gas into the cell containing the substrate to further facilitate the drying process. This process is typically performed after completing all wet processing steps on a substrate and immediately prior to transferring the substrate from a wet processing region of a cluster tool.
In a typical SRD process, a substrate is positioned face-up in an SRD chamber, such as SRD 400, on support fingers 403. In the pre-rinse step, rotatable hub 402 spins the substrate between about 900 rpm and 1700 rpm for between about 2 seconds and about 6 seconds while between about 600 ml and about 1500 ml is dispensed onto the topside and the backside of the substrate via fluid dispensing arm 550 and backside fluid dispensing nozzles 408. In the backside clean step, rotatable hub 402 rotates the substrate between about 40 rpm and 90 rpm for between about 10 seconds and about 20 seconds while between about 200 ml and 500 ml of a cleaning solution, such as ElectraClean™ solution, is applied to the substrate backside and between about 1000 ml and about 1500 ml of rinsing solution is dispensed onto the topside of the substrate. In the post rinse step, between about 1000 ml and 1500 ml of rinsing solution is dispensed on the substrate topside and between about 600 ml and about 1000 ml of rinsing solution is dispensed on the substrate backside while the substrate is rotated at between about 40 rpm and about 90 rpm for about 10 seconds to 16 seconds. In the dry step, all liquid flow is terminated and the substrate is rotated at between 2000 rpm and about 3000 rpm for between about 10 seconds and about 20 seconds. Optionally, between about 2 cfm and about 4 cfm of a dry purge gas may be introduced into the chamber during this step for about 4 seconds to enhance the substrate drying process.
d) Electroless Plating Chambers
Generally, embodiments of the cluster tool include at least one electroless plating cell. In one aspect, a pair of electroless plating cells are grouped together to advantageously perform an electroless deposition process on a substrate. The pair of electroless plating cells, or electroless plating twin cell, comprise two substrate processing cells positioned on the wet processing platform 213 (see
In one embodiment, in each processing enclosure 302 there may be two independent electroless plating cells in which the necessary pre-deposition, deposition, and post-deposition processes are all carried out on a substrate in each cell. In this configuration, substrates are transferred into, processed, and transferred out of each processing cell independently.
Alternately, the two cells inside a processing enclosure 302 may comprise a sequential electroless twin cell, wherein one cell is an activation cell, the other is an electroless deposition cell, and the substrate is transferred from the activation cell to the deposition cell via a robot internal to processing enclosure 302. Hence, the entire series of processes required to perform electroless deposition on a substrate, i.e., activation, pre-cleaning, electroless deposition, and post cleaning, is carried out inside a single processing enclosure 302, but the individual processes are divided between the two processing cells that comprise the twin electroless plating cell.
Each processing enclosure 302 also includes an environmental control assembly 615 (shown in
The combination of the environmental control assembly 615, the exhaust port 614, and the system controller 211 also allows cluster tool 200 to control the oxygen content of the processing volumes 612 and 613 during specific processing steps, wherein one processing step may require a first oxygen content for optimal results and a second processing step may require a second oxygen content for optimal results, where the first and second oxygen contents are different from each other. In addition to the oxygen content, system controller 211 may be configured to control other environmental parameters of the processing enclosure, such as temperature, humidity, pressure, etc. as desired for a particular processing sequence. These specific parameters may be modified by heaters, chillers, humidifiers, dehumidifiers, vacuum pumps, gas sources, air filters, fans, etc., all of which may be included in the environmental control assembly 615 and positioned in fluid communication with the processing volumes 612 and 613 and controlled by the system controller 211. Hence, processing enclosure 302 provides an environmentally controlled enclosure for each electroless deposition cell therein.
i) Selective Electroless Plating Process
A selective electroless deposition process sequence, e.g., the capping layer process or bottom-up contact fill, generally includes preparatory cleaning, electroless deposition, post-deposition clean, and optionally cleaning the bevel edge of the substrate. In one aspect, the selective deposition process may include activation and post-activation clean steps. The selective electroless deposition process may be performed in exemplary electroless twin cells located at processing stations 210 and 212 as described above. In addition, vapor drying of the substrate may also be performed as part of the process sequence before or between preparatory cleaning steps, immediately prior to the electroless deposition step, or subsequent to substrate bevel clean. An exemplary vapor dryer method and apparatus is described below.
A selective electroless deposition process sequence 500 for forming a capping layer on a copper-filled interconnect is illustrated in
Step 501, Preparatory Cleaning: When selectively depositing a layer on interconnect features, preparatory cleaning is necessary to ensure that no metallic residues are present on exposed dielectric surfaces of the substrate structure prior to electroless deposition. As illustrated in
In a typical preparatory cleaning process, a substrate is transferred into an electroless deposition chamber or activation chamber—as described below in conjunction with
A description of dielectric solution chemistries and processes of cleaning the substrate structure as described herein may be found in commonly assigned U.S. patent application Ser. No. 10/970,839, entitled, “Electroless Cobalt Alloy Deposition Process,” filed on Oct. 21, 2004, and commonly assigned U.S. patent application Ser. No. 10/967,644, entitled, “Selective Self-initiating Electroless Capping of Copper With Cobalt-Containing Alloys,” filed Oct. 15, 2004, both of which are incorporated by reference herein to the extent not inconsistent with the claimed aspects and description herein. An exemplary apparatus and method for in situ brush cleaning of substrates and suitable metal cleaning solutions are disclosed in commonly assigned U.S. patent application Ser. No. 11/004,014, entitled “Method And Apparatus For Electroless Capping With Vapor Drying,” filed on Dec. 2, 2004, which is hereby incorporated by reference in its entirety to the extent not inconsistent with the present invention. For situations when in situ brush cleaning is not performed in the electroless twin cell, an exemplary brush box chamber for brush cleaning of substrates is described below in conjunction with
Step 502, Activation: When an activation step is used, the electroless deposition process generally involves the application of an activation solution to the surface of the substrate structure, which deposits an activation metal seed layer on all the exposed metal portions of a substrate structure, for example the top surfaces of parallel interconnects 101, 102, and 103 in
In a typical activation process, the substrate has just been transferred into an electroless deposition chamber as described above. The substrate is rotated between about 50 and 200 rpm and an activation solution is applied to the surface at approximately 20° C. via one or more fluid dispensing arms, described below in conjunction with
Step 503, Post Activation Clean: Post-activation clean may be performed by applying a post-activation clean solution to the substrate structure as well as optionally brushing the substrate structure and/or applying ultrasonic or megasonic energy to the substrate structure. Post activation solutions typically include one or more acids, requiring this step to be performed in a processing station 210 or 212 that only uses other compatible chemistries. As noted above, the entire electroless deposition process may be performed on a substrate in either processing station 210 or 212 if there are no chemical compatibility issues between any of the processing solutions.
For a post activation clean process that does not involve brushing of the substrate structure or the application of ultrasonic or megasonic energy, the substrate is typically rotated via a rotatable substrate support between about 50 and 200 rpm while a post-activation clean solution is applied to the substrate surface and subsequently rinsed off using one or more fluid application arms. Application time of the post-activation clean solution varies depending on the concentrations and composition of the activation solution and post-activation clean solution, but is typically about 30 seconds to 2 minutes in length. Substrate brush cleaning and/or ultrasonic or megasonic cleaning may take place in a dedicated cleaning chamber, such as a brush box chamber, described below in conjunction with
Step 504, Electroless Deposition: A conductive layer may be deposited by application of an electroless deposition solution to the substrate structure. When an activation step is used, the deposition takes place on the activation metal seed layer. This step may be conducted in one or both of the processing stations 210 or 212 located in processing enclosure 302. Metals that may be deposited include copper, cobalt and nickel, among others. Since the electroless deposition process is highly temperature dependent, temperature control of the substrate and deposition solution is critical to the process and methods and apparatus for temperature control in an exemplary electroless deposition processing station are detailed below in conjunction with
Step 505, Post-Deposition Clean: As stated above, it is critical to remove conductive material that has accumulated on dielectric surfaces of a substrate structure during the electroless deposition process when forming a capping layer. A post-deposition clean process may be performed by applying a post-deposition clean solution to the substrate structure subsequent to electroless deposition. The post-deposition clean solution may be applied to the surface of the substrate via one or more fluid delivery arms for 1 to 60 seconds while the substrate is rotated between about 50 and 500 rpm. Post-deposition clean solutions may be slightly acidic clean solutions, such as ElectraClean™ solution, available from Applied Materials Inc. of Santa Clara, Calif. or a CX-100 solution available from Wako Chemicals USA, Inc. of Richmond, Va. Alternately, the post-deposition clean solution may be slightly basic,i.e., with a pH value between about 7.5 and 9.5. Additionally, scrubbing the surface of the substrate with a brush-like material and/or applying sonic energy to the substrate structure may also be part of the post-deposition clean process. Both substrate scrubbing and sonic cleaning may be performed in-situ but are typically performed in a dedicated post-deposition clean chamber, such as a brush box.
In a typical post-deposition clean process, the substrate is rotated between about 50 and 200 rpm in the deposition chamber via a rotatable substrate support and an electroless deposition solution is applied to the surface via one or more fluid dispensing arms for about 1 to 60 seconds. The substrate is then rinsed in-situ, i.e., rotated between about 50 and 200 rpm while rinse solution is applied to the substrate surface. The substrate is then spun dry, i.e., rotated between about 500 and about 2000 rpm for between about 5 seconds and 60 seconds. The substrate is then removed from the electroless deposition chamber and transferred to a brush box chamber integrated on the wet processing platform of the invention and external to the electroless plating twin cell. In the brush box chamber, the surface of the substrate is brush cleaned using roller-type brushing devices. An exemplary brush box chamber is described below in conjunction with
Step 506, Bevel Clean: The portion of the conductive layer deposited near the perimeter on the topside, on the substrate bevel, and partially onto the backside of the substrate may be removed by means of an IBC chamber, described above in conjunction with
Alternatively, process sequence 520 in
Step 521, Pre-treatment: Removal of native oxides on contact surfaces is necessary prior to electroless deposition for acceptable contact resistance for high aspect ratio features. Aspects of the invention may use a plasma-enhanced dry etch chamber, described below in conjunction with
Step 522, Ruthenium-Containing Layer Formation: A ruthenium-containing layer, preferably ruthenium oxide, is selectively deposited on the contact surface by exposing the substrate to a ruthenium tetroxide vapor. The ruthenium-containing layer may be deposited on the substrate by use of a vapor deposition process, such as an in situ generated process, or in a liquid deposition process, such as an aqueous solution or suspension. The former method may be performed in an ALD or CVD deposition chamber positioned at processing station 235 or 235a, preferably in the same chamber wherein step 521 is performed on the substrate. The latter method, i.e., the liquid deposition process, may be performed in the same processing cell as the aqueous cleaning method described in step 521. Ruthenium tetroxide is a strong oxidant and therefore readily reacts with any exposed metal oxide layers (e.g., tungsten oxide and other contact layer materials) to form a consistent and catalytic active layer of ruthenium oxide selectively on the bottom of the contact. Formation of a ruthenium-containing layer on a substrate is described in greater detail below in conjunction with
Step 523, Ruthenium-Containing Layer Reduction: The ruthenium-containing layer, preferably ruthenium oxide, is exposed to a reductant, forming a catalytic ruthenium metal layer on the bottom surface of the contact. The ruthenium oxide layer may be exposed to a reducing plasma, such as a hydrogen-containing plasma, to form metallic ruthenium layer from the ruthenium-containing layer on the bottom surface of the contact. This process may be performed in an ALD or CVD deposition chamber positioned at processing station 235 or 235a, preferably in the same chamber wherein step 522 is performed on the substrate. Alternately, the ruthenium oxide layer may be exposed to a vapor deposition process to remove oxygen and form a ruthenium metal layer on the bottom surface of the contact, preferably in the same vapor deposition chamber that performed step 522 on the substrate. An exemplary plasma pre-treatment process and an exemplary vapor pre-treatment process that may be used in embodiments of the invention are described below in conjunction with
Step 524, Electroless Deposition: This step is similar to electroless deposition step 504 described above, except that nickel or cobalt-tungsten alloys are the preferred materials for bottom-up fill of high aspect ratio contacts. A more detailed description of chemistries, processes, and methods for depositing a bottom-up contact fill may be found in previously referenced U.S. patent application Ser. No. 60/663,493 [9916L].
Step 525, Post Deposition Clean: This step is similar to step 505, described above. Optionally, for embodiments of the invention that contain a brush box chamber, a post deposition clean may be performed on the substrate in which electroless cobalt and nickel overgrowth is removed via an optimized brush box process. This final clean step eliminates the need for an additional CMP process to be performed on the substrate when electroless cobalt and/or nickel deposition is used for contact fill.
ii) Non-Selective Electroless Plating Process
The non-selective electroless deposition of a metal layer on a substrate generally includes the formation of a catalytic layer on a substrate and electroless deposition of the metal layer onto the catalytic layer. A non-selective electroless deposition process sequence 510 is illustrated in
Step 511, Reducing Layer Formation: In some embodiments, a reducing layer may be formed on the substrate prior to non-selective electroless deposition. The reducing layer is formed on a substrate by modifying the surface of the substrate by a plasma deposition process. Reducing layer formation may take place in an ALD or CVD chamber prior to wet processing of the substrate. One method and apparatus that may be used to form a reducing layer is described below in conjunction with
Step 512, Catalytic Layer Formation: The catalytic layer may be formed by different methods. In one embodiment, the catalytic layer is formed from the reducing layer of step 511 either in an ALD or CVD chamber. An exemplary plasma-enhanced ALD chamber and process is described below in conjunction with
Step 513, Electroless Deposition: This step is similar to electroless deposition step 504 described above. A conductive layer may be deposited by application of an electroless deposition solution to the substrate structure. The deposition takes place on the catalytic seed layer. This step may be conducted in one or both of the exemplary processing stations 210 or 212 located in processing enclosure 302. A description of chemistries, processes, and methods for depositing an electroless layer may be found in previously referenced U.S. patent application Ser. No. 10/970,839, entitled, “Electroless Cobalt Alloy Deposition Process” and in U.S. patent application Ser. No. 10/967,644, entitled, “Selective Self-Initiating Electroless Capping of Copper With Cobalt-Containing Alloys.”
Step 506, Bevel Clean: This is identical to step 506 described above and shown in
iii) Electroless Plating Chamber
Processing stations 702 and 704 are typically configured with a substrate support assembly 714, which comprises substrate support fingers 712 and lift assembly 713 (shown in
In a typical electroless deposition process, a substrate 701 (shown in
A more detailed description of an exemplary electroless twin cell that may be used in embodiments of the invention may be found in commonly assigned U.S. patent application Ser. No. 10/996,342, entitled “Method And Apparatus For Electroless Deposition of Metals Onto Semiconductor Substrates,” filed on Nov. 22, 2004, which is hereby incorporated by reference in its entirety to the extent not inconsistent with the present invention.
e) Chamber for Barrier, Reducing and Catalytic Layer Deposition
i) General Description of Chamber
To reduce electromigration and improve adhesion of subsequent metal layers, embodiments of the invention include treatment of substrates prior to wet processing in wet processing platform 213, such as the deposition of a barrier layer, a reducing layer and/or a catalytic layer. In one embodiment, all of these substrate pre-treatments may be performed in a single ALD, CVD or vapor deposition chamber, preferred examples of which are described below. In other embodiments, barrier layer and/or reducing layers may be formed on a substrate via an ALD, CVD or vapor deposition process while the catalytic layer may be formed in a fluid processing chamber as described above.
In one embodiment, a standard capacitively-coupled or inductively-coupled plasma deposition chamber may be used for barrier layer, reducing layer and catalytic layer deposition on substrates. Such a chamber typically includes a sub-atmospheric process region located above a temperature-controlled substrate support and beneath a conductive showerhead, which acts as a plasma-controlling device. A process gas supply provides process gas to the process region through the showerhead. In other embodiments, a remote plasma source may be used. In another embodiment, a deposition chamber contains a ruthenium tetroxide generating apparatus (described below in conjunction with
ii) Barrier, Reducing and Catalytic Layer Deposition Process
Referring to
Barrier layer 124 may be formed on the dielectric layer 121 and in aperture 122, as depicted in
Embodiments of ALD have been described above as the deposition of a binary compound of tantalum nitride utilizing pulses of two reactants, wherein a “pulse” is a quantity of a particular compound that is intermittently or non-continuously introduced into a reaction zone of a processing chamber. In the deposition of other elements or compounds, pulses of two or more reactants may also be used. For example, an ALD process for the tertiary compound tantalum silicon nitride utilizes pulses of tantalum, silicon and nitrogen precursors.
A typical process of depositing a TaN barrier layer by an ALD process includes providing pulses of a tantalum-containing compounds, such as PDMAT (Ta[NMe2]5) with a flow rate in a range from about 20 sccm to about 1,000 sccm and with a pulse time of about 2 seconds or less. Pulses of ammonia may be provided with a flow rate in a range from about 20 sccm and about 1,000 sccm and with a pulse time of about 1 second or less. An argon purge gas may have a flow rate in a range from about 100 sccm to about 1,000 sccm and may be continuously provided or pulsed into the process chamber. The time between pulses of the tantalum-containing compound and the nitrogen-containing compound may be about 5 seconds or less, preferably in a range from about 0.5 seconds to about 2 seconds. The substrate is preferably maintained with a temperature in a range from about 50° C. to about 350° C. at a chamber pressure in a range from about 1.0 Torr to about 50.0 Torr. A more detailed description of ALD formation of a barrier layer on a substrate and precursors useful for this process are disclosed in commonly assigned U.S. patent application Ser. No. 60/648,004 [9906L]entitled “Deposition of an Intermediate Catalytic Layer on a Barrier Layer For Copper Metallization,” filed on Jan. 27, 2005, which is hereby incorporated by reference in its entirety to the extent not inconsistent with the present invention.
To form a reducing layer 126 on barrier layer 124, as depicted in
In a typical process of forming a reducing layer 126 on a barrier layer 124, barrier layer 124 is exposed to a plasma-soak process for a pre-determined time. The soak process may occur for about 5 minutes or less. During the soak process, the substrate is maintained at a temperature in a range from about 20° C. to about 350° C. and the process chamber is maintained at a pressure in a range from about 0.1 Torr to about 750 Torr. The VRP may be diluted in a carrier gas, such as helium, argon or nitrogen. The carrier gas may be provided at a flow rate in a range between about 100 sccm and about 5,000 sccm. The VRP may be provided at a flow rate in a range from about 5 sccm to about 500 sccm. The plasma may be formed using RF power delivered to the plasma generating devices utilized in the plasma chamber, e.g., a showerhead in a capacitively coupled chamber, where the RF power ranges from 100 W to 10,000 W at an RF frequency between about 0.4 kHz and about 10 GHz. A more detailed description of forming a reducing layer on a substrate and precursors useful for this process are disclosed previously referenced U.S. patent application Ser. No. 60/648,004 [9906L], entitled “Deposition of an Intermediate Catalytic Layer on a Barrier Layer For Copper Metallization.”
A catalytic layer 128 is deposited on barrier layer 124 as depicted in
Catalytic layer 128 includes at least one catalytic metal and usually contains the oxidized remnants of the reducing layer 126. The catalytic metal may include ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, osmium, alloys thereof or combinations thereof. Generally, the chemical reaction between reducing layer 126 and the catalytic metal-containing precursor forms the metallic form of the catalytic metal (e.g., Ru0 or Co0) and/or the respective boride, phosphide, silicide, nitride and combinations thereof. The catalytic layer adheres to the barrier layer as well as to the subsequently deposited conductive layer, such as a seed layer 129 or a bulk layer 130, illustrated in
A typical process of forming a catalytic layer 128 on barrier layer 124 involves exposing reducing layer 126 to a vaporized catalytic metal-containing precursor. The vapor deposition process is conducted at a temperature high enough to vaporize the catalytic metal-containing precursor and drive the reduction reaction to completion. The temperature range varies according to the particular catalytic metal-containing precursor used during the deposition. Generally, the substrate is maintained in a range from about 25° C. to about 350° C., preferably from about 50° C. to about 250° C. The process chamber may be a typical vapor deposition chamber as used during ALD, CVD or PVD processes. The process chamber is maintained at a pressure relative to the temperature, precursor and particular process. Generally, the pressure is maintained in a range from about 0.1 Torr to about 750 Torr. The catalytic metal-containing precursor is exposed to reducing layer 126 from about 1 second to about 120 seconds. The catalytic metal-containing precursor may be delivered purely or diluted in a carrier gas that includes nitrogen, hydrogen, argon, helium or combinations thereof. In one example, a reducing plasma is exposed to the substrate for 10 seconds at a flow rate of about 500 sccm, consisting of 450 sccm helium carrier gas and 50 sccm silane.
Seed layer 129 is deposited as the conductive layer on catalytic layer 128 and may be deposited using conventional deposition techniques, such as ALD, CVD, PVD, electroless, or electroplating. Preferably, seed layer 129 is deposited immediately after deposition of catalytic layer 128, minimizing oxidation of catalytic layer 128 and improving overall adhesion of subsequently deposited conductive layers. Hence, in the preferred embodiment of the invention, seed layer 129 is deposited on a substrate in the same cluster tool in which catalytic layer 128 is deposited on the substrate, ideally in the same processing chamber. In one aspect, wherein the catalytic metal-containing precursor is delivered to reducing layer 126 by a liquid deposition process, seed layer 129 is a copper seed layer deposited on a substrate by an electroless deposition process in the same electroless plating twin cell that deposited catalytic layer 128 on the substrate. Seed layer 129 may have a thickness range from about a single molecular layer to about 100 Å. Generally, seed layer 129 contains copper, ruthenium, cobalt, tantalum or other metal or alloy known to exhibit good adhesion to a subsequent bulk layer 130. A typical method and apparatus for depositing a seed layer 129 via an electroless deposition process is described above in conjunction with
Ruthenium oxides may be used for the formation of catalytic and/or bulk conductive layers, ruthenium tetroxide (RuO4) being the preferred ruthenium compound used for this process. Ruthenium tetroxide may be prepared with an in situ generation process, described below in conjunction with
iii) Ruthenium Layer Deposition Process
A ruthenium-containing layer may be selectively or non-selectively deposited on device features formed on the surface of a substrate by use of a ruthenium tetroxide-containing gas. It is believed that the selective or non-selective deposition of a ruthenium-containing layer on the surface of the substrate is strongly dependent on the temperature and type of surfaces that are exposed to the ruthenium tetroxide containing gas. It is also believed that by controlling the temperature of a substrate at a desired temperature below, for example about 180 ° C., a ruthenium layer will selectively deposit on certain types of surfaces. At higher temperatures, for example greater than 180° C., the ruthenium deposition process from a ruthenium tetroxide containing gas becomes much less selective and thus will allow a blanket film to deposit on all types of surfaces. In one aspect, the deposition of a ruthenium containing layer is used to promote the adhesion and filling of subsequent layers on the surface of the substrate. In another aspect, the properties of the ruthenium containing layer deposited on the surface of the substrate is specially tailored to fit the needs of the devices formed on the surface of the substrate. Typical desirable properties include the formation of crystalline or amorphous metallic ruthenium layers on the surface of the substrate so that the formed layer(s) can act as a barrier layer, a catalytic layer for subsequent electroless or electroplating processes, or even fill a desired device feature. Another desirable property of a ruthenium-containing layer is the formation of a ruthenium dioxide layer (RuO2) on the surface of the substrate to, for example, promote selective bottom up growth of an electroless and/or electroplated layer, or form an electrode that is compatible ferroelectric oxides (e.g., BST, etc.), piezoelectric materials (e.g., PZT, etc.) used to form various Micro-Electro-Mechanical Systems (MEMS) devices.
In general, a ruthenium-containing catalytic layer with desirable properties is formed on a barrier layer or a dielectric layer by generating a ruthenium tetroxide containing gas and exposing a temperature controlled surface of a substrate to the gas. This involves forming a ruthenium tetroxide gas, collecting the gas in a source vessel, purging the source vessel of excess oxygen, heating the source vessel and delivering the ruthenium tetroxide-containing gas to the process chamber to form the catalytic layer. As noted above, in various aspects of the invention it may be desirable to selectively or non-selectively form a metallic ruthenium layer or a ruthenium dioxide layer on the surface of the substrate to form a ruthenium containing layer. An exemplary apparatus and method of forming a ruthenium tetroxide containing gas to form a ruthenium containing layer on a surface of a substrate is described herein.
In an exemplary vapor deposition process, the deposition gas, containing ruthenium tetroxide, is delivered to the surface of the substrate having a reducing layer containing P—H functional groups formed thereon. The reducing layer containing P—H functional groups may be formed by use of a phosphine soak process or phosphine plasma soak process. During the process the substrate is maintained at a temperature of about 200° C. After exposing the reducing layer to the ruthenium tetroxide containing gas for about 60 seconds, a ruthenium phosphide layer is formed on the barrier layer. Alternately, a ruthenium-containing catalytic layer may be formed directly onto a barrier layer or dielectric layer with no reducing layer.
iv) Exemplary Barrier, Reducing and Catalytic Layer Deposition Chamber
The barrier, reducing and catalytic layer deposition described above may be performed in a plasma processing chamber.
v) Exemplary Ruthenium Layer Deposition Chamber
In general, the method and apparatus described herein is adapted to selectively or non-selectively deposit a ruthenium containing layer on device features formed on the surface of a substrate by use of a ruthenium tetroxide containing gas. In a preferred embodiment of the invention, a deposition chamber 600, illustrated in
The deposition chamber 600 generally contains a process gas delivery system 601 and a sealed processing chamber 603A. The sealed processing chamber 603A generally contains all of the components described above in conjunction with
In one embodiment of the deposition chamber 600, a process gas delivery system 601 is adapted to deliver a fluid to the processing region 1427 so that a catalytic or adhesion layer can be formed on the substrate surface. The process gas delivery system 601 generally contains one or more gas sources 611A-E, an ozone generating device 612B, a processing vessel 630, a source vessel assembly 640, and an outlet line 660 attached to the inlet line 1426 of the sealed processing chamber 603A. The one or more gas sources 611A-E are generally sources of various carrier and/or purge gases that may be used during processing in the sealed processing chamber 603A. The one or more gases delivered from the gas sources 611A-E may include, for example, nitrogen, argon, helium, hydrogen, or other similar gases.
In one embodiment of the process gas delivery system 601, the processing vessel 630 contains a vessel 631, a temperature controlling device 634A, an input port 635 and an output port 636. The vessel 631 is generally an enclosed region made of or coated with glass, ceramic or other inert material that will not react with the processing gas formed in the vessel 631. The vessel 631 contains a volume of a ruthenium metal (item “A”), preferably in a porous-solid or pellet form, to promote the formation of ruthenium tetroxide when the ozone gas is delivered to the vessel 631. The temperature controlling device 634A generally contains a temperature controller 634B and a heat exchanging device 634C, which are adapted to control the temperature of the vessel 631 at a desired processing temperature during the ruthenium tetroxide generation process. Typically, the ruthenium metal “A” contained in vessel 631 is maintained at a temperature between about 20° C. and 60° C. to enhance ruthenium tetroxide formation in vessel 631. In one aspect, the heat exchanging device 634C is a temperature controlled fluid heat exchanging device, a resistive heating device and/or a thermoelectric device that is adapted to heat and/or cool the vessel 631 during different phases of the process.
In one embodiment, a remote plasma source 672 is connected to the processing vessel 630 via the RPS inlet line 673 so that in different phases of the ruthenium tetroxide formation process the ruthenium metal can be regenerated by injecting H radicals into the vessel 631 to reduce any formed oxides on the surface of the ruthenium metal. Regeneration is necessary when an undesirable layer of ruthenium dioxide (Ru02) is formed on a significant portion of the exposed ruthenium metal contained in the vessel 631.
Referring to
In operation, deposition chamber 600 forms a ruthenium-containing layer on a substrate. Initially, ruthenium tetroxide gas is formed and collected in the source vessel 641. Ozone generated in ozone generating device 612B is then delivered to the ruthenium metal contained in vessel 631 to form a flow of ruthenium tetroxide gas, which is collected in the source vessel 641. Therefore, an ozone containing gas, typically containing between about 10 wt. % and 20 wt. % of ozone, flows across the ruthenium metal which causes ruthenium tetroxide to be formed and swept away by the flowing gas. During this process the gas flow path is from the ozone generating device 612B, in the input port 635, across the ruthenium metal (item “A”), through the output port 636 in the vessel 631 through the process line 637 and into the source vessel 641. Cooling the ruthenium tetroxide and causing it to condense or solidify on the walls of the source vessel 641, the unwanted oxygen-and ozone-containing components in the ruthenium tetroxide-containing gas can be separated and removed.
Oxygen- and ozone-containing components in the ruthenium tetroxide-containing gas are separated and removed while the walls of the source vessel are maintained at a temperature of 20° C. or below. This is performed by closing the ozone isolation valve 612A and flowing one or more purge gasses from the one or more of the gas sources 611 B-C through the processing vessel 630, into the process line 637, through the source vessel 641 and then through the exhaust line 651 to the exhaust system 650. Removal of these unwanted oxygen and unreacted ozone components is especially important where copper interconnects are exposed on the surface of the substrate, since copper has a high affinity for oxygen and is corroded easily in the presence of an oxidizing species.
In one embodiment, ruthenium tetroxide is delivered to sealed processing chamber 603A after the source vessel 641 has been purged and valve 637A is closed to isolate the source vessel 641 from the processing vessel 630. Prior to delivery of ruthenium tetroxide to sealed processing chamber 603A, the source vessel 641 is heated to a temperature to cause the condensed or solidified ruthenium tetroxide to form ruthenium tetroxide gas at which time the one or more of the gas sources 611 (e.g., items 611 D-E), the isolation valve 638, the isolation valve 639 and process chamber isolation valve 661 are opened, causing a ruthenium tetroxide containing gas to flow into the inlet line 1426, through the gas distribution showerhead 1410, into a processing region 1427 and across the substrate 1422 so that a ruthenium-containing layer can be formed on a substrate surface. Alternately, a ruthenium tetroxide-containing gas is formed when a nitrogen containing gas is delivered from the gas source 611D and a hydrogen-containing gas is delivered from the gas source 611E through the source vessel and to the sealed processing chamber 603A. In another embodiment, the remote plasma source 670 is utilized to enhance the process of forming a metallic ruthenium layer via the injection of H radicals, generated by the remote plasma source, into the processing region 1427 to reduce any formed oxides on the surface of the ruthenium metal. In another embodiment, process gas delivery system 601 includes multiple source vessel assemblies 640, which alternately collect and dispense the generated ruthenium tetroxide. This avoids interruption of substrate processing in chamber 1450 when one source vessel must collect ruthenium tetroxide.
In a typical process for depositing a ruthenium-containing layer, a plasma is generated during the deposition process to improve the deposited ruthenium-containing layer's properties. A typical process using a remote plasma source (RPS) may include using 1000 sccm of H2, 1000 sccm of argon, an RF power of 350 W and a frequency of about 13.56 MHz.
A more detailed description of a ruthenium tetroxide deposition apparatus and method that may be used in embodiments of the invention may be found in commonly assigned U.S. patent application Ser. No. 60/648,004 [9906L], entitled “Deposition of an Intermediate Catalytic Layer on a Barrier Layer For Copper Metallization,” filed Jan. 27, 2005.
vi) Combined Vapor/Liquid Deposition Chambers
In another embodiment, the reducing and catalytic layers described above may be deposited on a substrate in a fluid deposition chamber 1800, described below and shown in
In one embodiment, a process gas source 161 containing a gas reservoir 160 and valve 159 and/or a liquid source 127 containing liquid reservoirs 128a-128f and valve 129b are adapted to deliver one or more processing fluids to the injection port 144, into the processing region 155, across the substrate surface, through the holes 152 and into the evacuation region 153 where the process gas is directed to the waste collection system 151. In one example, a plating solution may be collected and recirculated across the surface of the substrate by use of a collection tank system 1849, which is adapted to recirculate collected plating solution. The fluid deposition chamber 1800 further includes a drain 1827 in order to collect and expel fluids used in the fluid deposition chamber 1800. The bottom 1807 of the processing compartment 1806 may comprise a sloped surface to aid the flow of fluids used in the fluid deposition chamber 1800 towards an annular channel in communication with the drain 1827 and to protect the substrate support assembly 1813 from contact with fluids.
In one embodiment, forming a reducing layer and a catalytic layer are performed sequentially in fluid deposition chamber 1800, described herein. A substrate is transferred into fluid deposition chamber 1800 and placed on the substrate receiving surface 1814 by use of a robot (not shown) and the lift pins 1818. Next the moveable processing shield 150 is then moved into position where it contacts the substrate receiving surface 1814, or the substrate surface, to form the processing region 155. The pressure in the evacuation region 153, and processing region 155, is then lowered by use of the pump (not shown) in waste collection system 151. A processing fluid is then delivered to the processing region 155 from a process gas source 161 that is connected to the injection port 144. In one example, the processing gas contains ruthenium tetroxide to form a ruthenium-containing layer on the surface of the substrate. This corresponds to reducing layer 126 in
After forming reducing layer 126, the processing region 155 may then be purged with a carrier gas (e.g., argon, nitrogen, etc.) to remove any of the remnants of the processing gas. Next an electroless or electroplating solution may be delivered to the processing region 155 from the liquid source 127 so that a catalytic layer 128 can be formed from reducing layer 126 on the substrate surface.
Referring to
A more detailed description of a combined liquid/vapor deposition chamber may be found in the commonly assigned U.S. patent application Ser. No. 10/059,572, entitled “Electroless Deposition Apparatus” by Stevens et al., filed Jan. 28, 2002, and previously referenced U.S. patent application Ser. No. 60/648,004 [9906L], entitled “Deposition of an Intermediate Catalytic Layer on a Barrier Layer For Copper Metallization,” which are incorporated by reference herein in their entirety to the extent not inconsistent with the claimed aspects and description herein.
f) Plasma-Assisted Dry Etch Chamber for Contact Clean
i) General Description of Chamber
To remove native oxide and other contaminants formed on exposed contact surfaces prior to the electroless deposition process and to improve adhesion of subsequent metal layers, embodiments of the invention include a treatment of substrates prior to wet processing in wet processing platform 213, namely a plasma-assisted dry etch treatment, also known as a SiCoNi clean, as described below and in conjunction with
The dry etch chamber may perform a plasma-enhanced chemical etch process with both substrate heating and cooling all within a single processing environment, including an anneal or heat treating process.
ii) Plasma-Assisted Dry Etch Process
An exemplary dry etch process for removing native oxides on a surface of the substrate using an ammonia (NH3) and nitrogen trifluoride (NF3) gas mixture performed within a dry etch processing chamber will now be described.
The dry etch process begins by placing a substrate, such as a semiconductor substrate, into a dry etch processing chamber. Preferably, the substrate is held to the support assembly 300a of the substrate support member 310a during processing via a vacuum or electrostatic chuck. The chamber body 112a is preferably maintained at a temperature of between 50° C. and 80° C., more preferably at about 65° C. This temperature of the chamber body 112a is maintained by passing a heat transfer medium through fluid channels 113a located in the chamber body. During processing, the substrate is cooled below 65° C., such as between 15° C. and 50° C., by passing a heat transfer medium or coolant through fluid channels 113a formed within the substrate support. In another embodiment, the substrate is maintained at a temperature of between 22° C. and 40° C. Typically, the substrate support is maintained below about 22° C. to reach the desired substrate temperatures specified above.
The ammonia and nitrogen trifluoride gases are then introduced into the dry etching chamber to form a cleaning gas mixture. The amount of each gas introduced into the chamber is variable and may be adjusted to accommodate, for example, the thickness of the oxide layer to be removed, the geometry of the substrate being cleaned, the volume capacity of the plasma and the volume capacity of the chamber body 112a. In one aspect, the gases are added to provide a gas mixture having at least a 1:1 molar ratio of ammonia to nitrogen trifluoride. In another aspect, the molar ratio of the gas mixture is at least about 3 to 1 (ammonia to nitrogen trifluoride). Preferably, the gases are introduced in the dry etching chamber at a molar ratio of from 5:1 (ammonia to nitrogen trifluoride) to 30:1. More preferably, the molar ratio of the gas mixture is of from about 5 to 1 (ammonia to nitrogen trifluoride) to about 10 to 1. The molar ratio of the gas mixture may also fall between about 10:1 (ammonia to nitrogen trifluoride) and about 20:1.
A purge gas or carrier gas may also be added to the gas mixture. Any suitable purge/carrier gas may be used, such as argon, helium, hydrogen, nitrogen, or mixtures thereof, for example. Typically, the overall gas mixture is from about 0.05% to about 20% by volume of ammonia and nitrogen trifluoride. The remainder being the carrier gas. In one embodiment, the purge or carrier gas is first introduced into the chamber body 112a before the reactive gases to stabilize the pressure within the chamber body.
The operating pressure within the chamber body can be variable. Typically, the pressure is maintained between about 500 mTorr and about 30 Torr. Preferably, the pressure is maintained between about 1 Torr and about 10 Torr. More preferably, the operating pressure within the chamber body is maintained between about 3 Torr and about 6 Torr.
An RF power of from about 5 and about 600 Watts is applied to the first electrode to ignite a plasma of the gas mixture within the plasma cavity. Preferably, the RF power is less than 100 Watts. More preferable is that the frequency at which the power is applied is very low, such as less than 100 kHz. Preferably, the frequency ranges from about 50 kHz to about 90 kHz.
The plasma energy dissociates the ammonia and nitrogen trifluoride gases into reactive species that combine to form a highly reactive ammonia fluoride (NH4F) compound and/or ammonium hydrogen fluoride (NH4F.HF) in the gas phase. These molecules then flow through the second electrode 220a to react with the substrate surface to be cleaned. In one embodiment, the carrier gas is first introduced into the dry etch chamber, a plasma of the carrier gas is generated, and then the reactive gases, ammonia and nitrogen trifluoride, are added to the plasma.
Not wishing to be bound by theory, it is believed that the etchant gas, NH4F and/or NH4F.HF, reacts with the native oxide surface to form ammonium hexafluorosilicate (NH4)2SiF6, NH3, and H2O products. The NH3, and H2O are vapors at processing conditions and removed from the chamber by a vacuum pump attached to the chamber. A thin film of (NH4)2SiF6 is left behind on the substrate surface.
After performing the plasma processing step, the substrate support is elevated to an anneal position in close proximity to the heated second electrode. The heat radiated from the second electrode 220a should be sufficient to dissociate or sublimate the thin film of (NH4)2SiF6 into volatile SiF4, NH3, and HF products. These volatile products are then removed from the chamber by the vacuum pump 125a attached to the system. Typically, a temperature of 75° C. or more is used to effectively sublimate and remove the thin film from the substrate. Preferably, a temperature of 100° C. or more is used, such as between about 115° C. and about 200° C.
The thermal energy to dissociate the thin film of (NH4)2SiF6 into its volatile components is convected or radiated by the second electrode. A heating element 270a is directly coupled to the second electrode 220a, and is activated to heat the second electrode and the components in thermal contact therewith to a temperature between about 75° C. and 250° C. In one aspect, the second electrode is heated to a temperature of between 100° C. and 150° C., such as about 120° C.
The distance between the upper surface of the substrate having the thin film thereon and the second electrode 220a is not critical and is a matter of routine experimentation. A person of ordinary skill in the art can easily determine the spacing required to efficiently and effectively vaporize the thin film without damaging the underlying substrate. It is believed, however, that a spacing of between about 0.254 mm (10 mils) and 5.08 mm (200 mils) is effective.
Once the film has been removed from the substrate, the chamber is purged and evacuated. The cleaned substrate is then removed from the chamber by lowering the substrate to the transfer position, de-chucking the substrate, and transferring the substrate through a slit valve opening.
iii) Exemplary Plasma-Assisted Dry Etch Chamber
The chamber body 112a includes a slit valve opening 160a formed in a sidewall thereof to provide access to the interior of the processing chamber 1900. The slit valve opening 160a is selectively opened and closed to allow access to the interior of the chamber body 112a by a substrate handling robot (not shown).
In one or more embodiments, the chamber body 112a includes a fluid channel 113a formed therein for flowing a heat transfer fluid therethrough. The heat transfer fluid can be a heating fluid or a coolant and is used to control the temperature of the chamber body 112a during processing and substrate transfer. The temperature of the chamber body 112a is important to prevent unwanted condensation of the gas or byproducts on the chamber walls. Exemplary heat transfer fluids include water, ethylene glycol, or a mixture thereof. An exemplary heat transfer fluid may also include nitrogen gas.
The chamber body 112a can further include a liner 133a that surrounds the support assembly 300a. The liner 133a is preferably removable for servicing and cleaning. The liner 133a can be made of a metal such as aluminum, or a ceramic material. However, the liner 133a can be any process compatible material. The liner 133a can be bead blasted to increase the adhesion of any material deposited thereon, thereby preventing flaking of material which results in contamination of the processing chamber 1900. In one or more embodiments, the liner 133a includes one or more apertures 135a and a pumping channel 129a formed therein that are in fluid communication with a vacuum system. The apertures 135a provide a flow path for gases into the pumping channel 129a, which provides an egress for the gases within the processing chamber 1900.
The vacuum system may include a vacuum pump 125a and a throttle valve 127a to regulate flow of gases through the processing chamber 1900. The vacuum pump 125a is coupled to a vacuum port 131a disposed on the chamber body 112a and therefore, in fluid communication with the pumping channel 129a formed within the liner 133a. The apertures 135a allow the pumping channel 129a to be in fluid communication with a processing zone 140a within the chamber body 112a. The processing zone 140a is defined by a lower surface of the lid assembly 200a and an upper surface of the support assembly 300a, and is surrounded by the liner 133a. The apertures 135a may be uniformly sized and evenly spaced about the liner 133a.
In operation, one or more gases exiting the processing chamber 1900 flow through the apertures 135a formed through liner 133a into the pumping channel 129a. The gas then flows within the pumping channel 129a and through the vacuum port 131a into the vacuum pump 125a.
Referring to
The second electrode 220a may include a distribution plate or showerhead (not shown). Typically, the distribution plate is substantially disc-shaped and includes a plurality of apertures or passageways thereby providing an even distribution of the gas across the surface of the substrate as the flow of gas exits lid assembly 200a. The second electrode 220a may further include a blocker assembly (not shown) disposed adjacent the distribution plate. The blocker assembly provides an even distribution of gas to the backside of the distribution plate.
A gas supply panel (not shown) is typically used to provide the one or more gases to the processing chamber 1900. The particular gas or gases that are used depend upon the process or processes to be performed within the processing chamber 1900. Illustrative gases can include, but are not limited to one or more precursors, reductants, catalysts, carriers, purge, cleaning, or any mixture or combination thereof. Typically, the one or more gases introduced to the processing chamber 1900 flow into the lid assembly 200a and then into the chamber body 112a through the second electrode 220a. Depending on the process, any number of gases can be delivered to the processing chamber 1900, and can be mixed either in the processing chamber 1900 or before the gases are delivered to the processing chamber 1900.
In use, one or more process gases are introduced into the second electrode 220a from the gas supply panel (not shown), flow around and through the blocker assembly (not shown), then enter the processing zone 140a of processing chamber 1900 and meet the exposed surface of the substrate disposed on the support assembly 300a.
Still referring to
Any power source capable of activating the gases into reactive species and maintaining the plasma of reactive species may be used for power source 241a. For example, radio frequency (RF), direct current (DC), or microwave (MW) based power discharge techniques may be used. Alternatively, a remote activation source may be used, such as a remote plasma generator, to generate a plasma of reactive species which are then delivered into processing chamber 1900.
Second electrode 220a may be heated depending on the process gases and operations to be performed within the processing chamber 1900. In one embodiment, a heating element 270a, such as a resistive heater for example, can be coupled to the second electrode 220a or the distribution plate. Regulation of the temperature may be facilitated by a thermocouple coupled to the second electrode 220a or the distribution plate.
The support assembly 300a may be at least partially disposed within the chamber body 112a. The support assembly 300a can include a substrate support member 310a to support a substrate (not shown in this view) for processing within the chamber body 112a. The substrate support member 310a can be coupled to a lift mechanism (not shown) which extends through a bottom surface of the chamber body 112a. The lift mechanism (not shown) can be flexibly sealed to the chamber body 112a by a bellows (not shown) that prevents vacuum leakage from around the lift mechanism. The lift mechanism allows the substrate support member 310a to be moved vertically within the chamber body 112a between a process position and a lower, transfer position. The transfer position is slightly below slit valve opening 160a formed in a sidewall of the chamber body 112a. In one or more embodiments, the substrate support member 310a has a flat, circular surface or a substantially flat, circular surface for supporting a substrate to be processed thereon. The substrate support member 310a is preferably constructed of aluminum. The substrate support member 310a can be moved vertically within the chamber body 112a so that a distance between substrate support member 310a and the lid assembly 200a can be controlled.
In one or more embodiments, the substrate (not shown) may be secured to the substrate support member 310a using an electrostatic or vacuum chuck. In one or more embodiments, the substrate may be held in place on the substrate support member 310a by a mechanical clamp (not shown), such as a conventional clamp ring. Preferably, the substrate is secured using an electrostatic chuck
Substrate support member 310a may include one or more bores (not shown) formed therethrough to accommodate a lift pin (not shown). Each lift pin is typically constructed of ceramic or ceramic-containing materials, and are used for substrate-handling and transport.
The temperature of the support assembly 300a is controlled by a fluid circulated through one or more fluid channels 360a embedded in the body of the substrate support member 310a. Preferably, the fluid channel 360a is positioned about the substrate support member 310a to provide a uniform heat transfer to the substrate receiving surface of the support member 310a. The fluid channel 360a and can flow heat transfer fluids to either heat or cool the substrate support member 310a. Any suitable heat transfer fluid may be used, such as water, nitrogen, ethylene glycol, or mixtures thereof. The support assembly 300a can further include an embedded thermocouple (not shown) for monitoring the temperature of the support surface of the substrate support member 310a.
In operation, the substrate support member 310a can be elevated to close proximity of the lid assembly 200a to control the temperature of the substrate being processed. As such, the substrate can be heated via radiation emitted from the lid assembly 200a or the distribution plate, which are heated by heating element 270a. Alternatively, the substrate can be lifted off the substrate support member 310a to close proximity of the heated lid assembly 200a using the lift pins.
A more detailed description of a plasma-assisted dry etch chamber and process that may be contained in some configurations of the invention may be found in commonly assigned U.S. patent application Ser. No. 60/547,839 entitled “In-Situ Dry Clean Chamber For Front End Of Line Fabrication,” filed on Feb. 22, 2005, which is hereby incorporated by reference in its entirety to the extent not inconsistent with the claimed invention.
g) Supercritical Clean Chamber
In some aspects of the invention, immediately prior to deposition process steps, organic and other contaminants are removed from substrate surfaces in a dry side chamber via a supercritical clean process. Various gases, such as carbon dioxide, in their supercritical fluid state have been shown to replace organic solvents in cleaning applications. For substances that exhibit supercritical fluid properties, when the substance is above its critical point, i.e., above the critical temperature and critical pressure, the phase boundary between the gas phase and liquid phase disappears, and the substance exists in a single supercritical fluid phase. In the supercritical fluid phase, a substance assumes some of the properties of a gas and some of the properties of a liquid. For example, supercritical fluids have diffusivity properties similar to gases but solvating properties similar to liquids. Therefore, supercritical fluids have good cleaning properties and may be used to clean substrate structures that have geometries difficult to clean with standard wet-clean methods, such as high aspect ratio contacts.
The term “supercritical fluid” as used herein refers to a substance above its critical point. The term “dense fluid” as used herein refers to a substance at or below its critical point. Dense fluid preferably comprises a substance at or near its critical point. In certain embodiments, a dense fluid comprises a substance that is at a state in which its density is at least 1/5 the density of the substance at its critical point.
In one aspect, a substrate may be processed by applying a supercritical fluid thereto. In another aspect, a substrate may be processed by applying a dense fluid thereto without the substance reaching a supercritical state. In still another apsect, a substrate may be processed by applying a substance thereto in which the substance is phase modulated between a supercritical fluid state and a dense fluid state. A dense fluid may have a high solvating and diffusivities properties similar to a supercritical fluid.
One method of cleaning substrate structures consists of applying a supercritical fluid thereto, such as a carbon dioxide fluid at a pressure greater than about 1,000 psi and at a temperature of at least about 31° C. The carbon dioxide fluid may further include a co-solvent, such as methanol, surfactants, chelating agents, and combinations thereof. Cleaning of the substrate structure via this method may be accomplished without the need for a wet clean.
A detailed description of an exemplary supercritical clean chamber that may be used in embodiments of the invention may be found in commonly assigned U.S. patent application Ser. No. 11/038,456 entitled “Using Supercritical and/or Dense Fluids in Semiconductor Applications,” filed on Jan. 18, 2005, which is hereby incorporated by reference in its entirety.
B. Electroless Deposition System with SRD and In Situ IBC
1. Applications of Cluster Tool Configuration
2. Description of Cluster Tool Configuration
Processing stations 235 and 235a, which are located on the dry side of the cluster tool, may be configured as an ALD or CVD chamber for the deposition of a barrier layer and/or catalytic layer prior to wet processing. In some embodiments, the catalytic layer so formed is a ruthenium-containing layer deposited without the use of carbon-containing precursors. In another embodiment, a dry etch chamber or supercritical clean chamber is positioned at processing station 235 or 235a.
3. Process Sequences
Typical substrate processing sequences for this embodiment of the invention are detailed in the flow charts illustrated in
a) Single Layer Metal Deposition
When the cluster tool 200 is used for depositing a single layer of metal on substrates, i.e., either a seed layer, gap fill, or an interconnect capping layer, then it may be advantageous to have all of the electroless deposition processes performed on a substrate take place in a single electroless plating twin cell. In one aspect, the second and third electroless twin cells may also operate in parallel with the first twin cell and perform the same deposition process on other substrates going through a desired process sequence. The substrate processing sequences for this scenario are shown in
In Step 1200, a substrate is pre-treated with a barrier layer, a reducing layer, and/or a catalytic layer in chamber positioned at processing station 235 prior to wet processing. In one aspect, the chamber positioned at processing station 235 may use the ruthenium tetroxide-based process described above to deposit the catalytic layer. In another aspect, native oxide is removed from the substrate prior to pre-treatment with a barrier, reducing and/or catalytic layer in a dry etch chamber or supercritical clean chamber positioned in factory interface 230.
In step 1201, factory interface robot 232 places a substrate at the in-station 972 associated with processing stations 214 or 216.
In step 1202, mainframe robot 220 transfers the substrate to the first processing station of one of the electroless twin plating cells, i.e., processing station 202, 206, or 210. Hence, a substrate may undergo the deposition step 1202 in any one of the electroless twin cells and then continue on to step 1203. In this configuration, a substrate is not processed in more than one twin cell. As part of the process of electroless deposition, the substrate may be transferred as necessary between processing stations internally within an electroless twin cell via internal substrate transfer shuttle 605, i.e., between processing stations 202 and 204, 206 and 208, or 210 and 212. As described above, electroless deposition process steps may be divided between the two processing stations in an electroless twin chamber or all deposition process steps may be performed in each electroless processing station.
If the substrate is treated in step 1202 with interconnect gap fill, then the IBC process also is necessary. In one aspect, a dedicated IBC chamber may perform the IBC process on substrates. In another aspect, either the electroless plating cells or the SRD chambers may include the functionality of an IBC chamber, as described above in conjunction with
b) Multiple Layer Metal Deposition
In one embodiment of the cluster tool 200, it may be beneficial to have each substrate processed in two or more electroless plating cells. In this configuration, one or two of the electroless twin cells may be dedicated to seed layer deposition and/or repair and the remaining electroless twin cell or cells is/are dedicated to gap fill deposition. As an example, twin cells positioned at processing stations 202/204 and 206/208 may be configured for seed layer deposition and twin cell positioned at processing stations 210/212 may be configured for gap fill deposition (see
The processing sequence for this application of the invention is illustrated in
Because the electroless gap fill process of step 1202b typically results in unwanted deposition on the substrate bevel, an IBC process (step 1203) may be performed on substrates prior to their removal from wet processing platform 213.
In the processing sequence shown in
In steps 1204 and 1205, the substrate is given a final rinse, dried, and transferred out of wet processing platform 213. This embodiment of the invention allows sequential deposition of an electroless seed layer on a substrate and electroless gap fill of the interconnect features on the substrate, followed by in situ bevel clean of the substrate prior to removal from the wet processing platform. In one aspect, a barrier layer may be deposited on the substrate immediately prior to wet processing, improving adhesion of the subsequent metal layers. The process of sequential deposition minimizes both the amount and variation of oxidation of the seed layer prior to gap fill over the prior art. Additionally, only a single processing platform is required to complete three deposition steps on a substrate structure, reducing system cost and fabrication facility cost.
c) Electroless Deposition with Intermediate Rinse
A third substrate processing sequence for this embodiment of the invention includes performing an intermediary spin-rinse-dry process on substrates after processing in the first processing station of an electroless twin cell and before processing in the second processing station. This processing sequence may be beneficial for electroless plating chemistries for which a completely clean and dry substrate is preferred for the second electroless plating process. This substrate processing sequence is illustrated in
As shown in
In step 1202d, the substrate is transferred to an SRD chamber, such as SRD 400, wherein the substrate is rinsed and/or dried via the SRD process described in conjunction with
In step 1202e, the substrate is transferred to the second processing station of the electroless twin cell, e.g., processing station 204, 208, or 212, and is processed therein. The process performed on the substrate may be the completion of the electroless deposition process already begun on the substrate, or, if a first metal layer was deposited in step 1202c, a second metal layer may be deposited via electroless plating. Alternately, in embodiments in which the IBC process is required and the electroless plating twin cells include the functionality of an IBC chamber, the final deposition step, i.e. 1202e, may also include performing the IBC process on the substrate via the IBC process described in conjunction with
In steps 1204 and 1205, the substrate is given a final rinse, dried, and transferred out of wet processing platform 213. For embodiments of the invention in which processing stations 214 and 216 are combination IBC/SRD chambers, the step 1204 may include both the IBC and SRD processes.
4. Description of Process Chambers
Embodiments of the invention include the incorporation of multiple substrate processing chambers onto a single cluster tool, including electroless, SRD and ALD or CVD chambers. Examples of these chambers and the processes performed on substrates therein have been described previously.
C. Electroless Deposition System with Brush Box and SRD
1. Applications of Cluster Tool Configuration
In one embodiment, illustrated in
2. General Description of Cluster Tool Configuration
In one embodiment, processing station 214 acts as the interface between the wet processing platform 213 and the generally dry processing stations or factory interface 230 of the plating cluster tool 200. As such, the SRD chamber for wet processing platform 213 and an in-station 972 are located at processing station 214, as shown in
For non-selective electroless deposition, dry side processing station 235 may be configured as an ALD or CVD chamber for the deposition of a barrier layer and/or catalytic layer prior to wet processing. Optionally, a pre-deposition dry etch chamber positioned at processing station 235a may also be included in factory interface 230 for the removal of native oxide from the substrate (see
3. Process Sequence
A typical substrate processing sequence 1300 for this embodiment of the invention is detailed in the flow chart illustrated in
In step 1301, one or more electroless deposition steps may be completed on the substrate. Any of the substrate processing sequences detailed in
In step 1302, main frame robot 220 transfers the substrate from an electroless plating cell to brush box 216a, wherein a substrate surface brush clean process, described below in conjunction with
In step 1303, the substrate is transferred to the SRD chamber and the final rinse and dry process is performed via the SRD process described in conjunction with
In step 1304, the substrate is transferred out of wet processing platform 213 from the SRD. The incorporation of a brush box chamber on wet processing platform 213 makes possible the formation of low-defect capping layers on interconnect features.
4. Description of Brush Box Chamber
In one configuration of cluster tool 200, a brush box chamber is used for post-deposition clean of substrates prior to their removal from the wet processing platform. Brush box chambers are generally used to remove residual contaminants from the surface of a substrate after the CMP process. Brush box chambers conventionally clean or scrub residue substrate surfaces via mechanical scrubbing devices, which may employ polyvinyl acetate (PVA) brushes, brushes made from other porous or sponge-like material, or brushes made with nylon bristles, etc. However, configurations of cluster tool 200 may also use brush box chambers for the removal of loosely bound metallic contamination that has formed on the surface of a substrate during the electroless deposition process, such as the enlarged metallic particles 104b (shown in
Typically, brush box chambers clean a vertically-oriented substrate by lowering the substrate between cylindrical, rotating brushes. The substrate itself may also be rotated by means of powered rollers on which the substrate rests. Liquid cleaning solutions are applied to the substrate by spray nozzles and/or through the scrubber brushes.
In a typical brush clean process, a substrate W1 may be positioned onto the substrate support 19, for example by substrate edge gripper device 971, described below in conjunction with
A detailed description of an exemplary brush box chamber that may be used in embodiments of the invention may be found in commonly assigned U.S. Pat. No. 6,558,471, entitled “Scrubber Operation,” filed on Jan. 26, 2001, which is hereby incorporated by reference in its entirety.
D. Electroless Deposition System with IBC and SRD Chambers
One embodiment of the wet processing platform 213, illustrated in
1. Applications of Cluster Tool Configuration
This configuration may be used to process substrate structures with barrier layer deposition and electroless seed layer deposition and/or seed layer repair, fill high aspect ratio interconnect features with electroless gap fill deposition, or deposit both seed layer and gap fill on a substrate sequentially. Advantages in substrate processing throughput may also be realized due to the use of dedicated SRD and IBC chambers. This is because the IBC chamber is typically a throughput bottleneck and this configuration provides two IBC chambers.
2. General Description of Cluster Tool Configuration
In this embodiment, processing stations 214 and 216 may be configured as an interface between the wet processing platform 213 and the generally dry processing stations or factory interface 230 of the cluster tool 200. As such, substrates are introduced into wet processing platform 213 by being placed in an in-station 972 while waiting for wet processing. The in-station 972 is typically located above or below processing stations 214 and 216, as shown in
3. Process Sequence
A processing sequence is illustrated in
In step 1501, factory interface robot 232 places a substrate at the in-station 972 associated with processing stations 214 or 216.
In step 1502, mainframe robot 220 transfers the substrate to processing station 202 for seed layer deposition.
In step 1503, mainframe robot 220 transfers the substrate to processing station 210 for electroless gap fill of interconnect features. All electroless deposition processes necessary for seed layer deposition take place in the twin cell located at processing stations 202/204 and all electroless deposition processes necessary for gap fill take place in twin cell located at processing stations 210/212. The substrate is transferred between processing stations 202 and 204 or 210 and 212 via internal substrate transfer shuttle 605 as necessary. Typically, the reducing layer and catalytic layer formation steps are performed in the first processing station of the seed layer twin cell, i.e. processing station 202 via the reducing layer and catalytic layer formation processes described above in conjunction with
In step 1504, upon completion of gap fill deposition, the substrate is transferred to the IBC chamber positioned at processing stations 206 or 208 for removal of unwanted deposition on the substrate edge and bevel via the IBC process described in conjunction with
In step 1506, after the SRD process is complete, factory interface robot 232 removes the substrate from the SRD and the wet processing platform 213.
E. Electroless Deposition Platform with Brush Box and Vapor Dryer
1. Applications of Cluster Tool Configuration
One embodiment of the invention is illustrated in
This embodiment of the invention allows the formation of capping layers over interconnect features without the defects caused by watermarks, which are created during a conventional spin-rinse-dry process. Also, capping layers formed with this embodiment of the invention are much less likely to include leakage paths between the capped interconnects due to the post-deposition brush box cleaning process. This configuration of cluster tool 200 may also be used to sequentially process substrate structures with electroless seed layer deposition followed by electroless gap fill. Sequential deposition minimizes both the amount and variation of oxidation of the seed layer prior to gap fill. Electroless gap fill has the added benefit of being capable of filling high aspect ratio features using the process method described above in Step 504 and in conjunction with
2. General Description of Cluster Tool Configuration
In this embodiment, processing station 214 may act as the interface between the wet processing platform 213 and the generally dry processing stations or factory interface 230 of the cluster tool 200. As such, the vapor dryer chamber for wet processing platform 213 and an in-station 972 are located at processing station 214. The in-station 972 (shown in
In another configuration, the brush box 216a and vapor dryer 216b are configured together at processing station 216, as shown in
One embodiment of the invention may be used wherein the vapor dryer and brush box are not located at processing stations 214 and 216 respectively, but are both located at processing stations 202/204 or 210/212. The vapor dryer and brush box are more serviceable in this embodiment due to the improved access from the side of wet processing platform 213.
3. Process Sequences
a) Capping Layer Deposition
When this configuration is used for depositing a capping layer on a substrate, then all electroless deposition processes may take place in a single electroless plating twin cell. The second and third electroless twin cells may operate in parallel with the first twin cell and perform the same deposition process on other substrates. A typical substrate processing sequence for depositing a capping layer with this embodiment of the invention is detailed in the flow chart illustrated in
Step 1602 is similar to step 1202 described above in conjunction with FIGS. 12A-C, except that selective electroless deposition is performed on the substrate, i.e., the formation of a capping layer on exposed interconnect features. Alternately, the selective electroless plating step 1602 may also include additional vapor drying steps, wherein the substrate is removed from the electroless plating cell by mainframe robot 220, transferred to vapor dryer positioned at processing station 214 and processed therein, and returned via mainframe robot 220 to the appropriate electroless cell for completion of the electroless plating process. These additional vapor drying steps may occur prior to the preparatory clean step, as described above in Step 501, of the electroless plating process.
In step 1603, upon completion of capping layer deposition, the substrate is transferred to the brush box 216a or to a brush box chamber located at processing station 216 to remove any unwanted contamination from the surface of the substrate. The brush box process is described above in conjunction with the brush box chamber description and
In step 1604, after the brush box substrate clean is complete, the substrate is transferred to vapor dryer 214a or to a vapor dryer positioned at processing station 214 for the final vapor dry process, which is described below in conjunction with the vapor dryer chamber description.
In step 1605, after the vapor dry process is complete, factory interface robot 232 removes the substrate from the vapor dryer substrate platform and the wet processing platform 213.
b) Multiple Metal Layer Deposition
When this embodiment of the invention is used for depositing multiple layers of metal on substrates, e.g., a seed layer followed sequentially by other electroless deposition processes, then each substrate is processed by more than one twin electroless cell. In this application of the invention, one or two of the electroless twin cells are dedicated to seed layer deposition and the remaining electroless twin cell or cells is/are dedicated to gap fill deposition. As an example, twin cells positioned at processing stations 202/204 and 206/208 may be configured for seed layer deposition and twin cell positioned at processing stations 210/212 may be configured for gap fill deposition. These configurations for the pairs of processing stations 202/204, 206/208, and 210/212 may be rearranged without affecting the functionality of the invention and are defined above only for purposes of description. The processing sequence for this application of the invention is illustrated in
4. Description of Process Chambers
Embodiments of the invention include the incorporation of multiple substrate processing chambers onto a single cluster tool, including electroless, brush box, vapor dryer and ALD or CVD chambers. Examples of most of these chambers and the processes performed on substrates therein have been described previously. A general description of vapor dryer chambers and vertical substrate handling is provided below.
a) Vapor Dryer Chamber
The vapor drying process is typically performed after completing a metal deposition process, e.g., the electroless capping layer process, to prevent watermarks and to remove any residue on the substrate from prior processes. Vapor drying may also be used in lieu of a final spin-rinse-dry prior to removing a substrate from a wet processing platform. Vapor drying includes introducing a surface tension-reducing volatile compound, such as a volatile organic compound (VOC), to the substrate structure. For example, a VOC may be introduced with a carrier gas (e.g., nitrogen gas) in the vicinity of the liquid adhering to a substrate structure. The introduction of the VOC results in surface tension gradients which cause the liquid to flow off of the substrate, leaving it dry. In one embodiment, the VOC is isopropyl alcohol (IPA). In other embodiments, the VOC may be other alcohols, ketones, ethers, or other suitable compounds.
Examples of exemplary vapor drying processes are further described in the commonly assigned U.S. Pat. No. 6,328,814, filed Mar. 26, 1999 and U.S. patent application Ser. No. 10/737,732, entitled “Scrubber With Integrated Vertical Marangoni Drying”, filed Dec. 16, 2003, which is incorporated by reference in its entirety to the extent not inconsistent with the present disclosure.
It is believed that vapor drying the substrate structure before and/or after depositing a capping layer by selective electroless deposition assists in the removal of contaminants and other residue from prior processing steps. Such contaminants may cause, for example, watermarks and other surface defects. The residual compounds are difficult to remove with aqueous solutions from the low-k dielectric portion of the substrate structure since the low-k dielectric portion is a hydrophobic surface. Vapor drying with a volatile organic compound aids in removing contaminants from these surfaces along with any residual water—an important step in preventing electroless deposition of capping material on unwanted regions of substrate structures. Additionally, vapor drying may be used in conjunction with other deposition processes unrelated to capping layers in order to minimize watermarks and other residues and to speed drying time. A detailed description of embodiments of an apparatus and method of vapor drying is disclosed in commonly assigned U.S. Patent Application Publication Number 2003/0121170, entitled “Single Wafer Dryer and Drying Methods,” which is incorporated in its entirety to the extent not inconsistent with the present disclosure.
In addition to post deposition rinsing and drying, a vertically-oriented vapor dryer may also perform other wet processes on substrates, such as an SC-1 clean for removing organic contaminants or an HF-based native oxide clean, described below in conjunction with FIGS. 21A-F.
b) Vertical Substrate Handling
Substrates cleaned vertically in brush box chambers and vapor dryers benefit from the assistance of gravity in removing particles and other contaminants from the substrate. Hence, the most effective configuration for brush box chambers and vapor dryer chambers is for vertically oriented substrates. Some embodiments of the invention include brush box chambers and vapor dryers configured for vertically oriented substrates. The 90 degree difference in substrate orientation between plating cells and brush box and vapor dryer chambers requires more than the traditional horizontally orientated substrate transfer mechanisms. Exemplary methods of combined vertical/horizontal substrate transfer as they are incorporated into embodiments of the invention are described below.
Embodiments of the invention require transfer of substrates from a conventional, horizontal substrate transfer robot, i.e., mainframe robot 220, to processing chambers that typically require vertical orientation of the substrate, such as a brush box chamber and/or a vapor dryer chamber.
Transfer of a substrate from horizontal transfer robot, such as mainframe robot 220, into a brush box chamber requires rotation of the substrate to a vertical orientation and a downward vertical motion into the brush box chamber. One method is to use a conventional horizontal transfer robot (not shown in
The substrate transfer sequence above is summarized in the flow chart in
F. Electroless Deposition Platform with Anneal Chamber
1. Applications of Cluster Tool Configuration
One embodiment of the invention is illustrated in
FIGS. 21A-E are schematic cross-sectional views of a silicon contact 2150 illustrating a process of forming a silicide thereon using the inventive apparatus and method. Referring to
In order to create a high-quality, oxide-free and stable silicide on the exposed surface of substrate 2153, a number of processes must be performed thereon, including native oxide removal, electroless metal deposition, rinse/dry, and anneal. It may also be beneficial to remove organic contaminants from the surface of substrate 2153 prior to these processes and to perform an acid strip following these processes.
As described above in conjunction with
After SC-1 clean, a native oxide clean is performed on silicon contact 2150 to remove native oxide layer 2151.
In one aspect, native oxide layer 2151 is removed by an HF-based wet cleaning process, known as an HF last, or HFL process. The HF last process is a silicon surface preparation sequence in which HF etching of native oxide is performed at the end of the sequence leaving a silicon surface 2154 that is hydrogen-terminated (i.e., covered with a silicon-hydride mono-layer). The HF last process is known in the art and may be implemented in a horizontally-oriented wet processing chamber, such as an IBC chamber (described above in conjunction with
In another aspect, a plasma-assisted dry etch process is used, as described above in conjunction with
After the removal of native oxide layer 2151, a cobalt and/or nickel layer is deposited onto silicon surface 2154 by a selective electroless deposition process as described above in conjunction with
The selective electroless deposition process is generally a low-temperature, liquid phase reaction that deposits thin films of metal onto a hydride surface at ambient pressure and low temperature. The desired metal, such as cobalt or nickel, is selectively deposited onto silicon surface 2154 from a deposition solution since the film growth process involves a chemical reaction with a hydride surface bond, which is only present on silicon surface 2154. The silylation reaction involves a solution phase-delivered metal complex that inserts itself between the silicon and hydrogen in the Si—H bond, creating two new bonds to the metal center and thereby increasing the oxidation state of the metal by two electrons. Therefore the deposited metal film is chemically bonded to the silicon surface. Exemplary solvents for the deposition solution may include acetonitrile or propylene glycol monomethyl ether. The complexed metal component(s) of the deposition solution is selected so that it will react with a silicon hydride bond. Exemplary metal complexes include cobalt tetracarbonyl, nickel dicyclooctadiene, and tungsten carbonyl. A more detailed description of a process for electroless deposition of a metal layer on a silicon surface is disclosed in previously referenced U.S. Provisional Patent Application Ser. No. 60/731,624 [APPM10659L], which is incorporated in its entirety to the extent not inconsistent with the present disclosure.
A rinsing and drying process may follow the electroless deposition process. In one aspect, a final drying process is carried out with a vapor dryer, as described above in conjunction with
After deposition of metallic layer 2156, a self-aligned, first stage silicide is formed by an anneal process, as illustrated in
After first stage anneal, an acid strip may be performed on substrate 2153 to remove excess metal layer 2156A. The acid strip process is well known in the art and may be implemented in a horizontally-oriented wet processing chamber, such as an IBC chamber or an electroless deposition chamber.
For some metals the second stage anneal temperature is relatively low, ie., about 450° C. to about 550° C., allowing a second stage anneal to be performed on cluster tool 200. Nickel is one such metal. Referring to
2. General Description of Cluster Tool Configuration
In this embodiment, cluster tool 200 is configured generally the same as the electroless deposition platform with brush box and vapor dryer, described above in conjunction with
In a preferred configuration, a dip tank style chamber performing SC-1 clean and native oxide wet clean is paired with an electroless deposition chamber inside an environmentally controlled enclosure, such as processing enclosure 302, described above in conjunction with
In another aspect, native oxide is removed from a substrate in a plasma-assisted dry etch chamber. In one configuration, the plasma-assisted dry etch chamber is positioned in factory interface 230. Because configuring factory interface 230 to maintain an oxygen-free environment is problematic, some exposure to oxygen may take place after the native oxide removal process when the plasma-assisted dry etch chamber is positioned in factory interface 230. But because the staging of substrates between the dry etch chamber and an electroless deposition chamber may be controlled so that queue time in air is limited to a matter of seconds, re-oxidation of substrates is minimized. Further, the duration of oxygen exposure for each substrate processing in cluster tool 200 may be substantially the same, minimizing process variation associated with substrates having significantly different exposure times. Substrate staging to limit queue time in air is described in detail below in conjunction with
In a preferred aspect, multiple electroless deposition chambers are contained in wet processing platform 213 and are each paired with a native oxide removal chamber inside a processing enclosure. For example, processing stations 202, 204 may make up one such chamber pair, processing stations 206, 208 a second, and processing stations 210, 212 a third. Processing stations 214, 216 are configured as SRD chambers or vapor dryer chambers. A running beam 250 and a flipper robot 251 (described above in conjunction with
3. Process Sequence
An exemplary substrate process sequence 2200 for forming a silicide on a silicon contact is detailed in the flow chart illustrated in
In step 2201, organic contamination may be removed from the surface of a substrate, such as substrate 2153, illustrated in
In step 2202, native oxide formed on silicon contacts, such as native oxide layer 2151, is removed from a substrate prior to electroless metal deposition. In a preferred aspect, native oxide is removed by the HF-based wet cleaning process described above in conjunction with
In step 2203, a metal layer is selectively deposited on the silicon hydride layer of the oxide-free contact by an electroless process, as described above in conjunction with
In step 2204, a first stage silicide is formed via an anneal process. The anneal process is performed in an anneal chamber, an example of which is described below in conjunction with
In step 2205, an acid strip process may remove any excess metal remaining in the silicon contacts of a substrate. Step 2205 may be performed in a number of wet processing chambers contained in cluster tool 200, including IBC and electroless deposition chambers. In a preferred aspect, a dedicated chamber is used for the acid strip process to minimize impact on throughput.
In step 2206, a second stage silicide may be formed for some metals in the same anneal chamber used in step 2204 to form the first stage silicide. This is the case for nickel. For metals requiring higher temperatures than about 600° C. for forming a second stage silicidation, step 2206 is typically performed on a separate substrate processing system, such as a rapid thermal processing (RTP) system.
4. Description of Anneal Chamber
Embodiments of the invention include the incorporation of multiple substrate processing chambers onto a single cluster tool to enable a silcidation process to be performed on source and drain gates with short and controlled queue times and without unwanted oxidation taking place between steps in the silicidation process. Chambers required for the silicidation process include one or more pre-clean chambers (supercritical clean, plasma-assisted dry etch, vapor dryer, or IBC), an electroless deposition chamber, and an anneal chamber. Optionally, an acid strip chamber may also be included. Examples of most of these chambers and the processes performed on substrates therein have been described previously. A general description of an exemplary anneal chamber is provided below.
The chamber body 2301 of the annealing chamber, which may be manufactured from aluminum, for example, generally defines an interior processing volume 2300. Chamber body 2301 generally includes a plurality of fluid conduits (not shown) formed therethrough, wherein the fluid conduits are configured to circulate a cooling fluid to reduce the temperature of the chamber body 2301. The cooling fluid may be supplied to the fluid conduits formed into the chamber body 2301 and circulated through the chamber body 2301 by cooling fluid connections (not shown)
The cooling plate 2304 generally includes a substantially planar upper surface configured to support a substrate thereon. The upper surface includes a plurality of vacuum apertures 2322, which are selectively in fluid communication with a vacuum source (not shown) and may generally be used to generate a reduced pressure in order to secure or vacuum chuck a substrate to the upper surface of cooling plate 2304. The interior portion of the cooling plate may include a plurality of fluid conduits formed therein, wherein the fluid conduits are in fluid communication with the cooling fluid source used to cool the chamber body 2301. The cooling plate may be used to rapidly cool a substrate positioned thereon.
The heating plate 2302, in similar fashion to the cooling plate 404, also includes a substantially planar upper substrate support surface. The substrate support surface includes a plurality a vacuum apertures 2322 formed therein, each of the vacuum apertures 2322 being selectively in fluid communication with a vacuum source (not shown)and may be used to vacuum chuck or secure a substrate to the heating plate 2302 for processing. The interior of the heating plate 2302 includes a heating element (not shown), wherein the heating element is configured to heat the surface of the heating plate 2302 to a temperature of between about 100° C. to about 500° C. Additionally, one or more of the vacuum apertures 2322 may also be in fluid communication with a heated gas supply, and as such, one or more of the apertures may be used to dispense a heated gas onto the backside of the substrate during processing.
The annealing chamber may include a pump down aperture 2324 positioned in fluid communication with the processing volume 2300. The pump down aperture 2324 is selectively in fluid communication with a vacuum source (not shown) and is generally configured to evacuate gases from the processing volume 2300. Additionally, the annealing chamber generally includes at least one gas dispensing port 2326 or gas dispensing showerhead positioned proximate the heating plate 2302. The gas dispensing port is selectively in fluid communication with a processing gas source and is configured to dispense a processing gas into the processing volume 2300. The vacuum pump down aperture 2324 and the gas dispensing nozzle may be utilized cooperatively or separately to minimize ambient gas content in the annealing chamber, i.e., both of the components or one or the other of the components may be used.
In operation, once a substrate is transferred into annealing chamber 2399 and is supported by the tabs 2310, the external robot blade 2312 may be retracted from the processing volume 2300 and the access door 2314 may be closed to isolate the processing volume 2300 from ambient atmosphere. In this example, once the door 2314 is closed, a vacuum source in communication with the pump down aperture 2324 may be activated and caused to pump a portion of the gases from the processing volume 2300. During the pumping process, or shortly thereafter, the gas dispensing port 2326 may be opened to allow the processing gas to flood the processing volume 2300. The process gas is generally an inert gas that is known not to react under the annealing processing conditions. This configuration, i.e., the pump down and inert gas flooding process, is generally configured to remove as much of the oxygen from the annealing chamber/processing volume as possible, as the oxygen is known to cause oxidation to the substrate surface during the annealing process. The vacuum source may be terminated and the gas flow stopped when the chamber reaches a predetermined pressure and gas concentration, or alternatively, the vacuum source may remain activated during the annealing process and the gas delivery nozzle may continue to flow the processing gas into the processing volume.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 11/192,933, which claims benefit of U.S. Provisional Patent Application Ser. No. 60/648,004. U.S. patent application Ser. No. 11/192,933 is a continuation-in-part of co-pending U.S. patent application Ser. Nos. 10/996,342 and 10/965,220, which claim benefit of U.S. Provisional Patent Application Ser. No. 60/539,491, and co-pending U.S. patent application Ser. No. 11/043,442. The disclosure of each of the above-referenced patent applications are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60648004 | Jan 2005 | US | |
60511236 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11192933 | Jul 2005 | US |
Child | 11428230 | Jun 2006 | US |
Parent | 10996342 | Nov 2004 | US |
Child | 11428230 | Jun 2006 | US |
Parent | 10965220 | Oct 2004 | US |
Child | 11428230 | Jun 2006 | US |
Parent | 11043442 | Jan 2005 | US |
Child | 11192933 | US |