Integration of ALD tantalum nitride for copper metallization

Abstract
A method and apparatus for depositing a tantalum nitride barrier layer is provided for use in an integrated processing tool. The tantalum nitride is deposited by atomic layer deposition. The tantalum nitride is removed from the bottom of features in dielectric layers to reveal the conductive material under the deposited tantalum nitride. Optionally, a tantalum layer may be deposited by physical vapor deposition after the tantalum nitride deposition. Optionally, the tantalum nitride deposition and the tantalum deposition may occur in the same processing chamber.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention relate to a method for manufacturing integrated circuit devices. More particularly, embodiments of the invention relate to a system and process of utilizing ALD tantalum nitride layer in the formation of metal interconnect structures.


2. Description of the Related Art


As the structure size of integrated circuit (IC) devices is scaled down to sub-quarter micron dimensions, electrical resistance and current densities have become an area for concern and improvement. Multilevel interconnect technology provides the conductive paths throughout an IC device, and are formed in high aspect ratio features including contacts, plugs, vias, lines, wires, and other features. A typical process for forming an interconnect on a substrate includes depositing one or more layers, etching at least one of the layer(s) to form one or more features, depositing a barrier layer in the feature(s) and depositing one or more layers to fill the feature. Typically, a feature is formed within a dielectric material disposed between a lower conductive layer and an upper conductive layer. The interconnect is formed within the feature to link the upper and lower conductive layers. Reliable formation of these interconnect features is important to the production of the circuits and the continued effort to increase circuit density and quality on individual substrates.


Copper is a choice metal for filling sub-micron high aspect ratio interconnect features because copper and its alloys have lower resistivities than aluminum. However, copper diffuses more readily into surrounding materials and can alter the electronic device characteristics of the adjacent layers. The diffused copper can form a conductive path between layers thereby reducing the reliability of the overall circuit and may even result in device failure. Hence, barrier layers are deposited prior to copper metallization to prevent or impede the diffusion of copper atoms. Barrier layers typically are refractory metals such as tungsten, titanium, tantalum, and nitrides thereof, which all have a greater resistivity than copper.


To deposit a barrier layer within a feature, the barrier layer is typically deposited on the bottom of the feature as well as the sidewalls thereof. Adequate deposition of the barrier layer on sidewalls typically results in excess deposition on the bottom. The excess amount of the barrier layer on the bottom of the feature not only increases the overall resistance of the feature, but also forms an obstruction between higher and lower metal interconnects of a multi-layered interconnect structure.


There is a need, therefore, for an improved method for forming metal interconnect structures which minimizes the electrical resistance of the interconnect.


SUMMARY OF THE INVENTION

One embodiment of the present invention provides a method of forming a metal interconnect on a semiconductor substrate, comprising cleaning features formed in a dielectric layer and exposing a conductive material underlying the dielectric layer by generating a plasma in a remote plasma source, delivering radicals from the plasma to a first process chamber which contains the substrate, and contacting the features formed in the dielectric layer with the radicals prior to a barrier layer deposition; depositing a tantalum nitride layer by atomic layer deposition within the features at a pressure between 1 and 10 Torr at a temperature between 200 and 300° C. in a second process chamber; depositing a tantalum layer by physical vapor deposition over the tantalum nitride layer in a third process chamber; plasma etching the tantalum layer and the tantalum nitride in a fourth process chamber to remove at least a portion of the tantalum layer and the tantalum nitride layer at the bottom of the feature to reveal the conductive material; optionally depositing additional tantalum or copper by physical vapor deposition on the tantalum layer; and depositing a seed layer over the conductive material and the tantalum layer in a fifth processing chamber, wherein the first processing chamber, the second processing chamber, the third processing chamber, the fourth processing chamber, and the fifth processing chamber are located in an integrated tool.


An apparatus for forming a metal interconnect on a semiconductor substrate, comprising a first processing chamber for cleaning features formed in a dielectric layer and exposing a conductive material underlying the dielectric layer by generating a plasma in a remote plasma source, delivering radicals from the plasma to the first process chamber which contains the substrate, and contacting the features formed in the dielectric layer prior to a barrier layer deposition; a second process chamber for depositing a tantalum nitride layer by atomic layer deposition within the features at a pressure between 1 and 10 Torr at a temperature between 200 and 300° C.; a third process chamber for depositing a tantalum layer by physical vapor deposition over the tantalum nitride layer; a fourth process chamber for plasma etching the tantalum layer and the tantalum nitride to remove at least a portion of the tantalum layer and the tantalum nitride layer at the bottom of the feature to reveal the conductive material and optionally depositing additional tantalum or copper by physical vapor deposition on the tantalum layer; and a fifth processing chamber for depositing a seed layer over the conductive material and the tantalum layer, wherein the first processing chamber, the second processing chamber, the third processing chamber, the fourth processing chamber, and the fifth processing chamber are located in an integrated tool.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 illustrates one embodiment of a process of utilizing an ALD tantalum nitride layer in one stage in the formation of metal interconnect structures.



FIG. 2 illustrates another embodiment of a process utilizing an ALD tantalum nitride layer in one stage in the formation of metal interconnect structures.



FIG. 3A illustrates yet another embodiment of a process utilizing an ALD tantalum nitride layer in one stage in the formation of metal interconnect structures.



FIG. 3B illustrates an embodiment of a process utilizing two ALD tantalum nitride deposition steps in the formation of metal interconnect structures.



FIG. 4 illustrates a schematic plan view of an exemplary integrated cluster tool adaptable to perform the interconnect fabrication sequence described herein.



FIG. 5 illustrates a typical pre-clean chamber.



FIG. 6 illustrates a schematic, partial cross section of an exemplary processing chamber for forming a thin barrier layer according to a cyclical deposition technique.



FIG. 7 illustrates a schematic, partial cross section of an exemeplary processing chamber for forming a thin metal layer according to a physical vapor deposition technique.



FIG. 8 illustrates a schematic, partial cross section of an exemplary processing chamber for forming a thin seed layer or adhesion layer.



FIGS. 9A-9F are schematic representations of an exemplary substrate structure at various stages in the process of FIG. 1.



FIG. 10 is a schematic representation of an exemplary substrate structure at a stage in the process of FIG. 2.



FIG. 11 is a schematic representation of an exemplary substrate structure at a stage in the process of FIG. 3A.



FIG. 12 compares cumulative probability as a function of time to failure for ALD tantanlum nitride with copper- aluminum seed and PVD barrier with copper seed.



FIG. 13 compares cumulative probability as a function of time to fail for ALD tantalum nitride with punchthrough and ALD tantalum nitride layers; ALD tantalum nitride with new punchthrough, ALD tantalum nitride layers, and argon treatment; and a baseline with tantalum nitride, tantalum, and tantalum flash.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Barrier Deposition Process



FIG. 1 illustrates one embodiment of a process of utilizing ALD tantalum nitride deposition in the formation of metal interconnect structures. In step 101, preconditioning occurs to prepare the surface for additional modification. The preconditioning options include nitrogen plasma, water plasma, hydrogen and helium plasma, low energy plasma, pre-flash with titanium or aluminum, or other precleaning process. In step 102, tantalum nitride is deposited by atomic layer deposition over a substrate structure. In step 104, a tantalum layer is deposited by physical vapor deposition over the tantalum nitride formed in step 102. In step 106, a punch-through step is performed to remove a portion of the tantalum nitride deposited in step 102 and to remove a portion of the tantalum deposited in step 104. In step 108, an optional titanium flash step may be performed to deposit tantalum by physical vapor deposition over the resulting substrate structure of step 106. In step 110, a seed layer is formed over the resulting substrate structure of step 106 or step 108. After step 110, an optional adhesion layer deposition step 112 or copper or other deposition step 114 may occur.


Deposition Apparatus



FIG. 4 is a schematic top-view diagram of an exemplary multi-chamber processing system 600 that may be adapted to perform processes as disclosed herein. Such a processing system 600 may be an Endura™ system, commercially available from Applied Materials, Inc., of Santa Clara, Calif. A similar multi-chamber processing system is disclosed in U.S. Pat. No. 5,186,718, entitled “Stage Vacuum Wafer Processing System and Method,” issued on Feb. 16, 1993, which is incorporated by reference herein.


The system 400 generally includes load lock chambers 402 and 404 for the transfer of substrates into and out from the system 400. Typically, since the system 400 is under vacuum, the load lock chambers 402 and 404 may “pump down” the substrates introduced into the system 400. A first robot 410 may transfer the substrates between the load lock chambers 402 and 404 and a first set of one or more substrate processing chambers 412, 414, 416, and 418 (four are shown). Each processing chamber 412, 414, 416, and 418 can be outfitted to perform a number of substrate processing operations such as cyclical layer deposition including atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, de-gas, orientation and other substrate processes. The first robot 410 also transfers substrates to or from one or more transfer chambers 422 and 424.


The transfer chambers 422 and 424 are used to maintain ultrahigh vacuum conditions while allowing substrates to be transferred within the system 400. A second robot 430 may transfer the substrates between the transfer chambers 422 and 424 and a second set of one or more processing chambers 432, 434, 436, and 438. Similar to processing chambers 412, 414, 416, and 418, the processing chambers 432, 434, 436, and 438 can be outfitted to perform a variety of substrate processing operations, such as cyclical layer deposition including atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, degas, and orientation. Any of the substrate processing chambers 412, 414, 416, 418, 432, 434, 436, and 438 may be removed from the system 400 if not necessary for a particular process to be performed by the system 400.


Referring to FIG. 4, the processing system includes one or more atomic layer deposition (ALD) chambers configured to deposit barrier layers and one or more PVD chambers configured to deposit seed layers. To enhance efficiency and throughput of the system, one configuration of the processing system includes two ALD chambers configured to deposit barrier layers and two PVD chambers configured to deposit seed layers disposed in connection to the back-end central transfer chamber. In one configuration, the processing chambers 434 and 436 may be a tantalum nitride ALD chamber, processing chamber 432 and 438 may be a copper or tantalum PVD chamber.


In an additional configuration to perform the method of FIG. 1, processing chamber 434 may be a tantalum nitride atomic layer deposition chamber to perform step 102; processing chamber 432 may be a tantalum physical vapor deposition chamber to perform steps 104, 106, and 108; and processing chamber 412 may be a copper physical vapor deposition chamber to perform step 110 and possibly an etch step. In another example, chambers 436, 438, and 414 can mirror chambers 434, 432, and 412 respectively so that two sets of substrates may be processed in the integrated system. These particular arrangements of the system 400 are provided to illustrate the invention and should not be used to limit the scope of the invention unless specifically set forth in the claims.


The Precleaning Process


The present invention provides a method for precleaning features on a semiconductor substrate to remove contaminants prior to metallization. The method includes removal of silicon dioxide from the bottom of contacts without damaging the silicon, removal of aluminum oxide or copper oxide from the bottom of vias without redeposition of the metal onto sidewalls, removal of a thin layer of silicon from the bottom of contact holes, and removal of contaminants from the sidewalls of the features.


The invention provides a suitable method for precleaning vias, contacts, and other features etched into a dielectric layer, such as a silicon dioxide layer, which is deposited on a conductive or semi-conductive sublayer, such as Ge, Si, Al, Cu, or TiN sublayers. The feature typically exposes the sublayer so that the feature can be filled with a conductive or semi-conductive material which connects the sublayer and a subsequent metal interconnect layer to be deposited on the dielectric layer. Etching of the features in the dielectric typically leaves contaminants which should be removed to improve filling of the features and ultimately improve the integrity and reliability of the devices formed.


After etching of the dielectric layer, the features can have damaged silicon or metal residues within the features from over-etching of the dielectric layer. The features can also contain residual photoresist on the feature surfaces from the photoresist stripping or ashing process or residual polymer from the dielectric etch step. The features may also contain redeposited material on the feature surfaces following a sputter etch preclean process. These contaminants can migrate into the dielectric layer or can interfere with the selectivity of metallization by promoting uneven distribution of the depositing metal. The presence of the contaminants also can increase the resistance of the deposited metal by substantially narrowing the width of the feature, creating a narrowed portion in the metal forming the via, contact line, or other conductive feature.


The precleaning method of the invention is especially useful for cleaning of submicron features having copper sublayers at the bottom of the features since copper is easily sputtered to the side walls in a conventional ICP or sputter etch based preclean chamber. The sputtered copper diffuses into the dielectric material causing device failure. The present invention cleans the via without sputtering of the base of the via.


Referring to FIG. 5, the process for pre-cleaning the substrate 526 in the pre-clean chamber 510 may involve a reactive process or a sputter-etching process using the substrate 526 as the sputtering target. Generally, the reactive pre-clean process (step 101) may be performed on the substrate by introducing helium or a pre-clean gas mixture comprising hydrogen (less than about 10%) and helium into the chamber and providing RF power (between about 300 W and about 600 W at about 1 to 4 MHz) to a plasma generation coil. The substrate support may be biased between about 10 and 100 W. The chamber pressure may be maintained between about 40 mTorr and 200 mTorr during the pre-clean process. The reactive pre-clean process may be carried out for between about 30 seconds and 120 seconds. After the pre-clean process, the substrate is transferred to a chamber for deposition of a barrier layer and a seed layer over the surfaces of the substrate.


In one embodiment of the invention, the reactive pre-clean process (step 101) is performed on the substrate by introducing a pre-clean gas mixture comprising 5% hydrogen and 95% helium into the chamber and providing RF power to a coil at about 450 W at about 2.0 MHz. The substrate support is biased at about 1-200 W. The chamber pressure is maintained at about 80 mTorr during the pre-clean process. The reactive pre-clean process is carried out for about 60 seconds. After the pre-clean process, the substrate is transferred to a high density plasma physical vapor deposition chamber for deposition of a barrier layer and a seed layer over the surfaces of the substrate.


A Preferred Precleaning Apparatus


The precleaning process of the present invention is preferably conducted on a remote plasma source (RPS) chamber such as the Etch RPS chamber which is available from Applied Materials, Inc., Santa Clara, Calif. In a RPS chamber, reactive H radicals are formed by a remote plasma source and are introduced into the processing region as primarily neutral species, i.e., not having an electric charge and therefore not an ion, thereby preventing generation of self bias and bombardment of the wafer surface by ions. Experiments with RPS chambers show that a 2.45 GHz microwave source is more efficient and can generate more hydrogen radicals than lower frequency RF sources.


Barrier Layer Deposition


“Atomic layer deposition” as used herein refers to the sequential introduction of two or more compounds to deposit a thin layer on a substrate surface. The two or more compounds are sequentially introduced into a reaction zone of a processing chamber. Each compound is separated by a time delay or pause to allow each compound to adhere to or react on the substrate surface. In one aspect, a first compound, compound A, is dosed/pulsed into the reaction zone followed by a first time delay or pause. Next, a second compound or compound B is dosed/pulsed into the reaction zone followed by a second time delay. These sequential tandems of a pulse of reactive compound followed by a time delay may be repeated indefinitely until a desired film or film thickness is formed on the substrate surface



FIGS. 9A-9F are schematic representations of an exemplary substrate structure at various stages in the process of FIG. 1. FIG. 9A shows a dielectric layer 904 formed over one or more underlying layers 902. The dielectric layer 904 may be any dielectric material including a low k dielectric material (k<4.0), whether presently known or yet to be discovered. For example, the dielectric layer 904 may be a silicon oxide or a carbon doped silicon oxide material. The dielectric layer has been patterned and etched to form an aperture 905 using conventional and well-known techniques. The aperture 905 may be used to form a plug, via, contact, line, wore, or any other interconnect component. As shown in FIG. 2A, the aperture 905 may be used to form an interconnect component in a dual damascene structure. The processes as disclosed herein may be used to particular advantage over an aperture 905 have a lower opening size 905A of about 0.22 μm or less and having a lower aspect ratio 905B of about 4:1 or greater, such as about 6:1.


The aperture 905 exposes at least a conductive portion 902A of a part of a lower level metal interconnect feature, such as a plug, via, contact, line, wire, metal gate electrode, etc. The conductive portion 902A may comprise any conductive material, such as aluminum, copper, tungsten, or combinations. The process as disclosed herein may be performed to advantage over a conductive portion 902A comprising copper, which will be discussed herein in greater detail.



FIG. 9B shows a tantalum nitride layer 912 conformally deposited by atomic layer deposition, such as after step 102. The tantalum nitride layer is deposited to a thickness of about 50 Å or less, preferably between about 5 Å and about 20 Å. One of the advantages of atomic layer deposition over other conventional deposition techniques such as physical vapor deposition and chemical vapor deposition for tantalum nitride is the ability to deposit a conformal layer of tantalum nitride over the small openings, high aspect ratio, and varied topography of apertures, such as aperture 905, in the formation of interconnect structures. The heater temperature of the substrate support is maintained at a low temperature between about 100° C. and 300° C. In one aspect, it is believed that the low deposition temperature helps provide a more conformal tantalum nitride layer. Another of the advantages of the formation of an ALD tantalum nitride layer 912 over dielectric layer 904 is the good adhesion of the ALD tantalum nitride over dielectric materials.


The tantalum nitride layer deposited according to atomic layer deposition methods described herein shows evidence of an epitaxial growth phenomenon. In other words, the barrier layer takes on the same or substantially the same crystallographic characteristics as the underlying layer. As a result, a substantially single crystal is grown such that there is no void formation at an interface between the tantalum nitride layer and the underlying layer. Likewise, an additional tantalum layer deposited over the tantalum nitride layer exhibits the same or substantially the same epitaxial growth characteristics that continue the formation of the single crystal. Accordingly, no void formation is produced at this interface. The resulting structure resembling a single crystal eliminates void formation, thereby substantially increasing device reliability. The single crystal structure also reduces the overall resistance of the interconnect feature while still providing excellent barrier properties. Furthermore, it is believed that the single crystalline growth reduces the susceptibility of electromigration and stress migration due to the conformal and uniform crystalline orientation across the interconnect material interfaces.


Tantalum nitride may be deposited by atomic layer deposition by providing one or more pulses of a tantalum-containing compound at a flow rate between about 100 sccm and about 3,000 sccm for a time period of about 1.0 second or less and one or more pulses of a nitrogen-containing compound at a flow rate between about 100 sccm and about 3,000 sccm for a time period of about 1.0 second or less to a reaction zone having a substrate disposed therein.


Exemplary tantalum-containing compounds include: t-butylimino-tris(diethylamino)tantalum (TBTDET); pentakis(ethylmethylamino)tantalum (PEMAT); pentakis(dimethylamino)tantalum (PDMAT); pentakis(diethylamino)tantalum (PDEAT); t-butyliminotrislethylmethylamino) tantalum(TBTMET); t-butylimino-tris(dimethylamino)tantalum (TBTDMT); bis(cyclopentadienyl)tantalum trihydride ((Cp)2TaH3); bis(methylcyclopentadienyl) tantalum trihydride ((CpMe)2TaH3); derivatives thereof; and combinations thereof. Preferably, the tantalum-containing compound comprises PDMAT. Exemplary nitrogen-containing compounds include: ammonia; hydrazine; methylhydrazine; dimethylhydrazine; t-butylhydrazine; phenylhydrazine; azoisobutane; ethylazide; derivatives thereof; and combinations thereof. Preferably, the nitrogen-containing compound comprises ammonia.


It is to be understood that these compounds or any other compound not listed above may be a solid, liquid, or gas at room temperature. For example, PDMAT is a solid at room temperature and TBTDET is a liquid at room temperature. Accordingly, the non-gas phase precursors are subjected to a sublimation or vaporization step, which are both well known in the art, prior to introduction into the processing chamber. A carrier gas, such as argon, helium, nitrogen, hydrogen, or a mixture thereof, may also be used to help deliver the compound into the processing chamber, as is commonly known in the art.


In a particular embodiment, a tantalum nitride layer is formed by atomic layer deposition by cyclically introducing PDMAT and ammonia to the substrate surface. To initiate the deposition of the tantalum nitride layer, a carrier/inert gas such as argon is introduced into the processing chamber 600 to stabilize the pressure and temperature therein. The carrier gas is allowed to flow continuously during the deposition process such that only the argon flows between pulses of each compound. A first pulse of PDMAT is provided from the gas source 613 at a flow rate between about 400 sccm and about 1000 sccm, with a pulse time of about 2.0 seconds or less after the chamber temperature and pressure have been stabilized at about 200° C. to about 300° and about 1 Torr to about 5 Torr. A pulse of ammonia is then provided at a flow rate between about 500 sccm and about 3000 sccm, with a pulse time of about 2.0 seconds or less.


A pause between pulses of PDMAT and ammonia is about 1.0 second or less, preferably about 0.5 seconds or less, more preferably about 0.1 seconds or less. In various aspects, a reduction in time between pulses at least provides higher throughput. As a result, a pause after the pulse of ammonia is also about 1.0 second or less, about 0.5 seconds or less, or about 0.1 seconds or less. Argon gas flowing between about 1,000 sccm and about 10,000 sccm, such as between about 3,000 sccm and about 6,000 sccm, is continuously provided. In one aspect, a pulse of PDMAT may still be in the chamber when a pulse of ammonia enters. In general, the duration of the carrier gas and pump evacuation should be long enough to prevent the pulses of PDMAT and ammonia from mixing together in the reaction zone.


The heater temperature is maintained between about 100° C. and about 300° C. at a chamber pressure between about 1.0 and about 5.0 Torr. Each cycle consisting of a pulse of PDMAT, pause, pulse of ammonia, and pause provides a tantalum nitride layer having a thickness between about 0.3 Å and about 1.0 Å per cycle. The alternating sequence may be repeated until the desired thickness is achieved.


A “pulse/dose” as used herein is intended to refer to a quantity of a particular compound that is intermittently or non-continuously introduced into a reaction zone of a processing chamber. The quantity of a particular compound within each pulse may vary over time, depending on the duration of the pulse. A particular compound may include a single compound or a combination of two or more compounds. The durations for each pulse/dose are variable and may be adjusted to accommodate, for example, the volume capacity of the processing chamber as well as the capabilities of a vacuum system coupled thereto. Additionally, the dose time of a compound may vary according to the flow rate of the compound, the pressure of the compound, the temperature of the compound, the type of dosing valve, the type of control system employed, as well as the ability of the compound to adsorb onto the substrate surface. Dose times may also vary based upon the type of layer being formed and the geometry of the device being formed. Typically, the duration for each pulse/dose or “dose time” is typically about 1.0 second or less. However, a dose time can range from microseconds to milliseconds to seconds, and even to minutes. In general, a dose time should be long enough to provide a volume of compound sufficient to adsorb or chemisorb onto the entire surface of the substrate and form a layer of the compound thereon.


A Preferred Atomic Layer Deposition Apparatus



FIG. 6 illustrates a schematic, partial cross section of an exemplary processing chamber 600 for forming a barrier layer according to embodiments of the present invention. Such a processing chamber 600 is available from Applied Materials, Inc. located in Santa Clara, Calif., and a brief description thereof follows. A more detailed description may be found in commonly assigned U.S. patent application Ser. No. 10/032,284, entitled “Gas Delivery Apparatus and Method For Atomic Layer Deposition”, filed on Dec. 21, 2001, which is incorporated herein by reference to the extent not inconsistent with the claimed aspects and disclosure herein.


The processing chamber 600 may be integrated into an integrated processing platform, such as an Endura™ platform also available from Applied Materials, Inc. Details of the Endura™ platform are described in commonly assigned U.S. patent application Ser. No. 09/451,628, entitled “Integrated Modular Processing Platform”, filed on Nov. 30, 1999, which is incorporated herein by reference to the extent not inconsistent with the claimed aspects and disclosure herein.



FIG. 6 is a schematic cross-sectional view of one embodiment of a substrate processing chamber 610 including one or more valve assemblies 600 mounted below a chamber body 620 of the substrate processing chamber 610. The valve assemblies 600 are coupled to gas lines 655 plumbed through the chamber body 620. The gas lines 655 are, in turn, coupled to gas conduits 650 to provide one or more gases into the chamber body 620. The valve assemblies may also be mounted to other substrate processing chambers and may be mounted to other chamber components.


Referring to FIG. 6, each valve assembly 600 includes a valve body 610 and a diaphragm assembly 630. The valve body 610 includes a valve chamber 611 in fluid communication with three ports including a reactant inlet 612, a purge inlet 614, and an outlet 616. The reactant inlet 612 is in fluid communication with a reactant source 613 to supply a reactant through the valve chamber 611, through the outlet 616, through the gas line 655, through the gas conduit 650, and into the chamber body 620. The purge inlet 614 is in fluid communication with a purge gas source 615 and is adapted to supply a purge gas through the valve chamber 611, through the outlet 616, through the gas line 655, through the gas conduit 650, and into the chamber body 620. If the substrate processing chamber 610 includes two or more valve assemblies 600, the purge inlet 614 of each valve assembly 600 is preferably coupled to separate purge gas sources 615. In other embodiments, the purge inlet 614 of each valve assembly 600 may be coupled to a common purge gas source.


Referring to FIG. 6, an electronically controlled valve 652, such as a solenoid valve, may be mounted to the diaphragm assembly 630 to selectively provide a pressurized gas from a pressurized gas supply 650, such as air or other gas, coupled to the electronically controlled valve 652 through a gas line 651. Programmable logic controllers (PLC) are coupled to the electronically controlled valves 652 to control electrical signals to the electronically controlled valve 652. The programmable logic controllers are in turn coupled to a main controller which controls the programmable logic controller. Although an electronically controlled valve provides pressurized gas to the diaphragm assembly 630, the valve assembly 600 is a pneumatically actuated valve.


In one embodiment, argon is used as the carrier gas at a flow rate 500 sccm, ammonia enters the chamber at a flow rate of 1500 sccm, and the argon purge flow is at a flow rate 8000 sccm.


Post-Deposition Treatment Options


After the dielectric deposition, the substrate may be treated with a plasma, seed layer deposition, or adhesion layer deposition before the bulk metal deposition step. The plasma treatment may comprise argon, nitrogen, or hydrogen plasma. The seed layer deposition may comprise copper, copper aluminum, copper tin, tantalum, tungsten, thallium, cobalt, titanium, aluminum, another metal, or combinations of metals. Methods of deposition include ALD, CVD, PVD, electroplating or electroless plating. The adhesion layer may comprise rubidium, tantalum, titanium, aluminum, or tungsten.


Optional Tantalum Layer



FIG. 9C shows a tantalum layer 922 deposited over the tantalum nitride layer 912, such as after step 104. The tantalum layer 922 and the tantalum nitride layer 912 together make up barrier layer 924. In one aspect, the tantalum layer 922 provides good adhesion with the seed layer 942 (FIG. 9F). In another aspect tantalum nitride 912 and tantalum 922 have good adhesion with each other. In one embodiment, the temperature of the substrate support is unheated (i.e. room temperature). In one embodiment, a RF substrate bias of between about 100 Watts and about 1000 Watts may be provided to the substrate support during deposition of the tantalum layer 922. The DC power supplied to the ALD deposition may be 40 kW with an RF power of 2 kW. The tantalum layer is deposited to a thickness of about 75 Å or less, preferably between about 40 Å and about 60 Å.


Not wishing to be bound by theory unless explicitly set forth in the claims, it is believed that the conformal ALD tantalum nitride layer 912 helps cause growth of low resistivity alpha-phase tantalum at least over portions thereover, such as on the bottom of the aperture or over field areas, during physical vapor deposition. It is also believed that the wafer bias during physical vapor deposition helps in the formation of low resistivity alpha-phase tantalum


Punch-Through



FIG. 9D shows a punch through step performed to remove at least a portion of tantalum nitride and tantalum at the bottom of the aperture 905. Preferably, etch step is performed to remove tantalum nitride and tantalum at the bottom of the aperture 905 to reveal conductive portion 902A of the underlying layer 902. In one aspect, the tantalum nitride and tantalum remaining at the sidewalls prevent copper diffusion of the sputtered conductive material, such as copper, from a conductive portion 902A, such as a copper conductive portion, into the dielectric layer 904. The punch-through step also removes an oxide formation, residues (such as patterning residues), and other contaminants which may have formed over the conductive portion 902A.


The etch preferably comprises an argon plasma etch. A directional argon plasma etch is used to ensure that the plasma etch will reach the bottom of the aperture 905. The conditions for the etch are dependent on the design parameters of the chamber and the substrate support. RF wafer bias is between about 100 Watts and about 1000 Watts and is performed for a time period of between about 1 second and about 20 seconds depending on the desired thickness of the tantalum nitride and tantalum to be removed.


In one embodiment, the DC power supplied to the system is 0 W. The The RF power is 2000 W, the DC coil has a power of 800 W, and the wafer bias is 600 W. Argon is used as the carrier gas.


Optional Tantalum Flash



FIG. 9E shows an optional tantalum physical vapor deposition flash step. It is intended that the tantalum physical vapor deposition flash step deposits tantalum at the bevel corners 932 to help build up tantalum at the bevel corners 932 which may have been etched during the punch-through step. The tantalum flash step is preferably performed with a low wafer bias to reduce tantalum deposition at the bottom of the aperture 905.


Optional Seed Layer



FIG. 9F shows a seed layer 942 deposited over the substrate structure of FIG. 9D or FIG. 9E. The seed layer 942 may comprise a copper seed layer, a copper alloy seed layer, another metal seed layer, and combinations thereof. Preferably, the seed layer 942 comprises a copper seed layer, a copper alloy seed layer, or combinations thereof


Because the punch-through step reduces or removes the thickness of tantalum nitride layer 912 and tantalum layer 922 at the bottom of the aperture 905, the resistance of the interconnect structure is reduced. In one embodiment, a copper-to-copper interface may be provided between the seed layer 942 comprising copper and a conductive portion 902A comprising copper. In addition, because the punch-through step reduces or removes the tantalum nitride layer 912 and tantalum layer 922 at the bottom of the aperture 905 a thicker tantalum nitride layer 912 may be initially deposited. For these reasons and other reasons discussed herein, device performance and reliability are improved.


Referring to FIG. 1, physical vapor deposition of tantalum of step 104 is performed in a PVD chamber, such as an ionized metal plasma (IMP) PVD chamber. Examples of IMP PVD chambers include a Self-Ionized Plasma 51pTM chamber or an EnCoReTM Ta chamber, available from Applied Materials, Inc. of Santa Clara, Calif. The punch-through step 106 may be performed in a suitable plasma-processing chamber. The tantalum physical vapor deposition step 108 may be performed in a suitable PVD chamber. For through-put and particle generation concerns, steps 104-108 are preferably performed in the same processing chamber.


Continuing to refer to FIG. 1, a seed layer is at least partially deposited on the barrier layer, as shown at step 110. The seed layer may be deposited using any conventional deposition technique, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), electroplating, or electroless plating. For example, the seed layer may be deposited in an IMP PVD chamber. In one aspect, the seed layer is a conventional copper seed layer. In another aspect, the seed layer is a copper alloy seed layer. In still another aspect, the seed layer is a multi-layer seed layer of the same or different metals and alloys.


Alternative Embodiment



FIG. 2 illustrates another embodiment of a process of utilizing ALD tantalum layer in one stage in the formation of metal interconnect structures. In step 202, tantalum nitride is deposited by atomic layer deposition over a substrate structure. In step 204, a punch-through step is performed to remove a portion of the tantalum nitride deposited in step 202. In step 206, an adhesion layer, such as a tantalum layer or a suitable metal, is deposited over the resulting substrate structure of step 204. In step 208, a seed layer is formed over the adhesion layer. All or a partial number of steps 202 through 208 may be performed on an integrated processing system, such as the system of FIG. 4.



FIG. 10 is a schematic representation of an example of a resulting substrate structure after step 208 of FIG. 2. In one aspect, the tantalum nitride layer 1001 is deposited in step 202 to a thickness of about 50 A or less, preferably between about 5 A and about 30 A. The tantalum nitride layer 1001 protects the sidewalls of the dielectric layer 1002 from sputter conductive material 1004, such as copper, from a conductive portion of an underlying layer 1003 below the dielectric layer 1002. The punch-through step is performed for preferably about 10 seconds or less. One advantage of the present process is that the punch-through step need only remove a portion of the tantalum nitride in order to expose a conductive portion of the underlying layer.


Additional Alternative Embodiment



FIG. 3A illustrates yet another embodiment of a process of utilizing ALD tantalum nitride layer in one stage in the formation of metal interconnect structures. In step 302, tantalum nitride is deposited by atomic layer deposition over a substrate structure. In step 304, the tantalum nitride layer is exposed to a non-nitrogen plasma. Preferably, the non-nitrogen plasma comprises a noble gas, such as argon. The non-nitrogen plasma may further include hydrogen or other non-nitrogen gases. Optionally, steps 302 and 304 may be repeated. For example, a non-nitrogen plasma treatment may be performed after a number cycles, for example after every 20 cycles, until a desired amount of tantalum nitride has been deposited. Multiple non-nitrogen plasma treatments help to treat the tantalum nitride at the bottom of the aperture. In step 306, an optional tantalum layer may be deposited over the plasma-treated tantalum nitride layer. In step 308, a seed layer is formed over the resultant substrate structure of step 304 or 306. All or a partial number of steps 302 through 308 may be performed on an integrated processing system, such as the system of FIG. 4.



FIG. 11 is a schematic representation of an example of a resulting substrate structure after step 308 of FIG. 3A. In one aspect, it is believed that the non-nitrogen plasma treatment reduces the nitrogen content of the ALD tantalum nitride layer 1101. Since the nitrogen content of the ALD tantalum nitride layer 1101 is reduced, the resistivity of thereof is reduced and thus the contact resistance is reduced.


Multiple ALD TaN Deposition Steps



FIG. 3B illustrates yet another embodiment of a process of utilizing ALD tantalum nitride layer in one stage in the formation of metal interconnect structures. In step 302, tantalum nitride is deposited by atomic layer deposition over a substrate structure. In step 305, the tantalum nitride layer is exposed to a punch through step. An additional tantalum nitride layer is deposited in step 305A. In step 306, an optional tantalum layer may be deposited over the plasma-treated tantalum nitride layer. In step 308, a seed layer is formed over the resultant substrate structure of step 304 or 306. All or a partial number of steps 302 through 308 may be performed on an integrated processing system, such as the system of FIG. 4.


Experimental Results



FIG. 12 illustrates the cumulative probability as a function of time to failure for ALD tantalum nitride barrier with a copper aluminum seed and for a PVD barrier with a copper seed. The lifetime distribution is improved with the copper aluminum alloy seed used with an ALD tantalum nitride barrier.



FIG. 13 compares cumulative probability as a function of time to failure for ALD tantalum nitride with punchthrough and ALD tantalum nitride layers; ALD tantalum nitride with new punchthrough ALD tantalum nitride layers, and argon treatment; and a baseline with tantalum nitride, tantalum, and tantalum flash. The temperature was 350° C. There was 1.5 ma/cm2 link current density. There was upstream direction current. Flow was proportional to (μm) via/link size. Old punchthrough had DC power less than 150 W and a wafer bias of 600 W. New punchthrough had DC power of 3000 W and a wafer bias of 800 W. This dramatic increase in time to failure illustrates the desirable properties of the improvement.


Final Steps


Referring to FIG. 1, 2, 3A, or 3B subsequent to seed layer formation in step 410, step 708, or step 808, a bulk metal layer is at least partially deposited on the seed layer. The metal layer may also be deposited using any conventional deposition technique, such as electroplating, electroless plating, chemical vapor deposition (CVD), or physical vapor deposition (PVD). The metal layer preferably includes any conductive material such as copper, aluminum, tungsten, or combinations thereof. The metal layer preferably comprises a bulk copper layer.


In one embodiment, preferably, the bulk copper layer is formed within an electroplating cell, such as the ElectraTM Cu ECP system, available from Applied Materials, Inc., of Santa Clara, Calif. A copper electrolyte solution and copper electroplating technique is described in commonly assigned U.S. Pat. No. 6,113,771, entitled “Electro-deposition Chemistry”, which is incorporated by reference herein. Typically, the electroplating bath has a copper concentration greater than about 0.7M, a copper sulfate concentration of about 0.85, and a pH of about 1.75. The electroplating bath may also contain various additives as is well known in the art. The temperature of the bath is between about 15° C. and about 250°. The bias is between about −15 volts to about 15 volts. In one aspect, the positive bias ranges from about 0.1 volts to about 10 volts and the negatives bias ranges from about −0.1 to about −10 volts.


Optionally, an anneal treatment may be performed following the metal layer deposition. For example, the wafer may be subjected to a temperature between about 100° C. and about 400° C. for between about 1 minute to about 1 hour. A carrier/purge gas such as helium, hydrogen, nitrogen, or a mixture thereof is introduced at a rate of about 100 sccm to about 10,000 sccm. The chamber pressure is maintained between about 2 Torr and about 10 Torr.


Following deposition, the top portion of the resulting structure may be planarized. A chemical mechanical polishing (CMP) apparatus may be used, such as the MirraTM System available from Applied Materials, Santa Clara, Calif., for example. Optionally, the intermediate surfaces of the structure may be planarized between the deposition of the subsequent layers described above.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method of forming a metal interconnect on a semiconductor substrate, comprising; cleaning features formed in a dielectric layer and exposing a conductive material underlying the dielectric layer by generating a plasma in a remote plasma source, delivering radicals from the plasma to a first process chamber which contains the substrate, and contacting the features formed in the dielectric layer with the radicals prior to a barrier layer deposition; depositing a tantalum nitride layer by atomic layer deposition within the features at a pressure between 1 and 10 Torr at a temperature between 200 and 300° C. in a second process chamber; depositing a tantalum layer by physical vapor deposition over the tantalum nitride layer in a third process chamber; plasma etching the tantalum layer and the tantalum nitride in a fourth process chamber to remove at least a portion of the tantalum layer and the tantalum nitride layer at the bottom of the feature to reveal the conductive material; optionally depositing additional tantalum or copper by physical vapor deposition on the tantalum layer; and depositing a seed layer over the conductive material and the tantalum layer in a fifth processing chamber, wherein the first processing chamber, the second processing chamber, the third processing chamber, the fourth processing chamber, and the fifth processing chamber are located in an integrated tool.
  • 2. The method of claim 1, wherein the tantalum nitride deposition is performed with a tantalum containing precursor selected from the group comprising t-butylimino-tris(diethylamino)tantalum, pentakis(ethylmethylamino)tantalum, pentakis(dimethylamino)tantalum, pentakis(diethylamino)tantalum, t-butyliminotris(diethyl methylamino)tantalum, t-butylimino-tris(dimethylamino)tantalum, bis(cyclopentadienyl)tantalum trihydride, and bis(methylcyclopentadienyl)tantalum trihydride.
  • 3. The method of claim 1, wherein the tantalum nitride deposition is performed with a nitrogen containing precursor selected from the group comprising ammonia, hydrazine, methylhydrazine, dimethylhydrazine, t-butylhydrazine, phenylhydrazine, azoisobutane, and ethylazide.
  • 4. The method of claim 1, wherein the tantalum nitride deposition is performed with the tantalum containing precursor pulsed into the chamber at 100 to 3,000 sccm for 2.0 seconds or less.
  • 5. The method of claim 1, wherein the tantalum nitride deposition is performed with the nitrogen containing precursor pulsed into the chamber at 100 to 3,000 sccm for 2.0 seconds or less.
  • 6. The method of claim 1, wherein the tantalum nitride deposition is performed with argon flowing continuously into the chamber at 1,000 to 10,000 sccm.
  • 7. The method of claim 1, wherein the plasma etching is performed with a gas selected from the group consisting of argon, nitrogen, and hydrogen.
  • 8. The method of claim 1, wherein the plasma etching is performed with RF power of 100 to 1000 W for 1 to 20 seconds.
  • 9. The method of claim 1, wherein the plasma etching is performed with a directional argon plasma.
  • 10. The method of claim 1, further comprising depositing additional metal by physical vapor deposition on the tantalum layer.
  • 11. The method of claim 16, further comprising depositing a bulk metal layer.
  • 12. The method of claim 1, wherein the third and fourth process chambers are the same chamber.
  • 13. The method of claim 1, wherein the fourth and fifth process chambers are the same chamber.
  • 14. The method of claim 10, wherein the metal is selected from the group consisting of copper, copper aluminum, copper tin, tantalum, tungsten, thallium, cobalt, titanium, and aluminum.
  • 15. The method of claim 1, wherein the seed layer is deposited by a method selected from the group consisting of chemical vapor deposition, physical vapor deposition, electroplating, and electroless plating.
  • 16. The method of claim 1, wherein the seed layer comprises a metal selected from the group consisting of copper, copper aluminum, copper tin, tantalum, tungsten, thallium, cobalt, titanium, and aluminum.
  • 17. The method of claim 1, further comprising a preliminary substrate surface cleaning with nitrogen before cleaning features formed in a dielectric layer and exposing a conductive material underlying the dielectric layer by generating a plasma in a remote plasma source, delivering radicals from the plasma to a first process chamber which contains the substrate, and contacting the features formed in the dielectric layer with the radicals prior to a barrier layer deposition.
  • 18. A method of forming a metal interconnect on a semiconductor substrate, comprising; cleaning features formed in a dielectric layer and exposing a conductive material underlying the dielectric layer by generating a plasma in a remote plasma source, delivering radicals from the plasma to a first process chamber which contains the substrate, and contacting the features formed in the dielectric layer with the radicals prior to a barrier layer deposition; depositing a tantalum nitride layer by atomic layer deposition within the features at a pressure between 1 and 10 Torr at a temperature between 200 and 300° C. in a second process chamber; depositing a tantalum layer by physical vapor deposition over the tantalum nitride layer in a third process chamber; plasma etching the tantalum layer and the tantalum nitride in the third process chamber to remove at least a portion of the tantalum layer and the tantalum nitride layer at the bottom of the feature to reveal the conductive material; optionally depositing additional tantalum or copper by physical vapor deposition on the tantalum layer; and depositing a seed layer over the conductive material and the tantalum layer in a fourth processing chamber, wherein the first processing chamber, the second processing chamber, the third processing chamber, and the fourth processing chamber are located in an integrated tool.
  • 19. The method of claim 18, wherein the cleaning is performed with a feed gas consisting of 0 to about 10 percent hydrogen and about 90 to 100 percent helium.
  • 20. The method of claim 18, wherein the plasma etching is performed with a directional argon plasma.
  • 21. The method of claim 18, further comprising depositing additional metal by physical vapor deposition to the tantalum layer.
  • 22. The method of claim 18, wherein the second and third process chambers are the same chamber.
  • 23. The method of claim 18, wherein the third and fourth process chambers are the same chamber.
  • 24. The method of claim 18, wherein the seed layer is deposited by a method selected from the group consisting of chemical vapor deposition, physical vapor deposition, electroplating, and electroless plating.
  • 25. The method of claim 18, further comprising depositing additional metal by physical vapor deposition to the tantalum layer.
  • 26. The method of claim 25, further comprising depositing a bulk metal layer.
  • 27. A method of forming a metal interconnect on a semiconductor substrate, comprising: depositing a tantalum nitride barrier layer by atomic layer deposition within the features at a pressure between 1 and 10 Torr at a temperature between 200 and 300°C. in a first process chamber; depositing a second barrier layer over the tantalum nitride barrier layer in a second process chamber; plasma etching the second barrier layer and the tantalum nitride barrier layer in a third process chamber to remove at least a portion of the second barrier layer and the tantalum nitride barrier layer at a bottom of the feature to reveal the conductive material; and depositing a seed layer over the conductive material and the second barrier layer in a fourth processing chamber, wherein the first processing chamber, the second processing chamber, the third processing chamber, and the fourth processing chamber are located in an integrated tool.
  • 28. The method of claim 27, wherein the tantalum nitride deposition is performed with a tantalum containing precursor selected from the group consisting of t-butylimino-tris(diethylamino)tantalum, pentakis (ethylmethylamino)tantalum, pentakis(dimethylamino)tantalum, pentakis (diethylamino)tantalum, t-butylimiotris (diethyl methylamino)tantalum, t-butylimino-tris(dimethylamino)tantalum, bis(cyclopentadienyl)tantalum trihydride, and bis(methylcyclopentadienyl) tantalum trihydride.
  • 29. The method of claim 27, wherein the tantalum nitride deposition is performed with a nitrogen containing precursor selected from the group consisting of ammonia, hydrazine, methylhydrazine, dimethylhydrazine, t-butylhydrazine, phenylhydrazine, azoisobutane, and ethylazide.
  • 30. The method of claim 27, wherein the plasma etching is performed with a gas selected from the group consisting of argon, nitrogen, and hydrogen.
  • 31. The method of claim 27, wherein the plasma etching is performed with a directional argon plasma.
  • 32. The method of claim 27, further comprising depositing additional metal by physical vapor deposition on the second barrier layer.
  • 33. The method of claim 32, further comprising depositing a bulk metal layer.
  • 34. The method of claim 27, wherein the third and fourth process chambers are the same chamber.
  • 35. The method of claim 27, wherein the fourth and fifth process chambers are the same chamber.
  • 36. The method of claim 32, wherein the metal is selected from the group consisting of copper, copper aluminum, copper tin, tantalum, tungsten, thallium, cobalt, titanium, and aluminum.
  • 37. The method of claim 27, wherein the seed layer is deposited by a method selected from the group consisting of chemical vapor deposition, physical vapor deposition, electroplating, and electroless plating.
  • 38. The method of claim 27, wherein the seed layer comprises a metal selected from the group consisting of copper, copper aluminum, copper tin, tantalum, tungsten, thalium, cobalt, titanium, and aluminum.
  • 39. The method of claim 27, further comprising a preliminary substrate surface cleaning with nitrogen before cleaning features formed in a dielectric layer and exposing a conductive material underlying the dielectric layer by generating a plasma in a remote plasma source, delivering radicals from the plasma to a first process chamber which contains the substrate, and contacting the features formed in the dielectric layer with radicals prior to a barrier layer deposition.
  • 40. A method of forming a metal interconnect on a semiconductor substrate, comprising; cleaning features formed in a dielectric layer and exposing a conductive material underlying the dielectric layer by generating a plasma in a remote plasma source, delivering radicals from the plasma to a first process chamber which contains the substrate, and contacting the features formed in the dielectric layer with the radicals prior to a barrier layer deposition; depositing a tantalum nitride barrier layer by atomic layer deposition within the features at a pressure between 1 and 10 Torr at a temperature between 200 and 300°C. in a second process chamber; depositing a second barrier layer by physical vapor deposition over the tantalum nitride barrier layer in a third process chamber; optionally depositing additional tantalum or copper by physical vapor deposition on the second barrier layer; and depositing a seed layer over the conductive material and the second barrier layer in a fourth processing chamber, wherein the first processing chamber, the second processing chamber, the third processing chamber, and the fourth processing chamber are located in an integrated tool.
  • 41. The method of claim 40, wherein the cleaning is performed with a feed gas consisting of 0 to about 10 percent hydrogen and about 90 to 100 percent helium.
  • 42. The method of claim 40, wherein the tantalum nitride barrier deposition is performed with a tantalum containing precursor selected from the group consisting of t-butylimino-tris(diethylamino)tantalum, pentakis (ethylmethylamino)tantalum, pentakis(dimethylamino)tantalum, pentakis (diethylamino)tantalum, t-butyliminotris(diethyl methylamino)tantalum, t-butylimino-tris(dimethylamino)tantalum, bis(cyclopentaadienyl)tantalum, and bis(methylcyclopentadienyl) tantalum trihydride.
  • 43. The method of claim 40, wherein the tantalum nitride barrier deposition is performed with a nitrogen containing precursor selected from the group consisting of ammonia, hydrazine, methylhydrazine, dimethylhydrazine, t-butylhydrazine, phenylhydrazine, azoisobutane, and ethylazide.
  • 44. The method of claim 40, wherein the tantalum nitride barrier deposition is performed with the tantalum containing precursor pulsed into the chamber at 100 to 3,000 sccm for 2.0 seconds or less.
  • 45. The method of claim 40, wherein the tantalum nitride barrier deposition is performed with the nitrogen containing precursor pulsed into the chamber at 100 to 3,000 sccm for 2.0 seconds or less.
  • 46. The method of claim 40, wherein the tantalum nitride barrier deposition is performed with argon flowing continuously into the chamber at 1,000 to 10,000 sccm.
  • 47. The method of claim 40, wherein the second barrier layer is tantalum and deposition is performed at 10 to 50°C. and wafer bias is 100 to 1000W.
  • 48. The method of claim 40, further comprising depositing additional metal by physical vapor deposition on the second barrier layer.
  • 49. The method of claim 48, further comprising depositing a bulk metal layer.
  • 50. The method of claim 40, wherein the third and fourth process chambers are the same chamber.
  • 51. The method of claim 40, wherein the fourth and fifth process chambers are the same chamber.
  • 52. The method of claim 48, wherein the metal is selected from the group consisting of copper, copper aluminum, copper tin, tantalum, tungsten, thallium, cobalt, titanium, and aluminum.
  • 53. The method of claim 40, wherein the seed layer is deposited by a method selected from the group consisting of chemical vapor deposition, physical vapor deposition, electroplating, and electroless plating.
  • 54. The method of claim 40, wherein the seed layer comprises a metal selected from the group consisting of copper, copper aluminum, copper tin, tantalum, tungsten, thallium, cobalt, titanium, and aluminum.
  • 55. The method of claim 40, further comprising a preliminary substrate surface cleaning with nitrogen before cleaning features formed in a dielectric layer and exposing a conductive material underlying the dielectric layer by generating a plasma in a remote plasma source, delivering radicals from the plasma to a first process chamber which contains the substrate, and contacting the features formed in the dielectric layer with the radicals prior to a barrier layer deposition.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Patent application Ser. No. 60/478,663, filed Jun. 13, 2003, and titled, “Integration of ALD Tantalum Nitride for Copper Metallization.” This application is a continuation in part of U.S. patent application Ser. No. 10/193,333, filed Jul. 10, 2002, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/346,086, filed on Oct. 26, 2001, and is a continuation-in-part of U.S. patent application Ser. No. 09/965,370, filed on Sep. 26, 2001, U.S. patent application Ser. No. 09/965,373, filed on Sep. 26, 2001 and U.S. patent application Ser. No. 09/965,369, filed on Sep. 26, 2001 now abandoned , which are incorporated by reference herein.

US Referenced Citations (477)
Number Name Date Kind
2430520 Marboe et al. Nov 1947 A
3291456 Deane Dec 1966 A
3356527 Moshier et al. Dec 1967 A
3594216 Charles et al. Jul 1971 A
4058430 Suntola et al. Nov 1977 A
4389973 Suntola et al. Jun 1983 A
4413022 Suntola et al. Nov 1983 A
4486487 Skarp Dec 1984 A
4614639 Hegedus Sep 1986 A
4732110 Parsons Mar 1988 A
4761269 Conger et al. Aug 1988 A
4767494 Kobayashi et al. Aug 1988 A
4806321 Nishizawa et al. Feb 1989 A
4813846 Helms Mar 1989 A
4829022 Kobayashi et al. May 1989 A
4834831 Nishizawa et al. May 1989 A
4838983 Schumaker et al. Jun 1989 A
4838993 Aoki et al. Jun 1989 A
4840921 Matsumoto Jun 1989 A
4845049 Sunakawa Jul 1989 A
4859625 Matsumoto Aug 1989 A
4859627 Sunakawa Aug 1989 A
4861417 Mochizuki et al. Aug 1989 A
4876218 Pessa et al. Oct 1989 A
4907534 Huang et al. Mar 1990 A
4917556 Stark et al. Apr 1990 A
4927670 Erbil May 1990 A
4931132 Aspnes et al. Jun 1990 A
4951601 Maydan et al. Aug 1990 A
4960720 Shimbo Oct 1990 A
4975252 Nishizawa et al. Dec 1990 A
4987856 Hey et al. Jan 1991 A
4991542 Kohmura et al. Feb 1991 A
4993357 Scholz Feb 1991 A
5000113 Wang et al. Mar 1991 A
5013683 Petroff et al. May 1991 A
5028565 Chang et al. Jul 1991 A
5082798 Arimoto Jan 1992 A
5085731 Norman et al. Feb 1992 A
5085885 Foley et al. Feb 1992 A
5091320 Aspnes et al. Feb 1992 A
5098516 Norman et al. Mar 1992 A
5130269 Kitahara et al. Jul 1992 A
5166092 Mochizuki et al. Nov 1992 A
5173474 Connell et al. Dec 1992 A
5186718 Tepman et al. Feb 1993 A
5196365 Gotou Mar 1993 A
5204145 Gasworth Apr 1993 A
5205077 Wittstock Apr 1993 A
5221449 Colgan et al. Jun 1993 A
5225366 Yoder Jul 1993 A
5234561 Randhawa et al. Aug 1993 A
5246536 Nishizawa et al. Sep 1993 A
5250148 Nishizawa et al. Oct 1993 A
5254207 Nishizawa et al. Oct 1993 A
5256244 Ackerman Oct 1993 A
5259881 Edwards et al. Nov 1993 A
5261959 Gasworth Nov 1993 A
5264038 Hara et al. Nov 1993 A
5270247 Sakuma et al. Dec 1993 A
5273775 Dyer et al. Dec 1993 A
5278435 Van Hove et al. Jan 1994 A
5281274 Yoder Jan 1994 A
5281485 Colgan et al. Jan 1994 A
5286296 Sato et al. Feb 1994 A
5290748 Knuuttila et al. Mar 1994 A
5294286 Nishizawa et al. Mar 1994 A
5296403 Nishizawa et al. Mar 1994 A
5300186 Kitahara et al. Apr 1994 A
5306666 Izumi Apr 1994 A
5311055 Goodman et al. May 1994 A
5316615 Copel May 1994 A
5316793 Wallace et al. May 1994 A
5330610 Eres et al. Jul 1994 A
5336324 Stall et al. Aug 1994 A
5338362 Imahashi Aug 1994 A
5338363 Kawata et al. Aug 1994 A
5338364 Kurihara et al. Aug 1994 A
5338389 Nishizawa et al. Aug 1994 A
5348911 Jurgensen et al. Sep 1994 A
5374570 Nasu et al. Dec 1994 A
5395791 Cheng et al. Mar 1995 A
5438952 Otsuka Aug 1995 A
5439876 Graf et al. Aug 1995 A
5441703 Jurgensen Aug 1995 A
5443033 Nishizawa et al. Aug 1995 A
5443647 Aucoin et al. Aug 1995 A
5455072 Bension et al. Oct 1995 A
5458084 Thorne et al. Oct 1995 A
5464666 Fine et al. Nov 1995 A
5469806 Mochizuki et al. Nov 1995 A
5480818 Matsumoto et al. Jan 1996 A
5483919 Yokoyama et al. Jan 1996 A
5484664 Kitahara et al. Jan 1996 A
5496410 Fukuda et al. Mar 1996 A
5503875 Imai et al. Apr 1996 A
5521126 Okamura et al. May 1996 A
5526244 Bishop Jun 1996 A
5527733 Nishizawa et al. Jun 1996 A
5529955 Hibino et al. Jun 1996 A
5532511 Nishizawa et al. Jul 1996 A
5540783 Eres et al. Jul 1996 A
5580380 Liu et al. Dec 1996 A
5601651 Watabe Feb 1997 A
5609689 Kato et al. Mar 1997 A
5616181 Yamamoto et al. Apr 1997 A
5637530 Gaines et al. Jun 1997 A
5641984 Aftergut et al. Jun 1997 A
5644128 Wollnik et al. Jul 1997 A
5654232 Gardner Aug 1997 A
5667592 Boitnott et al. Sep 1997 A
5674786 Turner et al. Oct 1997 A
5693139 Nishizawa et al. Dec 1997 A
5695564 Imahashi Dec 1997 A
5705224 Murota et al. Jan 1998 A
5707880 Aftergut et al. Jan 1998 A
5711811 Suntola et al. Jan 1998 A
5730801 Tepman et al. Mar 1998 A
5730802 Ishizumi et al. Mar 1998 A
5744394 Iguchi et al. Apr 1998 A
5747113 Tsai May 1998 A
5749974 Habuka et al. May 1998 A
5788447 Yonemitsu et al. Aug 1998 A
5788799 Steger et al. Aug 1998 A
5796116 Nakata et al. Aug 1998 A
5801634 Young et al. Sep 1998 A
5804488 Shih et al. Sep 1998 A
5807792 Ilg et al. Sep 1998 A
5830270 McKee et al. Nov 1998 A
5835677 Li et al. Nov 1998 A
5838677 Kozaki et al. Nov 1998 A
5846330 Quirk et al. Dec 1998 A
5851849 Comizzoli et al. Dec 1998 A
5855675 Doering et al. Jan 1999 A
5855680 Soininen et al. Jan 1999 A
5856219 Naito et al. Jan 1999 A
5858102 Tsai Jan 1999 A
5866213 Foster et al. Feb 1999 A
5866795 Wang et al. Feb 1999 A
5879459 Gadgil et al. Mar 1999 A
5882165 Maydan et al. Mar 1999 A
5882413 Beaulieu et al. Mar 1999 A
5888303 Dixon Mar 1999 A
5904565 Nguyen et al. May 1999 A
5913147 Dubin et al. Jun 1999 A
5916365 Sherman Jun 1999 A
5923056 Lee et al. Jul 1999 A
5923985 Aoki et al. Jul 1999 A
5925574 Aoki et al. Jul 1999 A
5928389 Jevtic Jul 1999 A
5933753 Simon et al. Aug 1999 A
5942040 Kim et al. Aug 1999 A
5947710 Cooper et al. Sep 1999 A
5951771 Raney et al. Sep 1999 A
5972430 DiMeo, Jr. et al. Oct 1999 A
5985762 Geffken et al. Nov 1999 A
5996528 Berrian et al. Dec 1999 A
6001669 Gaines et al. Dec 1999 A
6015590 Suntola et al. Jan 2000 A
6015917 Bhandari et al. Jan 2000 A
6025627 Forbes et al. Feb 2000 A
6036773 Wang et al. Mar 2000 A
6037257 Chiang et al. Mar 2000 A
6042652 Hyun et al. Mar 2000 A
6043177 Falconer et al. Mar 2000 A
6051286 Zhao et al. Apr 2000 A
6062798 Muka May 2000 A
6066358 Guo et al. May 2000 A
6066892 Ding et al. May 2000 A
6071808 Merchant et al. Jun 2000 A
6084302 Sandhu Jul 2000 A
6086677 Umotoy et al. Jul 2000 A
6107192 Subrahmanyan et al. Aug 2000 A
6110556 Bang et al. Aug 2000 A
6113977 Soininen et al. Sep 2000 A
6117244 Bang et al. Sep 2000 A
6124158 Dautartas et al. Sep 2000 A
6130147 Major et al. Oct 2000 A
6139700 Kang et al. Oct 2000 A
6140237 Chan et al. Oct 2000 A
6140238 Kitch Oct 2000 A
6143077 Ikeda et al. Nov 2000 A
6143659 Leem Nov 2000 A
6144060 Park et al. Nov 2000 A
6158446 Mohindra et al. Dec 2000 A
6160315 Chiang et al. Dec 2000 A
6174377 Doering et al. Jan 2001 B1
6174809 Kang et al. Jan 2001 B1
6179920 Tarutani et al. Jan 2001 B1
6183563 Choi et al. Feb 2001 B1
6197683 Kang et al. Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6206967 Mak et al. Mar 2001 B1
6207302 Sugiura et al. Mar 2001 B1
6207487 Kim et al. Mar 2001 B1
6218298 Hoinkis Apr 2001 B1
6231672 Choi et al. May 2001 B1
6242808 Shimizu et al. Jun 2001 B1
6248605 Harkonen et al. Jun 2001 B1
6249055 Dubin Jun 2001 B1
6268291 Andricacos et al. Jul 2001 B1
6270572 Kim et al. Aug 2001 B1
6271148 Kao et al. Aug 2001 B1
6284646 Leem Sep 2001 B1
6287965 Kang et al. Sep 2001 B1
6291876 Stumborg et al. Sep 2001 B1
6302965 Umotoy et al. Oct 2001 B1
6305314 Sneh et al. Oct 2001 B1
6306216 Kim et al. Oct 2001 B1
6316098 Yitzchaik et al. Nov 2001 B1
6333260 Kwon et al. Dec 2001 B1
6334983 Okayama et al. Jan 2002 B1
6335240 Kim et al. Jan 2002 B1
6335280 Van der Jeugd Jan 2002 B1
6342277 Sherman et al. Jan 2002 B1
6348376 Lim et al. Feb 2002 B1
6355561 Sandhu et al. Mar 2002 B1
6358829 Yoon et al. Mar 2002 B1
6368954 Lopatin et al. Apr 2002 B1
6369430 Adetutu et al. Apr 2002 B1
6372598 Kang et al. Apr 2002 B1
6379748 Bhandari et al. Apr 2002 B1
6391163 Pavate et al. May 2002 B1
6391785 Satta et al. May 2002 B1
6399491 Jeon et al. Jun 2002 B1
6416577 Suntoloa et al. Jul 2002 B1
6416822 Chiang et al. Jul 2002 B1
6420189 Lopatin Jul 2002 B1
6423619 Grant et al. Jul 2002 B1
6428859 Chiang et al. Aug 2002 B1
6436193 Kasai et al. Aug 2002 B1
6447607 Soininen et al. Sep 2002 B1
6447933 Wang et al. Sep 2002 B1
6451119 Sneh et al. Sep 2002 B1
6451695 Sneh Sep 2002 B1
6458701 Marsella et al. Oct 2002 B1
6464779 Powell et al. Oct 2002 B1
6465924 Maejima Oct 2002 B1
6475276 Elers et al. Nov 2002 B1
6475910 Sneh Nov 2002 B1
6478872 Chae et al. Nov 2002 B1
6481945 Hasper et al. Nov 2002 B1
6482262 Elers et al. Nov 2002 B1
6482733 Raaijmakers et al. Nov 2002 B1
6482740 Soininen et al. Nov 2002 B1
6489214 Kim et al. Dec 2002 B1
6498091 Chen et al. Dec 2002 B1
6511539 Raaijmakers Jan 2003 B1
6534395 Werkhoven et al. Mar 2003 B1
6548424 Putkonen Apr 2003 B1
6551406 Kilpi Apr 2003 B1
6551929 Kori et al. Apr 2003 B1
6569501 Chiang et al. May 2003 B1
6572705 Suntola et al. Jun 2003 B1
6575705 Akiyama et al. Jun 2003 B1
6578287 Aswad Jun 2003 B1
6579372 Park Jun 2003 B1
6585823 Van Wijck Jul 2003 B1
6593484 Yasuhara et al. Jul 2003 B1
6596602 Iizuka et al. Jul 2003 B1
6599572 Saanila et al. Jul 2003 B1
6607976 Chen et al. Aug 2003 B1
6620670 Song et al. Sep 2003 B1
6620723 Byun et al. Sep 2003 B1
6620956 Chen et al. Sep 2003 B1
6630030 Suntola et al. Oct 2003 B1
6630201 Chiang et al. Oct 2003 B1
6632279 Ritala et al. Oct 2003 B1
6660126 Nguyen et al. Dec 2003 B1
6660622 Chen et al. Dec 2003 B1
6660660 Haukka et al. Dec 2003 B1
6686271 Raaijmakers et al. Feb 2004 B1
6784096 Chen et al. Aug 2004 B1
6800173 Chiang et al. Oct 2004 B1
6803272 Halliyal et al. Oct 2004 B1
6811814 Chen et al. Nov 2004 B1
6815285 Choi et al. Nov 2004 B1
6821891 Chen et al. Nov 2004 B1
6838125 Chung et al. Jan 2005 B1
6893915 Park et al. May 2005 B1
20010000866 Sneh et al. May 2001 A1
20010002280 Sneh May 2001 A1
20010009140 Bondestam et al. Jul 2001 A1
20010009695 Saanila et al. Jul 2001 A1
20010011526 Doering et al. Aug 2001 A1
20010013312 Soininen et al. Aug 2001 A1
20010014371 Kilpi Aug 2001 A1
20010024387 Raaijmakers et al. Sep 2001 A1
20010025979 Kim et al. Oct 2001 A1
20010028924 Sherman Oct 2001 A1
20010029094 Mee-Young et al. Oct 2001 A1
20010031562 Raaijmakers et al. Oct 2001 A1
20010034123 Jean et al. Oct 2001 A1
20010041250 Werkhoven et al. Nov 2001 A1
20010042523 Kesala Nov 2001 A1
20010042799 Kim et al. Nov 2001 A1
20010050039 Park Dec 2001 A1
20010054377 Lindfors et al. Dec 2001 A1
20010054730 Kim et al. Dec 2001 A1
20010054769 Raaijmakers et al. Dec 2001 A1
20020000196 Park Jan 2002 A1
20020000598 Kang et al. Jan 2002 A1
20020004293 Soininen et al. Jan 2002 A1
20020007790 Park Jan 2002 A1
20020009544 McFeely et al. Jan 2002 A1
20020019121 Pyo Feb 2002 A1
20020020869 Park et al. Feb 2002 A1
20020021544 Cho et al. Feb 2002 A1
20020031618 Sheman Mar 2002 A1
20020037630 Agarwal et al. Mar 2002 A1
20020041931 Suntola et al. Apr 2002 A1
20020048635 Kim et al. Apr 2002 A1
20020048880 Lee Apr 2002 A1
20020052097 Park May 2002 A1
20020055235 Agarwal et al. May 2002 A1
20020061612 Sandhu et al. May 2002 A1
20020066411 Chiang et al. Jun 2002 A1
20020068458 Chiang et al. Jun 2002 A1
20020073649 Gamberini Jun 2002 A1
20020073924 Chiang et al. Jun 2002 A1
20020074588 Lee Jun 2002 A1
20020076481 Chiang et al. Jun 2002 A1
20020076507 Chiang et al. Jun 2002 A1
20020076508 Chiang et al. Jun 2002 A1
20020076837 Hujanen et al. Jun 2002 A1
20020081844 Jeon et al. Jun 2002 A1
20020086106 Park et al. Jul 2002 A1
20020086111 Byun et al. Jul 2002 A1
20020086507 Park et al. Jul 2002 A1
20020090829 Sandhu et al. Jul 2002 A1
20020092471 Kang et al. Jul 2002 A1
20020092584 Soininen et al. Jul 2002 A1
20020094689 Park Jul 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020098685 Sophie et al. Jul 2002 A1
20020104481 Chiang et al. Aug 2002 A1
20020105088 Yang et al. Aug 2002 A1
20020106451 Skarp et al. Aug 2002 A1
20020106536 Lee et al. Aug 2002 A1
20020106846 Seutter et al. Aug 2002 A1
20020108570 Lindfors Aug 2002 A1
20020109168 Kim et al. Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020115886 Yasuhara et al. Aug 2002 A1
20020117399 Chen et al. Aug 2002 A1
20020121241 Nguyen et al. Sep 2002 A1
20020121342 Nguyen et al. Sep 2002 A1
20020122884 Chen et al. Sep 2002 A1
20020127336 Chen et al. Sep 2002 A1
20020134307 Choi Sep 2002 A1
20020135071 Kang et al. Sep 2002 A1
20020144655 Chiang et al. Oct 2002 A1
20020144657 Chiang et al. Oct 2002 A1
20020144786 Chiang et al. Oct 2002 A1
20020146511 Chiang et al. Oct 2002 A1
20020155722 Satta et al. Oct 2002 A1
20020162506 Sneh et al. Nov 2002 A1
20020164421 Chiang et al. Nov 2002 A1
20020164423 Chiang et al. Nov 2002 A1
20020173130 Pomerede et al. Nov 2002 A1
20020177282 Song Nov 2002 A1
20020182320 Leskela et al. Dec 2002 A1
20020187256 Elers et al. Dec 2002 A1
20020187631 Kim et al. Dec 2002 A1
20020196591 Hujanen et al. Dec 2002 A1
20020197402 Chiang et al. Dec 2002 A1
20020197863 Mak et al. Dec 2002 A1
20020197881 Ramdani et al. Dec 2002 A1
20030004723 Chihara Jan 2003 A1
20030010451 Tzu et al. Jan 2003 A1
20030013300 Byun Jan 2003 A1
20030013320 Kim et al. Jan 2003 A1
20030015764 Raaijmakers et al. Jan 2003 A1
20030017697 Choi et al. Jan 2003 A1
20030019428 Ku et al. Jan 2003 A1
20030023338 Chin et al. Jan 2003 A1
20030031807 Elers et al. Feb 2003 A1
20030032281 Werkhoven et al. Feb 2003 A1
20030042630 Babcoke et al. Mar 2003 A1
20030049931 Byun et al. Mar 2003 A1
20030049942 Haukka et al. Mar 2003 A1
20030053799 Lei Mar 2003 A1
20030054631 Raaijmakers et al. Mar 2003 A1
20030057526 Chung et al. Mar 2003 A1
20030057527 Chung et al. Mar 2003 A1
20030059538 Chung et al. Mar 2003 A1
20030060042 Park et al. Mar 2003 A1
20030072884 Zhang et al. Apr 2003 A1
20030072975 Shero et al. Apr 2003 A1
20030075273 Kilpela et al. Apr 2003 A1
20030075925 Lindfors et al. Apr 2003 A1
20030079686 Chen et al. May 2003 A1
20030082296 Elers et al. May 2003 A1
20030082300 Todd et al. May 2003 A1
20030082301 Chen et al. May 2003 A1
20030082307 Chung et al. May 2003 A1
20030087520 Chen et al. May 2003 A1
20030089308 Raaijmakers May 2003 A1
20030089942 Bhattacharyya et al. May 2003 A1
20030096468 Soininen et al. May 2003 A1
20030097013 Chen et al. May 2003 A1
20030101927 Raaijmakers Jun 2003 A1
20030104126 Fang et al. Jun 2003 A1
20030106490 Jallepally et al. Jun 2003 A1
20030108674 Chung et al. Jun 2003 A1
20030113187 Lei et al. Jun 2003 A1
20030116087 Nguyen et al. Jun 2003 A1
20030116804 Visokay et al. Jun 2003 A1
20030121469 Lindfors et al. Jul 2003 A1
20030121608 Chen et al. Jul 2003 A1
20030124262 Chen et al. Jul 2003 A1
20030129308 Chen et al. Jul 2003 A1
20030129826 Werkhoven et al. Jul 2003 A1
20030134508 Raaijmakers et al. Jul 2003 A1
20030140854 Kilpi Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030143747 Bondestam et al. Jul 2003 A1
20030143839 Raaijmakers et al. Jul 2003 A1
20030143841 Yang et al. Jul 2003 A1
20030160277 Bhattacharyya Aug 2003 A1
20030165615 Aaltonen et al. Sep 2003 A1
20030168750 Basceri et al. Sep 2003 A1
20030172872 Thakur et al. Sep 2003 A1
20030173586 Moriwaki et al. Sep 2003 A1
20030185980 Endo Oct 2003 A1
20030186495 Saanila et al. Oct 2003 A1
20030190423 Yang et al. Oct 2003 A1
20030190497 Yang et al. Oct 2003 A1
20030190804 Glenn et al. Oct 2003 A1
20030194493 Chang et al. Oct 2003 A1
20030198754 Xi et al. Oct 2003 A1
20030205729 Bascari et al. Nov 2003 A1
20030213560 Wang et al. Nov 2003 A1
20030213987 Basceri et al. Nov 2003 A1
20030216037 Zhang et al. Nov 2003 A1
20030216981 Tillmann Nov 2003 A1
20030219942 Choi et al. Nov 2003 A1
20030224107 Hey et al. Dec 2003 A1
20030224578 Chung et al. Dec 2003 A1
20030224600 Cao et al. Dec 2003 A1
20030232142 Bradley et al. Dec 2003 A1
20030232497 Xi et al. Dec 2003 A1
20030232554 Blum et al. Dec 2003 A1
20030235961 Metzner et al. Dec 2003 A1
20040005749 Choi et al. Jan 2004 A1
20040009307 Koh et al. Jan 2004 A1
20040009665 Chen et al. Jan 2004 A1
20040011504 Ku et al. Jan 2004 A1
20040013577 Ganguli et al. Jan 2004 A1
20040013803 Chung et al. Jan 2004 A1
20040014320 Chen et al. Jan 2004 A1
20040015300 Ganguli et al. Jan 2004 A1
20040016866 Huang et al. Jan 2004 A1
20040018304 Chung et al. Jan 2004 A1
20040018715 Sun et al. Jan 2004 A1
20040018723 Byun et al. Jan 2004 A1
20040018747 Lee et al. Jan 2004 A1
20040028952 Cartier et al. Feb 2004 A1
20040033698 Lee et al. Feb 2004 A1
20040043630 Vaartstra et al. Mar 2004 A1
20040046197 Basceri et al. Mar 2004 A1
20040048491 Jung et al. Mar 2004 A1
20040051152 Nakajima Mar 2004 A1
20040053484 Kumar et al. Mar 2004 A1
20040077183 Chung et al. Apr 2004 A1
20040187304 Chen et al. Sep 2004 A1
20040219784 Kang et al. Nov 2004 A1
20040224506 Choi et al. Nov 2004 A1
20040235285 Kang et al. Nov 2004 A1
20040256351 Chung et al. Dec 2004 A1
20050003075 Bradley et al. Jan 2005 A1
20050006799 Gregg et al. Jan 2005 A1
20050009325 Chung et al. Jan 2005 A1
20050059240 Choi et al. Mar 2005 A1
20050104142 Narayanan et al. May 2005 A1
20050124154 Park et al. Jun 2005 A1
Foreign Referenced Citations (257)
Number Date Country
4202889 Aug 1993 DE
196 27 017 Jan 1997 DE
198 20 147 Jul 1999 DE
0 344 352 Jun 1988 EP
0 387 892 Sep 1990 EP
0429 270 May 1991 EP
0 429 270 May 1991 EP
0442 290 Aug 1991 EP
0 799 641 Oct 1997 EP
954027 Nov 1999 EP
1 077 484 Feb 2001 EP
1142894 Oct 2001 EP
1167569 Jan 2002 EP
2 626 110 Jul 1989 FR
2 692 597 Dec 1993 FR
2355727 May 2001 GB
58-098917 Jun 1983 JP
58-100419 Jun 1983 JP
60-065712 Apr 1985 JP
61-035847 Feb 1986 JP
61-210623 Sep 1986 JP
62-069508 Mar 1987 JP
62-091495 Apr 1987 JP
62-141717 Jun 1987 JP
62-167297 Jul 1987 JP
62-171999 Jul 1987 JP
62-232919 Oct 1987 JP
63-062313 Mar 1988 JP
63-085098 Apr 1988 JP
63-090833 Apr 1988 JP
63-222420 Sep 1988 JP
63-222421 Sep 1988 JP
63-227007 Sep 1988 JP
63-252420 Oct 1988 JP
63-266814 Nov 1988 JP
64-009895 Jan 1989 JP
64-009896 Jan 1989 JP
64-009897 Jan 1989 JP
64-037832 Feb 1989 JP
64-082615 Mar 1989 JP
64-082617 Mar 1989 JP
64-082671 Mar 1989 JP
64-082676 Mar 1989 JP
01-103982 Apr 1989 JP
01-103996 Apr 1989 JP
64-1090524 Apr 1989 JP
01-117017 May 1989 JP
01-143221 Jun 1989 JP
01-154511 Jun 1989 JP
01-143233 Aug 1989 JP
01-245512 Sep 1989 JP
01-236657 Oct 1989 JP
01-264218 Oct 1989 JP
01-270593 Oct 1989 JP
01-272108 Oct 1989 JP
01-290221 Nov 1989 JP
01-290222 Nov 1989 JP
01-296673 Nov 1989 JP
01-303770 Dec 1989 JP
01-305894 Dec 1989 JP
01-313927 Dec 1989 JP
02-012814 Jan 1990 JP
02-014513 Jan 1990 JP
20-14513 Jan 1990 JP
02-017634 Jan 1990 JP
02-063115 Mar 1990 JP
02-074029 Mar 1990 JP
02-074587 Mar 1990 JP
02-106822 Apr 1990 JP
02-129913 May 1990 JP
02-162717 Jun 1990 JP
02-172895 Jul 1990 JP
J02-196092 Aug 1990 JP
02-203517 Aug 1990 JP
02-230690 Sep 1990 JP
02-230722 Sep 1990 JP
22-46161 Sep 1990 JP
02-246161 Sep 1990 JP
02-264491 Oct 1990 JP
02-283084 Nov 1990 JP
02-304916 Dec 1990 JP
03-02394 Jan 1991 JP
03-019211 Jan 1991 JP
03-022569 Jan 1991 JP
03-023299 Jan 1991 JP
03-044967 Feb 1991 JP
03-048421 Mar 1991 JP
03-070124 Mar 1991 JP
03-185716 Aug 1991 JP
03-208885 Sep 1991 JP
03-234025 Oct 1991 JP
32-34025 Oct 1991 JP
03-286522 Dec 1991 JP
03-286531 Dec 1991 JP
04-031391 Feb 1992 JP
04-031396 Feb 1992 JP
04-100292 Apr 1992 JP
04-111418 Apr 1992 JP
04-132214 May 1992 JP
04-132681 May 1992 JP
04-151822 May 1992 JP
04-162418 Jun 1992 JP
04-175299 Jun 1992 JP
04-186824 Jul 1992 JP
04-212411 Aug 1992 JP
04-260696 Sep 1992 JP
04-273120 Sep 1992 JP
04-291916 Sep 1992 JP
04-285167 Oct 1992 JP
04-325500 Nov 1992 JP
04-328874 Nov 1992 JP
50-29228 Feb 1993 JP
05-029228 Feb 1993 JP
05-047665 Feb 1993 JP
05-047666 Feb 1993 JP
05-047668 Feb 1993 JP
05-074717 Mar 1993 JP
05-074724 Mar 1993 JP
50-74724 Mar 1993 JP
05-102189 Apr 1993 JP
05-160152 Jun 1993 JP
05-175143 Jul 1993 JP
05-175145 Jul 1993 JP
05-182906 Jul 1993 JP
05-186295 Jul 1993 JP
05-206036 Aug 1993 JP
05-234899 Sep 1993 JP
05-235047 Sep 1993 JP
05-251339 Sep 1993 JP
05-270997 Oct 1993 JP
05-283336 Oct 1993 JP
05-291152 Nov 1993 JP
05-304334 Nov 1993 JP
05-343327 Dec 1993 JP
05-343685 Dec 1993 JP
06-045606 Feb 1994 JP
06-224138 May 1994 JP
61-77381 Jun 1994 JP
06-177381 Jun 1994 JP
06-196809 Jul 1994 JP
06-222388 Aug 1994 JP
06-230421 Aug 1994 JP
62-30421 Aug 1994 JP
06-252057 Sep 1994 JP
06-291048 Oct 1994 JP
07-070752 Mar 1995 JP
07-086269 Mar 1995 JP
70-86269 Mar 1995 JP
06-132236 Jul 1995 JP
07-300649 Nov 1995 JP
08-181076 Jul 1996 JP
08-245291 Sep 1996 JP
08-264530 Oct 1996 JP
09-260786 Oct 1997 JP
09-293681 Nov 1997 JP
10-190128 Jul 1998 JP
11-269652 Oct 1999 JP
2000-031387 Jan 2000 JP
200-058777 Feb 2000 JP
2000-058777 Feb 2000 JP
2000-068072 Mar 2000 JP
2000-319772 Mar 2000 JP
2000-138094 May 2000 JP
2000-218445 Aug 2000 JP
2001-020075 Nov 2000 JP
2000-340883 Dec 2000 JP
2000-353666 Dec 2000 JP
10-308283 Mar 2001 JP
2001-62244 Mar 2001 JP
2001-152339 Apr 2001 JP
2001-189312 May 2001 JP
2000-087029 Jun 2001 JP
2001-172767 Jun 2001 JP
2001-217206 Aug 2001 JP
2001-220287 Aug 2001 JP
2001-220294 Aug 2001 JP
2001-240972 Sep 2001 JP
2001-254181 Sep 2001 JP
2001-284042 Oct 2001 JP
2001-303251 Oct 2001 JP
2001-328900 Nov 2001 JP
10-188840 Dec 2001 JP
2000-212752 Nov 2002 JP
2001-111000 Dec 2002 JP
2001-172767 Oct 2003 JP
WO 90-02216 Mar 1990 WO
WO 91-10510 Jul 1991 WO
WO 93-02111 Feb 1993 WO
WO 96-17107 Jun 1996 WO
WO 9617107 Jun 1996 WO
WO 96-18756 Jun 1996 WO
WO 98-06889 Feb 1998 WO
WO 98-51838 Nov 1998 WO
WO 9901595 Jan 1999 WO
WO 99-01595 Jan 1999 WO
WO 99-29924 Jun 1999 WO
WO 9929924 Jun 1999 WO
WO 99-65064 Dec 1999 WO
WO 9965064 Dec 1999 WO
WO 00-11721 Mar 2000 WO
WO 00-11721 Mar 2000 WO
WO 00-15865 Mar 2000 WO
WO 0015865 Mar 2000 WO
WO 00-15881 Mar 2000 WO
WO 0016377 Mar 2000 WO
WO 00-16377 Mar 2000 WO
WO 0054320 Sep 2000 WO
WO 00-63957 Oct 2000 WO
WO 0063957 Oct 2000 WO
WO 0075964 Dec 2000 WO
WO00-79019 Dec 2000 WO
WO 0079576 Dec 2000 WO
WO 00-79576 Dec 2000 WO
WO 01-12891 Feb 2001 WO
WO 00-54320 Mar 2001 WO
WO 01-15220 Mar 2001 WO
WO 0115220 Mar 2001 WO
WO 01-17691 Mar 2001 WO
WO 0117692 Mar 2001 WO
WO 01-17692 Mar 2001 WO
WO 0127346 Apr 2001 WO
WO 01-27346 Apr 2001 WO
WO 01-27347 Apr 2001 WO
WO 0127347 Apr 2001 WO
WO 0129280 Apr 2001 WO
WO 01-29280 Apr 2001 WO
WO 01-29891 Apr 2001 WO
WO 0129891 Apr 2001 WO
WO 0129893 Apr 2001 WO
WO 01-29893 Apr 2001 WO
WO 0136702 May 2001 WO
WO 01-36702 May 2001 WO
WO 01-40541 Jun 2001 WO
WO 99-41423 Jun 2001 WO
WO 01-66832 Sep 2001 WO
WO 0166832 Sep 2001 WO
WO 0188972 Nov 2001 WO
WO 02-01628 Jan 2002 WO
WO 0201628 Jan 2002 WO
WO 02-08485 Jan 2002 WO
WO 0208485 Jan 2002 WO
WO 02-08488 Jan 2002 WO
WO 99-13504 Jan 2002 WO
WO 02-27078 Apr 2002 WO
WO 0231875 Apr 2002 WO
WO 02-43115 May 2002 WO
WO 0243115 May 2002 WO
WO 02-45167 Jun 2002 WO
WO 0245167 Jun 2002 WO
WO 02-45871 Jun 2002 WO
WO 0246489 Jun 2002 WO
WO 0245871 Aug 2002 WO
WO 02067319 Aug 2002 WO
WO 02-067319 Aug 2002 WO
WO 02068525 Aug 2002 WO
WO03028090 Apr 2003 WO
WO 03044242 May 2003 WO
Related Publications (1)
Number Date Country
20050106865 A1 May 2005 US
Provisional Applications (2)
Number Date Country
60478663 Jun 2003 US
60346086 Oct 2001 US
Continuation in Parts (4)
Number Date Country
Parent 10193333 Jul 2002 US
Child 10865042 US
Parent 09965370 Sep 2001 US
Child 10193333 US
Parent 09965373 Sep 2001 US
Child 09965370 US
Parent 09965369 Sep 2001 US
Child 09965373 US