Not applicable
Not applicable
1. Field of Invention
The present invention relates generally to semiconductor technology and more particularly, to a system and method for directly mounting semiconductor chips to a substrate such as a printed circuit board.
2. Brief Description of the Prior Art
A typical surface mountable semiconductor component consists of a semiconductor chip attached to a lead frame, wire bonded, and encapsulated into a plastic package with exposed leads. Soldering the leads to e.g., a printed circuit board provides mechanical, thermal, and electrical connections to the semiconductor chip.
FIG. 1—Prior Art
FIG. 2—Prior Art
Flip chip bump processing was developed to address the above shortcomings of wire bond chips. Flip chip bump assembly also called Direct Chip Attach assembly, is the process of directly attaching the chip face-down to a substrate, board or carrier, by means of conductive bumps on the chip.
Several varieties of flip chip processing exist today, including solder bump, copper pillar bump, plated bump, gold stud bump and adhesive bump.
As shown in
A further disadvantage is that the above flip chip processes involve multiple steps and require specialized equipment which increases the costs of the product.
The present invention addresses the aforementioned limitations of the prior art by providing, in accordance with one aspect of the present invention, a semiconductor chip for directly connecting to a carrier, having a metal layer applied to a top surface of the chip; a passivation layer applied over the metal layer such that portions of the passivation layer is selectively removed to create one or more openings (“bond pads”) exposing portions of the metal layer and one or more solderable metal contact regions formed on each of the one or more openings. The solderable metal contact regions electrically connect to the carrier when the chip is positioned face down on the carrier, supplied with a thin layer of solder and heated.
In accordance with additional aspects of the present invention the solderable metal contact regions are approximately 1 μm thick and comprise either TiCu, TiNiAg or AlNiVCu metal layer combinations.
These and other aspects, features and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings.
Exemplary embodiments of the present invention are now briefly described with reference to the following drawings:
The aspects, features and advantages of the present invention will become better understood with regard to the following description with reference to the accompanying drawings. What follows are preferred embodiments of the present invention. It should be apparent to those skilled in the art that the foregoing is illustrative only and not limiting, having been presented by way of example only. All the features disclosed in this description may be replaced by alternative features serving the same purpose, and equivalents or similar purpose, unless expressly stated otherwise. Therefore, numerous other embodiments of the modifications thereof are contemplated as falling within the scope of the present invention as defined herein and equivalents thereto.
If the solderable metal contact regions 310 include the optional solder layer, it is not necessary to apply the solder paste 410. The solder layer, once reflowed, will be sufficient to attach the chip to the printed circuit board, further simplifying the assembly process.
A semiconductor chip 300 of the present invention may be fabricated as follows: using conventional techniques, first, a semiconductor chip is prepared having at least one aluminum layer on the surface of the chip. Next, a passivation layer is applied over the surface of the chip, portions of which is selectively removed to create one or more openings or bond pads to expose a top aluminum layer. Next, solderable metal contact regions 310 are formed on each of the bond pads using conventional sputtering, plating, and patterning processes. Optionally, a thin film of solder may be applied over the solderable metal contact regions to facilitate direct chip attachment to a substrate.
The present invention is applicable to all types of semiconductor chips, including integrated circuits, discrete semiconductor devices, sensors, micro-machined structures, etc. The present invention has several advantages over existing techniques including the following: 1) simplicity of semiconductor packaging; 2) ease of manufacturing; 3) simplicity of mounting device to the printed circuit board; 4) enhanced thermal performance of the package; 5) very short thermal path from the semiconductor chip to the printed circuit board; 6) contact areas can be maximized to increase area of thermal path; thereby reducing the thermal resistance; 7) very low electrical resistance from chip surface to the printed circuit board; 8) short current path from chip to printed circuit board; 9) contact areas can be increase to further minimize the series resistance; and 10) no wire bond or lead frame inductance and resistance.
Sources 110 and drain 120 are preferably n-type dopants implants into P substrate 105. It will be appreciated that the variations of the design of the sources and drains are known to one skilled in the art and within the scope of the present invention. For example, sources 110 and drain 120 could be p-type dopant implants into an N substrate 105
As another example
Drain 120B, in this example, is comprised of region 124 doped as N+ and regions 124 and 126 doped as N. As with source 110B, it is within the scope of this invention and the skill of one skilled in the art to vary the doping.
Referring back to
Source runners 140 and drain ruiners 170 formed on second interconnect layer and is preferably comprised of metal, although other conductive materials may be used. Source runner 160 interconnects source runners 140 using Vias 162. Preferably, source runners 160 are in substantially parallel orientation with respect to source 110, although other orientations that are not parallel may be used.
Drain runners 150 are interconnected by drain runners 170 using vias 172. Preferably, drain runner 170 is substantially parallel orientation with respect to drain 120, although other orientations that are not parallel may be used.
Like the first interconnect layer, only one source and drain runners 160 and 170, respectively are shown, but in the preferred embodiment multiple sources and drain runners 160 and 170 would be used and are, preferably, interleaved with each other.
Although the runners shown in
In the preferred embodiment the vias from conductive interconnects and are comprised preferably out of tungsten, although other conductive material may be used. These are formed in a manner that are well-known to those skilled in the art.
In another embodiment, no second interconnect layer is used for runners. As an example,
Referring now to
Referring to
Source runners 140 and drain runners 150 are laid out in substantially horizontal orientation. Source runners 160 overlay source runners 140 and are interconnected using vias 172. Source pad-solderable metal contact regions 180 is shown in
b shows the top plan view of the embodiment of
Source runners 140 and drain runners 150 are laid out substantially horizontal orientation. Source runners 160 overlay source runners 140 and interconnect source runners 140 using vias 162. Drain runners 170 overlay drain runners 150 and interconnect drain runners 170 using vias 172. Drain pad-solderable metal contact regions 190 is shown overlaying source runners 160 and drain runners 170, but is only connected to drain runners 170 by vias 192.
b shows an alternative layout where each source pad-solderable metal contact regions 410 and drain pad-solderable metal contact regions 420 are shaped stripes and are interleaved with each other. In the preferred embodiment gate pad-solderable metal contact regions 430 would be placed with a shortened source pad 410 or shortened drain pad-solderable metal contact regions 420 as needed.
Having now described preferred embodiments of the invention, it should be apparent to those skilled in the art that the foregoing is illustrative only and not limiting, having been presented by way of example only. All the features disclosed in this specification (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same purpose, and equivalents or similar purpose, unless expressly stated otherwise. Therefore, numerous other embodiments of the modifications thereof are contemplated as falling within the scope of the present invention as defined by the appended claims and equivalents thereto.
This application claims the benefit of priority to U.S. Application Nos. 60/529,166 and 60/544,702, filed Dec. 12, 2003 and Feb. 12, 2004, respectively, the entire disclosures of which are hereby incorporated by reference as if set forth at length herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2004/044097 | 12/11/2004 | WO | 00 | 8/18/2008 |
Number | Date | Country | |
---|---|---|---|
60529166 | Dec 2003 | US | |
60544702 | Feb 2004 | US |