Claims
- 1. A method for populating a circuit board with a three dimensional array of semiconductor chips comprising the steps of:
a) preparing a chip receiving side of a plurality of chip carriers to receive chips and passive components; b) positioning said chip carriers over a first layer of chips positioned on said board so that said chip carriers make contact with preselected electrical contact points on said circuit board; c) placing on each of said chip carriers a semiconductor chip with passive components; and d) interconnecting in a permanent fashion said chips, passive components and chip carriers to said circuit board.
- 2. The method of claim 1 further comprising the steps of:
a) verifying electrical contacts on a plurality of chip carriers are properly aligned for an assembly process; b) preparing a circuit board for a chip assembly process; and c) populating said circuit board with a first layer of chips and passive components said chips and passive components being positioned to make contact with preselected predetermined electrical contact points.
- 3. The method of claim 1 including the additional step of holding said plurality of chip carriers in a chip carrier pallet wherein said chip carriers are positioned in a flat matrix array with the chip receiving side of each of said plurality of chip carriers are exposed at a top of said pallet so that during said stenciling step said chip carrying side of each chip can be accessed and so that during said positioning step each chip can be retrieved during said positioning step.
- 4. The method of claim 3 wherein said step of holding said chip carriers in a chip carrier pallet includes providing a matrix of chambers open at the top side and bottom side of said pallet, said pallet having a protective barrier that protects the chip carrier in a recessed position when the chip carriers are positioned in a chambers.
- 5. The method of claim 4 including the step of securing and positioning said chip carriers during said stenciling process with a print fixture pedestal having a matrix like array of protrusions, each protrusion being positioned and sized to fit into the bottom of a chamber in said pallet and engage securely but detachably the bottom side of a chip carrier in said chamber and thereby lift said chip carrier above said protective barrier during said stenciling process, assure said chip carrier will disengage from said stenciling process when completed and return said chip carriers to said recessed position.
- 6. The method of claim 5 wherein said step of securing said chip carrier comprises said protrusion securing said bottom side of said chip carrier by a vacuum created by an aperture at the top of said protrusion surface which abuts against the bottom side of said chip carrier.
- 7. A system for populating a circuit board with a three dimensional array of semiconductor chips comprising:
a) a plurality of chip carriers attachable to a circuit board with space for a chip to be positioned directly on said circuit board beneath each chip carrier as well as for positioning a chip on top of said chip carrier to thereby create a three dimensional array of chips on said circuit board; and b) a pallet for holding and moving said plurality of chip carriers during a circuit board assembly process, said pallet having a matrix of chambers in a frame like form with the chambers being open at least at a top side of said pallet, each chamber being formed to hold a chip carrier during the circuit board assembly process, said chip carriers being positioned in each of said chambers of the pallet with a top, chip receiving side, of said chip carrier facing out from the top of said pallet to thereby make said top side of said chip carrier accessible during the circuit board assembly process.
- 8. The system of claim 7 further including a protective barrier to protect said chip carriers from unintended alteration during said assembly process.
- 9. The system of claim 8 wherein:
a) said chambers of said pallet are also open at a bottom side of said pallet and said protective barrier comprises a plurality of abutments around the outside top periphery of each of said chambers, said chip carriers having retaining flanges to allow them to rest in a chamber on said pallet and not fall through and said abutments being positioned such that when a chip carrier is in said chamber its top is below the top of said abutments and is thereby protected by said abutments from unintentional alteration; and b) said system further comprising a print fixture pedestal having a matrix like array of raised portions with the matrix array of raised portions being positioned and formed such that each raised portion corresponds to a chamber of said pallet so that when said print fixture pedestal is positioned under said pallet with said raised portions facing said pallet each raised portion fits into the bottom opening of an adjacent chamber, a circumference of said raised portion being less than the inside circumference of said chamber so that a top surface of said raised portion can positioned up against the bottom surface of a chip carrier in said chamber and securely but detachably hold said chip carrier during a circuit board assembly process.
- 10. The system of claim 9 wherein said raised portions each have an aperture at its top side which abuts against the bottom side of a chip carrier positioned in said chamber so that a vacuum can be created between said raised portion and said chip carrier to securely but detachably hold said chip carrier during said stenciling process.
- 11. The system of claim 9 wherein said print fixture pedestal during said circuit board assembly process is attached to a moving and positioning mechanism during said circuit board assembly process so that it can be positioned under said pallet with chip carriers to securely hold said chip carriers during said stenciling step and properly position said chip carriers during said stenciling step and assure that said chip carriers disengage at the completion of said stenciling step.
- 12. The system of claim 7 further including a mechanism to move and position said pallet during said assembly process so that said plurality of chip carriers held by said pallet can be prepared to receive a chip during said assembly process and easily accessed, removed from said pallet and positioned on said circuit board over chips positioned directly on said circuit board with chips positioned on each chip carrier to thereby create a three dimensional array of chips on said circuit board.
- 13. An apparatus for positioning and securely but detachably holding a chip module during a semiconductor fabrication process comprising:
a pallet for holding chip modules said pallet having a two dimensional matrix of chambers, said chambers being open at a first and second opposing parallel sides of said pallet, said chambers having said chambers being sized to accept and hold a chip carrier and said chambers further comprising a protective barrier to protect a chip carrier positioned within said chamber; a print fixture pedestal with a two dimensional matrix of raised portions that match said matrix of said chambers of said pallet such that said raised portions are sized such that said raised portions fit on a one for one basis into said chambers of said pallet from said second side of said pallet; and wherein when said chambers are filled with chip modules and a said print fixture pedestal is joined with said pallet at said pallets second side said raised portions elevate chip modules located in said chambers to a work position from which they can be worked on from said first side of said pallet.
- 14. The apparatus of claim 13 wherein said raised portions have an opening at a top of each which leads into an interior space in said print fixture pedestal and when said print fixture pedestal is joined to said pallet the top of said raised portions are positioned against a bottom of a chip module located in each chamber and a vacuum can be created between said top of said raised portion and said chip module bottom to detachably but securely hold said chip module while it is being worked on, the vacuum being created by attaching a bottom portion of said print fixture pedestal to a vacuum machine through a hollow shaft that attaches at an opening at the bottom of said print fixture pedestal said opening leading into the interior space of said print fixture pedestal.
- 15. The apparatus of claim 13 wherein said chip module is a chip carrier.
- 16. The apparatus of claim 13 wherein when said chambers of said pallet have chip modules positioned in them and the print fixture pedestal is not joined to said pallet the top of the modules are completely concealed in said chamber below a top surface of said first side of said pallet and when said print fixture pedestal is joined to said pallet to thereby raise the modules the top of each module projects above the top surface of the first side of said pallet.
- 17. The system of claim 13 wherein said protective barrier is a series of raised abutments located around the top outside edge of said chamber and said chip carriers having retaining flanges to allow said chip carriers to rest in the chamber below the height of the abutments.
RELATED APPLICATIONS
[0001] The present application claims priority under 35 USC §119(e) from United States provisional application Ser. No. 60/275,843, filed Mar. 14, 2001 and entitled “A Method and Apparatus for Fabricating a Circuit Board with a Three Dimensional Surface Mounted Array of Semiconductor Chips”.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60275843 |
Mar 2001 |
US |