The present invention relates to a method for manufacturing a printed wiring board, in which an electric device is embedded in an insulating base member, and to the printed wiring board manufactured by the method.
Conventionally, a printed wiring board, in which an electric device is embedded in an insulating base member for achieving high density packaging of the electric devices, is known.
For example, there is an art disclosed in JP-A-11-312868. In the art, a plurality of first resin films that make up an insulating base member are formed. The first resin films include thermosetting resin in B stage. A plurality of vias are formed in each first resin film. A plurality of conductive layers are formed on a surface of each first resin film. Then, a second resin film is formed. The second resin film has a glass transition temperature higher than the curing temperature of the first resin films. An electric device sealed with resin is mounted on the second resin film. The second resin film is stacked with and pressed with the first resin films to form an integrated body of the first and second resin films. Subsequently, the thermosetting resin included in the first films is cured by heating the integrated body to manufacture a printed wiring board, in which the conductive layers are electrically interconnected by the vias, the electric device is electrically connected to the conductive layers, and the electric device is embedded in the insulating base member.
However, in the art of the publication, there is a difficulty in the alignment of the electric device with the insulating base member, which is formed when the thermosetting resin included in the first films is cured, in the printed wiring board because the second resin film, on which the electric device is mounted, is clamped between and stacked with the first resin films. Therefore, a relatively great deviation in the alignment can cause a defect in electrical contact between the electric device and the vias.
There is another art disclosed in JP-A-4-356998. In the art, a recess is formed by counter boring in an insulating base member of a double-sided board, which makes up an inner layer board of a multilayered board. Then, an electric device is placed in the recess and soldered. Afterward, the double-sided board, on which electric device is soldered, is multilayered by stacking and pressing pre-pregs on both surface of the double-sided board to manufacture a printed wiring board with the embedded electric device.
However, in the art of JP-A-4-356998, the manufacturing process is complicated and the number of manufacturing steps increases because the pre-pregs are separately piled on the double-sided board.
The present invention has been made in view of the above aspects with an object to provide a method for manufacturing a printed wiring board having an embedded electric device, with which the electric device is readily aligned with an insulating base member of the printed wiring board and with which the manufacturing process can be simplified, and to provide the printed wiring board manufactured by the method.
The method includes steps of forming an opening in a first resin film made of thermoplastic resin, stacking the first resin film and a plurality of second resin films, which are made of the thermoplastic resin and on which a plurality of conductive layers are formed, inserting an electric device, which has substantially the same size as the opening, in the opening, and bonding the stacked first and second resin films together by pressing and heating. When the stacked first and second resin films are pressed and heated, a plurality of electrodes of the electric device are electrically connected to the conductive layers while the first and second resin films are plastically deformed to seal the electric device.
Alternatively, the method includes steps of forming a recess or an opening in a sheet member made of thermoplastic resin, stacking resin films, which are made of thermoplastic resin and on which a plurality of conductive layers are formed, placing the sheet member on an outer surface of or in a stacked body, which is formed in the step of stacking, of the resin films, inserting an electric device in the recess or the opening, and bonding the resin films and the sheet member by pressing and heating. When the resin films and the sheet member are pressed and heated, a plurality of electrodes of the electric device are electrically connected to the conductive layers while the thermoplastic resin is plastically deformed to seal the electric device.
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
The present invention will be described in detail with reference to various embodiments.
First Embodiment
As shown in
After the conductive layers 22 are formed as shown in
Other than the carbon dioxide laser, excimer laser and so on may be used for forming the via-holes 24. Instead of laser, other means such as drilling may be used. However, machining by laser beam is preferred because the machining enables the formation of a via-hole with a relatively fine diameter and because the damage that the conductive layers 22 incur is relatively small.
After the via-holes 24 are formed as shown in
After the conductive paste 50 is printed and packed in the via-holes 24 of the single-sided conductive layer film 21 by a screen-printing machine using a metal mask, the terpineol is evaporated at 140–160° C. for about 30 minutes. In
Instead of terpineol, other organic solvents may be used to make the mixture pasty. Desired organic solvents have a boiling point of 150–300° C. Organic solvents having a boiling point of 150° C. or lower are likely to cause a problem that time-dependent variation of the viscosity of the conductive paste 50 becomes relatively large. On the other hand, organic solvents having a boiling point higher than 300° C. have a problem that the evaporation of the solvents takes relatively long time.
The metal particles included in the conductive paste 50 preferably have a mean particle size of 0.5–20 micrometers and a specific surface of 0.1–1.5 m2/g. In the case that the metal particles have a mean particle size smaller than 0.5 micrometers or a specific surface greater than 1.5 m2/g, relatively plenty of organic solvent is required for providing the conductive paste 50 with suitable viscosity for packing the conductive paste 50 into the via-holes 24. The conductive paste 50 that contains relatively plenty of organic solvent requires relatively long time for the evaporation of the solvent. If the evaporation is insufficient, relatively plenty of gas is generated when the conductive paste 50 is heated during an interlayer connecting period, which is described later, and voids tend to be generated in the via-holes 24. Therefore, the reliability of interlayer connection, which is described later, is lowered.
On the other hand, in the case that the metal particles have a mean particle size greater than 20 micrometers or a specific surface smaller than 0.1 m2/g, it becomes difficult to pack the conductive paste 50 into the via-holes 24. In addition, the metal particles tend to be unevenly distributed, so it is difficult to form conductive compounds 51, which is described later, made of homogeneous alloy when the conductive paste 50 is heated. Thus, it becomes difficult to ensure the reliability of the interlayer connection. Before the conductive paste 50 is packed into the via-holes 24, the surfaces of the conductive layers 22, which are located at the bottoms of the via-holes 24, may be lightly etched or chemically reduced to facilitate the connection, which is described later, between the conductive layers 22 and the conductive compounds 51 at the bottoms of the via-holes 24.
As shown in
The opening 35 in
After the opening 35 is formed in the single-sided conductive layer film 31 and the conductive paste 50 is packed and evaporated in the via-holes 24, a plurality of single-sided conductive layer films 21, 31 are stacked, as shown in
The single-sided conductive layer films 31, which have the opening 35 at the same position, are stacked such that the dimension of a space 36, which is formed by a plurality of openings 35 (two openings in
When the single-sided conductive layer films 21, 31 are stacked, the electric device 41, which is a chip component such as a resistor, a condenser, a filter, or an 1C, is inserted in the space 36. As shown in
After the single-sided conductive layer films 21, 31 and the heat sink 46 are stacked as shown in
At the same time, a plurality of pairs of conductive layers 22, which are separated by a resin film 23, are electrically connected by the conductive compounds 51, which are made by sintering and solidifying the conductive paste 50 in the via-holes 24, and the electrodes 42 of the electric device 41 and the conductive layers 22 are also connected to form a multilayer printed wiring board 100, in which the electric device 41 is embedded. The conductive compounds 51 are a material for electrical connection, and each via-hole 24 and each conductive compound 51 make up each via in the multilayer printed wiring board 100.
Each pair of conductive layers 22 is electrically connected by each via on the basis of the same mechanism. The conductive paste 50 packed and evaporated in the via-holes 24 is in the state that tin particles and silver particles are mixed. When the conductive paste 50 is heated at 250–350° C., the tin particles melt, stick to, and cover the surface of the silver particles because the melting point of the tin particles and that of the silver particles are 232° C. and 961° C., respectively.
As the heating is continued in the state that the tin particles and the silver particles are mixed, fused tin begins defusing from the surface of the silver particles and an alloy (melting point 480° C.) is formed between tin and silver. Due to the formation of the alloy, the conductive compounds 51 made of the alloy are formed in the via-holes 24.
When the conductive compounds 51 are formed in the via-holes 24, each conductive compound 51 is pressed to each surface, which is located at each bottom of the via-holes 24, of the conductive layers 22. Therefore, the tin component in the conductive compound 51 and the copper component in the conductive layers 22 diffuse mutually, and a solid phase diffusion layer is formed at each boundary between the conductive compounds 51 and the conductive layers 22.
Each electrode 42 of the electric device 41 is made of a metal such as copper or nickel. The surface of each electrode 42 is plated with tin and so on. On the basis of substantially the same mechanism as in the electrical connection between the conductive compounds 51 and the conductive layers 22, each electrode 42 is electrically connected to one conductive layer 22 by one conductive compound 51, by one solid phase diffusion layer made at one boundary between the conductive compound 51 and the conductive layer 22, and by the other solid phase diffusion layer made at the other boundary between the conductive compound 51 and the electrode 42.
The modulus of elasticity of the resin films 23 is reduced to about 5–40 MPa when the stacked body shown in
Therefore, the electric device 41 is sealed by the insulating base member 39, which is formed by integrating and deforming the resin films 23 of the single-sided conductive layer films 21, 31, as shown in
The size of the opening 35 is set to give a clearance of 20 micrometers or greater and equal to or smaller than the thickness of the resin films 23. This is because if the clearance is smaller than 20 micrometers, it is difficult to insert the electric device 41 in the opening 35 and because if the clearance is greater than the thickness of the resin films 23, it is difficult to seal completely the electric device 41 when the resin films 23 are deformed by being pressed and heated.
In
On the other hand, as long as the dimension of the space 36 is substantially equal to or smaller than the thickness of the electric device 41, the surfaces above and below the region where the electric device 41 is embedded are planar or convex, as shown in
According to the manufacturing method and the structure provided by the manufacturing method described above, the printed wiring board 100, in which the electric device 41 is relatively precisely positioned in the insulating base member 39, relatively surely electrically connected to the conductive layers 22, and relatively surely sealed by the insulating base member 39, is available. The printed wiring board 100 having the heat sink 46 at the lower surface as viewed in
In addition, the integration of the single-sided conductive layer films 21, 31 and the heat sink 46, the electrical connection between each pair of conductive layers 22, and the electrical connection between the electric device 41 and the conductive layers 22 are implemented simultaneously by being pressed and heated the stacked body. Therefore, the number of fabrication steps of the printed wiring board 100 can be reduced and so can the fabrication cost.
Second Embodiment
As shown in
Specifically, as shown in
Then, the single-sided conductive layer film 21, to which the electric device 41, other single-sided conductive layer films 21, 31, and the heat sink 46 are stacked, as shown in
Dimensional relations between the opening 35 and the electric device 41 and between the space 36 and the electric device 41 are the same as in the first embodiment.
By the manufacturing method of the second embodiment, the printed wiring board 100 having the same structure as in the first embodiment is available. According to the second embodiment, the electric device 41 is connected to the conductive layers 22 of the single-sided conductive layer film 21 before all the single-sided conductive layer films 21 are stacked. Therefore, the electric device 41 is readily inspected using the conductive layers 22, which are electrically connected to the electric device 41, of the single-sided conductive layer film 21 even if the electric device 41 is relatively extremely small. In addition, because the electric device 41 can be inspected before being embedded, it is possible to avoid manufacturing a waste inferior printed wiring board 100 even if the electric device 41 is inferior.
Third Embodiment
The same single-sided conductive layer films 21, which have no opening, as the ones in the above embodiments are formed using steps shown in
The depth of each recess 82 is set to be substantially equal to or smaller than the thickness of the electric device 41 in the vertical direction of
After the sheet member 81 is formed and the conductive paste 50 is packed and evaporated in the via-holes 24 of the single-sided conductive layer films 21, as shown in
Specifically, the single-sided conductive layer films 21 are stacked such that each side having the conductive layers 22 faces upward as viewed in
When the single-sided conductive layer films 21 and the sheet member 81 are stacked, an electric device 41, which is a chip component such as a resistor, a condenser, a filter, or an IC, is placed in each space 83 defined by each recess 82, as shown in
Subsequently, the stacked body is pressed and heated from two surfaces of the stacked body by the vacuum hot-press machine to form a multilayer printed wiring board 100. Specifically, the piled body is pressed under 1–10 MPa pressure while being heated at 250–350° C. for 10–20 minutes. After the piled body is pressed, each single-sided conductive layer film 21, the sheet member 81, and the heat sink 46 are bonded together, as shown in
The modulus of elasticity of the resin films 23 and the sheet member 81 is reduced to about 5–40 MPa when being pressed and heated by the vacuum hot-press machine. Therefore, the sheet member 81 around the recesses 82 and the resin film 23 above the recesses 82 are deformed to protrude toward the recesses 82. That is, the resin film 23 and the sheet member 81, which surround the spaces 83, are protruded toward the spaces 83.
Therefore, the electric device 41 is sealed by the insulating base member 39, which is made by integrating and deforming the resin films 23 and the sheet member 81. The modulus of elasticity of the resin films 23 and the sheet member 81 while being pressed and heated is preferably 1–1000 MPa. If the modulus of elasticity is greater than 1000 MPa, it is difficult to heat-seal the resin films 23 and the sheet member 81 and difficult to deform the resin films 23 and the sheet member 81. On the other hand, if the modulus of elasticity is smaller than 1 MPa, the resin films 23 and the sheet member 81 flow too readily to form the printed board 100.
The size of each recess 82 is preferably set to provide a clearance of 20 micrometers or greater and equal to or smaller than the depth of the recesses 82 (0.85 mm in
The thickness of the electric device 41 is 0.9 mm, and each recess 82 has a depth of 0.85 mm in
On the other hand, as long as the depth of the recesses 82 is substantially equal to or smaller than the thickness of the electric device 41, the surfaces above or below the region where the electric device 41 is embedded are planar or convex, as shown in
According to the manufacturing method and the structure provided by the manufacturing method of the third embodiment, the stacking and integration of the single-sided conductive layer films 21, the sheet member 81, and the heat sink 46, the electrical interconnection between the conductive layers 22, and the electrical connection of the electric device 41 to the conductive layers 22 are implemented simultaneously by being pressed and heated. Therefore, the fabrication process of the printed wiring board 100 can be simplified, and the number of fabrication steps can be reduced. In addition, even in the case that a large electric device needs to be embedded, a sheet member 81 having a size corresponding to that of the large electric device can be molded and used, so the number of fabrication steps can be reduced more than when the insulating base member 39 is formed using only the resin film 23
According to the manufacturing method and the structure provided by the manufacturing method of the third embodiment, the printed wiring board 100, in which the electric device 41 is relatively precisely positioned in the insulating base member 39, relatively surely electrically connected to the conductive layers 22, and relatively surely sealed in the insulating base member 39, is available. The printed wiring board 100 having the heat sink 46 at the lower surface as viewed in
Modifications
In the first and second embodiments, neither stacking configurations nor the number of the single-sided conductive layer films 21, 31 are limited to the ones shown in
In the second embodiment, as shown in
Alternatively, another connection shown in
In the third embodiment, neither stacking configurations nor the number of the single-sided conductive layer films 21 and the sheet member 81 are limited to the one shown in
In
In the above embodiments and modifications, the resin films 23 and the sheet member 81 are made of a mixture of 65–35 weight % polyetheretherketone resin and 35–65 weight % polyetherimide resin. However, the resin films 23 and the sheet member 81 may be formed by adding nonconductive filler to polyetheretherketone resin and polyetherimide resin, or may be only made of polyetheretherketone (PEEK) or polyetherimide (PEI). In addition, thermoplastic resins such as polyphenylene sulfide (PPS), thermoplastic polyimide, or what is called liquid crystal polymer may be used as well. Resin films, which have a modulus of elasticity of 1–1000 MPa at the heating temperature when being pressed and heated and thermal resistance needed at a later soldering step, are preferably used.
In the third embodiment, different types of thermoplastic resins may be used for the resin films 23 and the sheet member 81, respectively. However, using a common material is advantageous when adhesion between and recycling of the resin films 23 and the sheet member 81 are taken into consideration.
In the above embodiments and modifications, the surface of the electric device 41 may be processed for improving the adhesion with the resin films 23, or may be coated with an adhesive.
In the above embodiments and modifications, the heat sink 46 is formed entirely on one surface of the printed wiring board 100. However, the heat sink 46 may be formed partially on the surface or may be formed on both surfaces. As a matter of course, unless the improvement in heat release is required, the printed wiring board 100 does not need the heat sink 46. A so-called bonding sheet such as a polyetherimide sheet, a thermosetting resin sheet containing heat conductive filler, or a thermoplastic resin sheet containing heat conductive filler may be adhered to a surface of the heat sink 46, at which the heat sink 46 is connected to the insulating base member 39, in order to improve adhesion or heat conductivity.
Number | Date | Country | Kind |
---|---|---|---|
2001-179118 | Jun 2001 | JP | national |
2001-199392 | Jun 2001 | JP | national |
2001-204023 | Jul 2001 | JP | national |
2002-62394 | Mar 2002 | JP | national |
This application is a divisional application of U.S. patent application Ser. No. 10/166,731, which was filed on Jun. 12, 2002, now U.S. Pat. No. 6,680,441.
Number | Name | Date | Kind |
---|---|---|---|
4737395 | Mabuchi et al. | Apr 1988 | A |
4751126 | Oodaira et al. | Jun 1988 | A |
5018051 | Yamada et al. | May 1991 | A |
5161093 | Gorczyca et al. | Nov 1992 | A |
5336928 | Neugebauer et al. | Aug 1994 | A |
5401688 | Yamaji et al. | Mar 1995 | A |
5773536 | Mizoguchi et al. | Jun 1998 | A |
5808873 | Celaya et al. | Sep 1998 | A |
5866950 | Iwasaki et al. | Feb 1999 | A |
6017971 | Mizoguchi et al. | Jan 2000 | A |
6031723 | Wieloch | Feb 2000 | A |
6038133 | Nakatani et al. | Mar 2000 | A |
6051093 | Tsukahara | Apr 2000 | A |
6163456 | Suzuki et al. | Dec 2000 | A |
6180881 | Isaak | Jan 2001 | B1 |
6184577 | Takemura et al. | Feb 2001 | B1 |
6239496 | Asada | May 2001 | B1 |
6292366 | Platt | Sep 2001 | B1 |
6338767 | Nakatani et al. | Jan 2002 | B1 |
6359235 | Hayashi | Mar 2002 | B1 |
6404052 | Kurita et al. | Jun 2002 | B1 |
6404643 | Chung | Jun 2002 | B1 |
6449836 | Miyake et al. | Sep 2002 | B1 |
6469374 | Imoto | Oct 2002 | B1 |
6512182 | Takeuchi et al. | Jan 2003 | B1 |
6531022 | Tsukahara | Mar 2003 | B1 |
6555763 | Hirasawa et al. | Apr 2003 | B1 |
6625880 | Nabemoto et al. | Sep 2003 | B1 |
6680441 | Kondo et al. | Jan 2004 | B1 |
6784375 | Miyake et al. | Aug 2004 | B1 |
6955948 | Asahi et al. | Oct 2005 | B1 |
6983535 | Crockett et al. | Jan 2006 | B1 |
Number | Date | Country |
---|---|---|
A-2-150098 | Jun 1990 | JP |
A-3-191596 | Aug 1991 | JP |
A-04-163988 | Jun 1992 | JP |
A-4-356998 | Dec 1992 | JP |
A-6-120670 | Apr 1994 | JP |
A-07-263867 | Oct 1995 | JP |
A-11-126978 | May 1999 | JP |
A-11-145381 | May 1999 | JP |
11-233904 | Aug 1999 | JP |
A-11-312868 | Nov 1999 | JP |
A-2000-151112 | May 2000 | JP |
A-2000-223837 | Aug 2000 | JP |
A-2001-119147 | Apr 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040091687 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10166731 | Jun 2002 | US |
Child | 10701441 | US |