1. Field of the Invention
The present invention generally relates to an electronic device and a process thereof and, in particular, to a semiconductor device and a method of bump formation.
2. Description of Related Art
The flip chip technology is a packaging technology frequently applied in the chip scale packaging (CSP). The flip chip technology diminishes the packaging area since it employs area array for the disposition of contact pads on a chip, and it shortens the path of signal transmission since it employs bumps to electrically connect the chip with a carrier.
Generally speaking, there is a passivation layer covering the surface of the chip and exposing aluminium (Al) contact pads of the chip. When the flip chip technology is proceeded, a under bump metal (UBM) is formed on the passivation layer and the contact pads first. Next, a photoresist layer is formed on the UBM, but the photoresist layer exposes the part of the UBM which is located over the contact pads. photoresist layer exposes the part of the UBM which is located over the contact pads. Gold (Au) bumps are then formed on the part of the UBM located over the contact pads. After that, the photoresist layer is stripped. Subsequently, the other part of the UBM is etched out which is not located between the Au bumps and the Al contact pads. To prevent the over-etching of the UBM between the bumps and the Al contact pads, the Au bumps have to overlap the passivation layer to an enough degree, which makes the roughness of the top surface of the Au bump increases. For example, the edge of the top surface of the Au bump protrudes away from the Al contact pad. When the Au bumps is bonded to the carrier through an anisotropic conductive film (ACF), the increased roughness of the top surface makes some portions of the Au bump unable to compress the conductive particles in the ACF, thus reducing the conductivity between the chip and the carrier.
Accordingly, the present invention is directed to a semiconductor device the bump of which has a flatter surface.
The present invention is directed to a method of bump formation which forms a bump with a flatter surface on a semiconductor substrate.
According to an embodiment of the present invention, a semiconductor device including a semiconductor substrate, a contact pad, a passivation layer, a bump, and a seeding layer is provided. The semiconductor substrate has an active surface. The contact pad is disposed on the active surface. The passivation layer is disposed on the active surface and exposes a central part of the contact pad. The seeding layer is disposed on the exposed central part of the contact pad. The bump has a top surface, a bottom surface opposite to the top surface, and a side surface connecting the top surface and the bottom surface. The bump is disposed on the seeding layer. The bump is placed in contact with the seeding layer by the bottom surface and by part of the side surface.
According to another embodiment of the present invention, a method of bump formation including the following steps is provided. First, a semiconductor substrate having an active surface is provided, in which a contact pad is disposed on the active surface, and a passivation layer is disposed on the active surface and has an opening exposing the contact pad. Next, a first photoresist layer is formed on the passivation layer, in which the first photoresist layer has a top surface and at least one side wall connected with the top surface, and the side wall defines an opening exposing a part of the contact pad. After that, a seeding layer is formed on the top surface, the side wall, and the contact pad. Subsequently, a second photoresist layer is formed on a part of the seeding layer located on the top surface, and the other part of the seeding layer inside the opening is exposed. Then, a bump is formed at the opening and on the seeding layer. Afterward, the second photoresist layer is removed. Next, the part of the seeding layer on the top surface is removed. Subsequently, the first photoresist layer is removed.
In the semiconductor device according to an embodiment of the present invention, the bump is placed in contact with the seeding layer by part of the side surface. This is able to prevent the over-etching of the seeding layer between the bump and the contact pad in the fabrication process, such that the bump is not necessary to overlap the passivation layer to an enough degree to prevent the over-etching, which enables the bump to have a flatter surface. Additionally, in the method of bump formation according to an embodiment of the present invention, when the seeding layer is etched, the first photoresist layer below the seeding layer still exists and surrounds the bump, which prevents the over-etching of the seeding layer between the bump and the contact pad. In this way, the bump is not necessary to overlap the passivation layer to an enough degree to prevent the over-etching, such that the bump is able to have a flatter surface.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The seeding layer 150 is disposed on the exposed central part 122 of the contact pad 120. The bump 140 has a top surface 142, a bottom surface 144 opposite to the top surface 142, and at least one side surface 146 connecting the top surface 142 and the bottom surface 144. The bump 140 is, for example, a metal bump. Additionally, the bump 140 is disposed on the seeding layer 150. The bump 140 is placed in contact with the seeding layer 150 by the bottom surface 144 and by part of the side surface 146. In the present embodiment, the seeding layer 150 is an under bump metal (UBM) which may be a multilayer. For example, when the bump 140 is an Au bump and the contact pad 120 is an Al pad, the UBM includes a titanium tungsten (TiW) layer 152 formed on the Al pad and an Au layer 154 formed between the TiW layer and the bump 140.
In the semiconductor device 100 of the present embodiment, the bump 140 is placed in contact with the seeding layer 150 by part of the side surface 146. This is able to prevent the over-etching of the seeding layer 150 between the bump 140 and the contact pad 120 in the fabrication process, such that the bump 140 is not necessary to overlap the passivation layer 130 to an enough degree to prevent the over-etching, which enables the bump 140 to have a flatter top surface 142. In the present embodiment, the seeding layer 150 is not directly coupled to the passivation layer 130. That is to say, the bump 140 does not overlap the passivation layer 130, such that the roughness of the top surface 142 of the bump 140 may be less than 1 micron. In this way, the conductivity between the semiconductor device 100 and a carrier (not shown) to which the bump 140 is bonded is better. For example, this is because the flatter top surface 142 may uniformly compress the conductive particles in an ACF which bonds the bump 140 to the carrier. In addition, since the bump 140 is not necessary to overlap the passivation layer 130, the width S of the bump 140 may be smaller, which increases the layout flexibility of the semiconductor device 100 and the carrier.
In the method of bump formation of the present embodiment, when the seeding layer 150 is etched, the first photoresist layer 160 below the seeding layer still exists and surrounds the bump 140, which prevents the over-etching of the seeding layer 150 between the bump 140 and the contact pad 120. In this way, the bump 140 is not necessary to overlap the passivation layer 130 to an enough degree to prevent the over-etching, such that the bump 140 is able to have a flatter top surface 142.
To sum up, in the semiconductor device according to an embodiment of the present invention, the bump is placed in contact with the seeding layer by part of the side surface. This is able to prevent the over-etching of the seeding layer between the bump and the contact pad in the fabrication process, such that the bump is not necessary to overlap the passivation layer to an enough degree to prevent the over-etching, which enables the bump to have a flatter surface. In this way, the conductivity between the semiconductor device and a carrier to which the bump is bonded is better. In addition, since the bump is not necessary to overlap the passivation layer, the width of the bump may be smaller, which increases the layout flexibility of the semiconductor device or the carrier.
Moreover, in the method of bump formation according to an embodiment of the present invention, when the seeding layer is etched, the first photoresist layer below the seeding layer still exists and surrounds the bump, which prevents the over-etching of the seeding layer between the bump and the contact pad. In this way, the bump is not necessary to overlap the passivation layer to an enough degree to prevent the over-etching, such that the bump is able to have a flatter surface.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
This application claims the priority benefit of U.S. prior-filed provisional application Ser. No. 60/977,088, filed on Oct. 3, 2007. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of specification.
Number | Date | Country | |
---|---|---|---|
60977088 | Oct 2007 | US |