The embodiments discussed herein are related to a semiconductor device and a method of manufacturing the semiconductor device.
Materials such as GaN, AlN, and InN, which are nitride semiconductors, mixed crystals of such nitride semiconductors, or the like have a wide band gap and are thus used in high-output electron devices, short-wavelength light emitting devices, or the like. For example, GaN, which is a nitride semiconductor, has a band gap of 3.4 eV which is large compared to a band gap of 1.1 eV for Si and a band gap of 1.4 eV for GaAs.
The high-output electron devices include FETs (Field Effect Transistors), and particularly HEMTs (High Electron Mobility Transistors), as proposed in Japanese Laid-Open Patent Publication No. 2002-359256, for example. The HEMT using the nitride semiconductor is used for a high-output high-efficiency amplifier, a high-power switching device, or the like. More particularly, in the HEMT that uses AlGaN for an electron supply layer and GaN for a channel layer, piezoelectric polarization or the like is generated due to a distortion caused by a difference between lattice constants of AlGaN and GaN, and 2DEG (2-Dimensional Electron gas) having a high concentration is generated. For this reason, this HEMT can operate at a high voltage, and may be used for a high-efficiency switching element, a high withstand voltage power device of an electric vehicle, or the like.
Related art are also proposed in Japanese Laid-Open Patent Publications No. 2009-38392, No. 2010-109086, and No. 2011-249500, for example.
However, with respect to the HEMT using the nitride semiconductor, there are demands to enable operation of the HEMT in a high-frequency region, and studies are being made on gate electrodes having a short gate length using a short-gate technique. In general, in order to operate the semiconductor device in the high-frequency region, ON-resistance of the semiconductor device is preferably low.
Accordingly, it is an object in one aspect of the embodiment to provide a semiconductor device that uses a nitride semiconductor, has a low ON-resistance, and is operable in a high-frequency region, and to provide a method of manufacturing such a semiconductor device.
According to one aspect of the present invention, a semiconductor device includes a first semiconductor layer made of a nitride semiconductor and formed on a substrate; a second semiconductor layer made of a nitride semiconductor and formed on the first semiconductor layer; a third semiconductor layer made of a nitride semiconductor and formed on the second semiconductor layer; a drain electrode formed on the third semiconductor layer; a gate electrode formed on the third semiconductor layer; and a source electrode formed within an opening penetrating the third and second semiconductor layers and exposing the first semiconductor layer, wherein the source electrode includes a first conductor layer in contact with the first semiconductor layer, and a second conductor layer stacked on the first conductor layer and in contact with the second semiconductor layer, and wherein a work function of a material forming the first conductor layer is smaller than a work function of a material forming the second conductor layer.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, as claimed.
Preferred embodiments of the present invention will be described with reference to the accompanying drawings.
A description will now be given of the semiconductor device and the method of manufacturing the semiconductor device in each embodiment according to the present invention. In the following description, those parts that are the same are designated by the same reference numerals, and a description thereof will be omitted.
A description will be given of an example of a conventional semiconductor device, by referring to
For example, the substrate 910 is formed by a Si substrate or the like, which is an example of a semiconductor substrate. The buffer 911 is made of AlN or the like having a thickness of approximately 3 μm. The channel layer 922 is made of i-GaN having a thickness of approximately 3 μm. The electron supply layer 923 is made of i-Al0.25Ga0.75N having a thickness of approximately 20 nm. Hence, a 2DEG 922a is generated in the channel layer 922 at a vicinity of an interface between the channel layer 922 and the electron supply layer 923.
A source electrode 942 and a drain electrode 943 respectively made of a metal stacked layer of Ti/Al (that is, a combination of a Ti layer and an Al layer), are formed at predetermined regions on the electron supply layer 923. After forming the source electrode 942 and the drain electrode 943, SiN or the like is formed on a surface of the electron supply layer 923 by plasma CVD (Chemical Vapor Deposition) in order to form a protection layer 930. A gate electrode 941 is formed by removing the protection layer 930 in a region where the gate electrode 941 is to be formed, and forming the gate electrode 941 on the electron supply layer 923 in the region in which the protection layer 930 is removed. The gate electrode 941 is made of a metal stacked layer of Ni/Au (that is, a combination of an Ni layer and an Au layer), and a gate length of the gate electrode 941 is approximately 0.1 μm.
In the semiconductor device illustrated in
(Semiconductor Device)
Next, a description will be given of a semiconductor device in a first embodiment, by referring to
The substrate 10 may be made of non-doped Si (silicon), SiC (silicon carbide), Al2O3 (sapphire), GaN, or the like. The substrate 10 is preferably made of a material that is not conductive, and is made of a semiinsulating material or an insulating material that is highly insulative. In this embodiment, the substrate 10 is made of SiC. The buffer 11 is made of AlN or the like having a thickness of approximately 0.5 μm.
The p-type layer 21 forming the first semiconductor layer is made of p-GaN having a thickness of approximately 0.5 μm, and is doped with an impurity element, Mg, to a concentration of 1×1017/cm3. The channel layer 22 forming the second semiconductor layer is made of i-GaN having a thickness of approximately 0.2 μm. The electron supply layer 23 forming the third semiconductor layer is made of n-Al0.25Ga0.75N having a thickness of approximately 20 nm, and is doped with an impurity element, Si, to a concentration of 1×1018/cm3. Hence, a 2DEG 22a is generated in the channel layer 22 at a vicinity of an interface between the channel layer 22 and the electron supply layer 23. Although not illustrated in
A source electrode 42 is formed by removing a part of the electron supply layer 23, the channel layer 22, and the p-type layer 21 in a region where the source electrode 42 is to be formed, and filling the region where a part of the nitride semiconductor layer is removed with a conductive material such as a metal material or the like. A drain electrode 43 is formed on the electron supply layer 23. A protection layer 30 is formed in an exposed region of the electron supply layer 23, not formed with the source electrode 42 and the drain electrode 43, by SiN or the like. The protection layer 30 may be formed by a material other than SiN, such as SiO2, Al2O3, AlN, HfO2, or the like. The protection layer 30 may be formed by plasma CVD, ALD (Atomic Layer Deposition), sputtering, MOCVD (Metal Organic Vapor Phase Epitaxy), MBE (Molecular Beam Epitaxy), or the like.
A gate electrode 41 is formed by removing the protection layer 30 in a region where the gate electrode 41 is to be formed, and forming the gate electrode 41 on the electron supply layer 23 in the region in which the protection layer 30 is removed. The drain electrode 43 is made of a metal stacked layer of Ti/Al, and the gate electrode 41 is made of a metal stacked layer of Ni/Au.
In this embodiment, the source electrode 42 is formed by successively stacking a first conductor layer 42a, a second conductor layer 42b, and a third conductor layer 42c. In this embodiment, the first conductor layer 42a of the source electrode 42 and the p-type layer 21 forming the first semiconductor layer form an ohmic contact. In addition, the second conductor layer 42b of the source electrode 42 and the channel layer 22 forming the second semiconductor layer, and the second conductor layer 42b of the source electrode 42 and the electron supply layer 23 forming the third semiconductor layer respectively form a Schottky junction.
Accordingly, the first conductor layer 42a is made of a material having a relatively small work function, and more particularly, a material having a work function that is less than 5.0 eV, and preferably a material having a work function that is less than 4.5 eV, in order to form the ohmic contact with the p-type layer 21 forming the first semiconductor layer. For example, the first conductor layer 42a may be made of a material including at least one of materials in Table 1 having a work function that is less than 5.0 eV, namely, Ti (titanium), Ta (tantalum), Mo (molybdenum), Nb (niobium), W (tungsten), Hf (hafnium), TaN (tantalum nitride), TiN (titanium nitride), or the like. In addition, the first conductor layer 42a may preferably be made of a material including at least one of the materials selected from Table 1 and having a work function that is less than 4.5 eV, namely, Ti, Ta, Nb, Hf, TaN, or the like.
Further, the second conductor layer 42b is made of a material having a relatively large work function, and more particularly, a material having a work function that is 5.0 eV or greater, in order to form the Schottky junction with the electron supply layer 23 forming the third semiconductor layer. For example, the second conductor layer 42b may be made of a material including at least one of materials selected form Table 1 and having a work function that is 5.0 eV or greater, namely, Ni (nickel), Pt (platinum), Pd (palladium), Ir (iridium), Au (gold), or the like.
The third conductor layer 42c is made of a material having a high conductivity, in order to generally reduce the resistance at the source electrode 42. More particularly, the third conductor layer 42c may be made of a material including at least one material selected from Al (aluminum), Au, Cu (copper), or the like having a high conductivity.
Although not illustrated in
In this embodiment, an interface between the first conductor layer 42a and the second conductor layer 42b of the source electrode 42 preferably has the same height as an interface between the p-type layer 21 forming the first semiconductor layer and the channel layer 22 forming the second semiconductor layer. In addition, an interface between the second conductor layer 42b and the third conductor layer 42c of the source electrode 42 preferably has the same height as the electron supply layer 23, and further, preferably has the same height as an interface between the electron supply layer 23 and the protection layer 30.
(Characteristics of Semiconductor Device)
Next, a description will be given of characteristics of the semiconductor device in this embodiment, by referring to
As illustrated in
Next, a description will be given of the operation of the semiconductor device in this embodiment, by referring to
On the other hand,
When the electrons accelerated by the high electric field and having the high energy state reach the channel layer 22, electrons and holes are generated within the channel layer 22 due to impact ionization of the electrons. However, in this embodiment, the holes that are generated flow to the source electrode 42 via the p-type layer 21 forming the first semiconductor layer, and it is possible to prevent the withstand voltage from decreasing.
(Method of Manufacturing Semiconductor Device)
Next, a description will be given of the method of manufacturing the semiconductor device in this embodiment, by referring to
First, the nitride semiconductor layers, such as the buffer layer 11, the p-type layer 21 forming the first semiconductor layer, the channel layer 22 forming the second semiconductor layer, and the electron supply layer 23 forming the third semiconductor layer, are successively stacked on the substrate 10 by MOVPE, as illustrated in
The p-type layer 21 forming the first semiconductor layer is made of p-GaN having a thickness of approximately 0.5 μm, and is doped with an impurity element, Mg, to a concentration of 1×1017/cm3. The channel layer 22 forming the second semiconductor layer is made of i-GaN having a thickness of approximately 0.2 μm. The electron supply layer 23 forming the third semiconductor layer is made of n-Al0.25Ga0.75N having a thickness of approximately 20 nm, and is doped with an impurity element, Si, to a concentration of 1×1018/cm3. Hence, the 2DEG 22a is generated in the channel layer 22 at the vicinity of the interface between the channel layer 22 and the electron supply layer 23.
Thereafter, an element isolation region that is not illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
(Modification)
In the embodiment described above, the p-type layer 21 forming the first semiconductor layer is made of p-GaN doped with an impurity element, Mg. However, in the semiconductor device in this modification of the embodiment, the p-type layer 21 forming the first semiconductor layer simply needs to be doped with an impurity element that makes the p-type layer 21 the p-type, and the impurity element may be C (carbon), for example. In a case in which the p-type layer 21 forming the first semiconductor layer is doped with the impurity element, C, the impurity element, C, is doped to a concentration of 1×1017/cm3.
(Semiconductor Device)
Next, a description will be given of the semiconductor device in a second embodiment, by referring to
The substrate 10 may be made of non-doped Si, SiC, Al2O3, GaN, or the like. The substrate 10 is preferably made of a material that is not conductive, and is made of a semiinsulating material or an insulating material that is highly insulative. In this embodiment, the substrate 10 is made of SiC. The buffer 11 is made of AlN or the like having a thickness of approximately 0.5 μm.
The non-doped layer 121 forming the first semiconductor layer is made of i-GaN having a thickness of approximately 0.5 μm. The channel layer 22 forming the second semiconductor layer is made of i-GaN having a thickness of approximately 0.2 μm. The electron supply layer 23 forming the third semiconductor layer is made of n-Al0.25Ga0.75N having a thickness of approximately 20 nm, and is doped with an impurity element, Si, to a concentration of 1×1018/cm3. Hence, a 2DEG 22a is generated in the channel layer 22 at a vicinity of an interface between the channel layer 22 and the electron supply layer 23. Although not illustrated in
A source electrode 42 is formed by removing a part of the electron supply layer 23, the channel layer 22, and the non-doped layer 121 in a region where the source electrode 42 is to be formed, and filling the region where a part of the nitride semiconductor layer is removed with a conductive material such as a metal material or the like. A drain electrode 43 is formed on the electron supply layer 23. A protection layer 30 is formed in an exposed region of the electron supply layer 23, not formed with the source electrode 42 and the drain electrode 43, by SiN or the like. The protection layer 30 may be formed by a material other than SiN, such as SiO2, Al2O3, AlN, HfO2, or the like. The protection layer 30 may be formed by plasma CVD, ALD, sputtering, MOCVD, MBE, or the like.
A gate electrode 41 is formed by removing the protection layer 30 in a region where the gate electrode 41 is to be formed, and forming the gate electrode 41 on the electron supply layer 23 in the region in which the protection layer 30 is removed. The drain electrode 43 is made of a metal stacked layer of Ti/Al, and the gate electrode 41 is made of a metal stacked layer of Ni/Au.
In this embodiment, the source electrode 42 is formed by successively stacking a first conductor layer 42a, a second conductor layer 42b, and a third conductor layer 42c. In this embodiment, the first conductor layer 42a of the source electrode 42 and the non-doped layer 121 forming the first semiconductor layer form an ohmic contact. In addition, the second conductor layer 42b of the source electrode 42 and the channel layer 22 forming the second semiconductor layer, and the second conductor layer 42b of the source electrode 42 and the electron supply layer 23 forming the third semiconductor layer respectively form a Schottky junction.
Accordingly, the first conductor layer 42a is made of a material having a relatively small work function, and more particularly, a material having a work function that is less than 5.0 eV, and preferably a material having a work function that is less than 4.5 eV, in order to form the ohmic contact with the non-doped layer 121 forming the first semiconductor layer. For example, the first conductor layer 42a may be made of the material including at least one of the materials in Table 1 having the work function that is less than 5.0 eV, namely, Ti, Ta, Mo, Nb, W, Hf, TaN, TiN, or the like. In addition, the first conductor layer 42a may preferably be made of the material including at least one of the materials selected from Table 1 and having the work function that is less than 4.5 eV, namely, Ti, Ta, Nb, Hf, TaN, or the like.
Further, the second conductor layer 42b is made of a material having a relatively large work function, and more particularly, a material having the work function that is 5.0 eV or greater, in order to form the Schottky junction with the electron supply layer 23 forming the third semiconductor layer. For example, the second conductor layer 42b may be made of the material including at least one of the materials selected form Table 1 and having the work function that is 5.0 eV or greater, namely, Ni, Pt, Pd, Ir, Au, or the like.
The third conductor layer 42c is made of a material having a high conductivity, in order to generally reduce the resistance at the source electrode 42. More particularly, the third conductor layer 42c may be made of the material including at least one material selected from Al, Au, Cu, or the like having a high conductivity.
Although not illustrated in
In this embodiment, an interface between the first conductor layer 42a and the second conductor layer 42b of the source electrode 42 preferably has the same height as an interface between the non-doped layer 121 forming the first semiconductor layer and the channel layer 22 forming the second semiconductor layer. In addition, an interface between the second conductor layer 42b and the third conductor layer 42c of the source electrode 42 preferably has the same height as the electron supply layer 23, and further, preferably has the same height as an interface between the electron supply layer 23 and the protection layer 30.
(Method of Manufacturing Semiconductor Device)
Next, a description will be given of the method of manufacturing the semiconductor device in this embodiment, by referring to
First, the nitride semiconductor layers, such as the buffer layer 11, the non-doped layer 121 forming the first semiconductor layer, the channel layer 22 forming the second semiconductor layer, and the electron supply layer 23 forming the third semiconductor layer, are successively stacked on the substrate 10 by MOVPE, as illustrated in
The non-doped layer 121 forming the first semiconductor layer is made of i-GaN having a thickness of approximately 0.5 μm. The channel layer 22 forming the second semiconductor layer is made of i-GaN having a thickness of approximately 0.2 μm. The electron supply layer 23 forming the third semiconductor layer is made of n-Al0.25Ga0.75N having a thickness of approximately 20 nm, and is doped with an impurity element, Si, to a concentration of 1×1018/cm3. Hence, the 2DEG 22a is generated in the channel layer 22 at the vicinity of the interface between the channel layer 22 and the electron supply layer 23.
Thereafter, an element isolation region that is not illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Otherwise, the semiconductor device in this embodiment is similar in configuration and method of manufacture to the semiconductor device in the first embodiment described above.
(Semiconductor Device)
Next, a description will be given of the semiconductor device in a third embodiment, by referring to
The substrate 10 may be made of non-doped Si, SiC, Al2O3, GaN, or the like. The substrate 10 is preferably made of a material that is not conductive, and is made of a semiinsulating material or an insulating material that is highly insulative. In this embodiment, the substrate 10 is made of SiC. The buffer 11 is made of AlN or the like having a thickness of approximately 0.5 μm.
The semiinsulating semiconductor layer 221 forming the first semiconductor layer is made of GaN having a thickness of approximately 0.5 μm, and is doped with an impurity element, Fe (iron), to a concentration of 1×1017/cm3. The semiinsulating semiconductor layer 221 is made of semiinsulating GaN. The channel layer 22 forming the second semiconductor layer is made of i-GaN having a thickness of approximately 0.2 μm. The electron supply layer 23 forming the third semiconductor layer is made of n-Al0.25Ga0.75N having a thickness of approximately 20 nm, and is doped with an impurity element, Si, to a concentration of 1×1018/cm3. Hence, a 2DEG 22a is generated in the channel layer 22 at a vicinity of an interface between the channel layer 22 and the electron supply layer 23. Although not illustrated in
A source electrode 42 is formed by removing a part of the electron supply layer 23, the channel layer 22, and the semiinsulating semiconductor layer 221 in a region where the source electrode 42 is to be formed, and filling the region where a part of the nitride semiconductor layer is removed with a conductive material such as a metal material or the like. A drain electrode 43 is formed on the electron supply layer 23. A protection layer 30 is formed in an exposed region of the electron supply layer 23, not formed with the source electrode 42 and the drain electrode 43, by SiN or the like. The protection layer 30 may be formed by a material other than SiN, such as SiO2, Al2O3, AlN, HfO2, or the like. The protection layer 30 may be formed by plasma CVD, ALD, sputtering, MOCVD, MBE, or the like.
A gate electrode 41 is formed by removing the protection layer 30 in a region where the gate electrode 41 is to be formed, and forming the gate electrode 41 on the electron supply layer 23 in the region in which the protection layer 30 is removed. The drain electrode 43 is made of a metal stacked layer of Ti/Al, and the gate electrode 41 is made of a metal stacked layer of Ni/Au.
In this embodiment, the source electrode 42 is formed by successively stacking a first conductor layer 42a, a second conductor layer 42b, and a third conductor layer 42c. In this embodiment, the first conductor layer 42a of the source electrode 42 and the semiinsulating semiconductor layer 221 forming the first semiconductor layer form an ohmic contact. In addition, the second conductor layer 42b of the source electrode 42 and the channel layer 22 forming the second semiconductor layer, and the second conductor layer 42b of the source electrode 42 and the electron supply layer 23 forming the third semiconductor layer respectively form a Schottky junction.
Accordingly, the first conductor layer 42a is made of a material having a relatively small work function, and more particularly, a material having a work function that is less than 5.0 eV, and preferably a material having a work function that is less than 4.5 eV, in order to form the ohmic contact with the semiinsulating semiconductor layer 221 forming the first semiconductor layer. For example, the first conductor layer 42a may be made of the material including at least one of the materials in Table 1 having the work function that is less than 5.0 eV, namely, Ti, Ta, Mo, Nb, W, Hf, TaN, TiN, or the like. In addition, the first conductor layer 42a may preferably be made of the material including at least one of the materials selected from Table 1 and having the work function that is less than 4.5 eV, namely, Ti, Ta, Nb, Hf, TaN, or the like.
Further, the second conductor layer 42b is made of a material having a relatively large work function, and more particularly, a material having the work function that is 5.0 eV or greater, in order to form the Schottky junction with the electron supply layer 23 forming the third semiconductor layer. For example, the second conductor layer 42b may be made of the material including at least one of the materials selected form Table 1 and having the work function that is 5.0 eV or greater, namely, Ni, Pt, Pd, Ir, Au, or the like.
The third conductor layer 42c is made of a material having a high conductivity, in order to generally reduce the resistance at the source electrode 42. More particularly, the third conductor layer 42c may be made of the material including at least one material selected from Al, Au, Cu, or the like having a high conductivity.
Although not illustrated in
In this embodiment, an interface between the first conductor layer 42a and the second conductor layer 42b of the source electrode 42 preferably has the same height as an interface between the semiinsulating semiconductor layer 221 forming the first semiconductor layer and the channel layer 22 forming the second semiconductor layer. In addition, an interface between the second conductor layer 42b and the third conductor layer 42c of the source electrode 42 preferably has the same height as the electron supply layer 23, and further, preferably has the same height as an interface between the electron supply layer 23 and the protection layer 30.
(Method of Manufacturing Semiconductor Device)
Next, a description will be given of the method of manufacturing the semiconductor device in this embodiment, by referring to
First, the nitride semiconductor layers, such as the buffer layer 11, the semiinsulating semiconductor layer 221 forming the first semiconductor layer, the channel layer 22 forming the second semiconductor layer, and the electron supply layer 23 forming the third semiconductor layer, are successively stacked on the substrate 10 by MOVPE, as illustrated in
The semiinsulating semiconductor layer 221 forming the first semiconductor layer is made of GaN having a thickness of approximately 0.5 μm, and is doped with an impurity element, Fe, to a concentration of 1×1017/cm3. The channel layer 22 forming the second semiconductor layer is made of i-GaN having a thickness of approximately 0.2 μm. The electron supply layer 23 forming the third semiconductor layer is made of n-Al0.25Ga0.75N having a thickness of approximately 20 nm, and is doped with an impurity element, Si, to a concentration of 1×1018/cm3. Hence, the 2DEG 22a is generated in the channel layer 22 at the vicinity of the interface between the channel layer 22 and the electron supply layer 23.
Thereafter, an element isolation region that is not illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Otherwise, the semiconductor device in this embodiment is similar in configuration and method of manufacture to the semiconductor device in the first embodiment described above.
(Semiconductor Device)
Next, a description will be given of the semiconductor device in a fourth embodiment, by referring to
The substrate 10 may be made of non-doped Si, SiC, Al2O3, GaN, or the like. The substrate 10 is preferably made of a material that is not conductive, and is made of a semiinsulating material or an insulating material that is highly insulative. In this embodiment, the substrate 10 is made of SiC. The buffer 11 is made of AlN or the like having a thickness of approximately 0.5 μm.
The p-type layer 21 forming the first semiconductor layer is made of p-GaN having a thickness of approximately 0.5 μm, and is doped with an impurity element, Mg, to a concentration of 1×1017/cm3. The channel layer 22 forming the second semiconductor layer is made of i-GaN having a thickness of approximately 0.2 μm. The electron supply layer 23 forming the third semiconductor layer is made of n-Al0.25Ga0.75N having a thickness of approximately 20 nm, and is doped with an impurity element, Si, to a concentration of 1×1018/cm3. Hence, a 2DEG 22a is generated in the channel layer 22 at a vicinity of an interface between the channel layer 22 and the electron supply layer 23. Although not illustrated in
A source electrode 42 is formed by removing a part of the electron supply layer 23, the channel layer 22, and the p-type layer 21 in a region where the source electrode 42 is to be formed, and filling the region where a part of the nitride semiconductor layer is removed with a conductive material such as a metal material or the like. A drain electrode 43 is formed on the electron supply layer 23. A protection layer 30 is formed in an exposed region of the electron supply layer 23, not formed with the source electrode 42 and the drain electrode 43, by SiN or the like. The protection layer 30 may be formed by a material other than SiN, such as SiO2, Al2O3, AlN, HfO2, or the like. The protection layer 30 may be formed by plasma CVD, ALD, sputtering, MOCVD, MBE, or the like.
A gate electrode 341 is formed in a region including a gate recess 23b. That is, the protection layer 30 and a part of the electron supply layer 23 are removed in a region where the gate electrode 341 is to be formed, in order to form the gate recess 23b. Thereafter, the gate electrode 341 is formed in the region including the gate recess 23b. The drain electrode 43 is made of a metal stacked layer of Ti/Al, and the gate electrode 41 is made of a metal stacked layer of Ni/Au.
In this embodiment, the source electrode 42 is formed by successively stacking a first conductor layer 42a, a second conductor layer 42b, and a third conductor layer 42c. In this embodiment, the first conductor layer 42a of the source electrode 42 and the p-type layer 21 forming the first semiconductor layer form an ohmic contact. In addition, the second conductor layer 42b of the source electrode 42 and the channel layer 22 forming the second semiconductor layer, and the second conductor layer 42b of the source electrode 42 and the electron supply layer 23 forming the third semiconductor layer respectively form a Schottky junction.
Accordingly, the first conductor layer 42a is made of a material having a relatively small work function, and more particularly, a material having a work function that is less than 5.0 eV, and preferably a material having a work function that is less than 4.5 eV, in order to form the ohmic contact with the p-type layer 21 forming the first semiconductor layer. For example, the first conductor layer 42a may be made of the material including at least one of the materials in Table 1 having the work function that is less than 5.0 eV, namely, Ti, Ta, Mo, Nb, W, Hf, TaN, TiN, or the like. In addition, the first conductor layer 42a may preferably be made of the material including at least one of the materials selected from Table 1 and having the work function that is less than 4.5 eV, namely, Ti, Ta, Nb, Hf, TaN, or the like.
Further, the second conductor layer 42b is made of a material having a relatively large work function, and more particularly, a material having the work function that is 5.0 eV or greater, in order to form the Schottky junction with the electron supply layer 23 forming the third semiconductor layer. For example, the second conductor layer 42b may be made of the material including at least one of the materials selected form Table 1 and having the work function that is 5.0 eV or greater, namely, Ni, Pt, Pd, Ir, Au, or the like.
The third conductor layer 42c is made of a material having a high conductivity, in order to generally reduce the resistance at the source electrode 42. More particularly, the third conductor layer 42c may be made of the material including at least one material selected from Al, Au, Cu, or the like having a high conductivity.
Although not illustrated in
In this embodiment, an interface between the first conductor layer 42a and the second conductor layer 42b of the source electrode 42 preferably has the same height as an interface between the p-type layer 21 forming the first semiconductor layer and the channel layer 22 forming the second semiconductor layer. In addition, an interface between the second conductor layer 42b and the third conductor layer 42c of the source electrode 42 preferably has the same height as the electron supply layer 23, and further, preferably has the same height as an interface between the electron supply layer 23 and the protection layer 30.
(Method of Manufacturing Semiconductor Device)
Next, a description will be given of the method of manufacturing the semiconductor device in this embodiment, by referring to
First, the nitride semiconductor layers, such as the buffer layer 11, the p-type layer 21 forming the first semiconductor layer, the channel layer 22 forming the second semiconductor layer, and the electron supply layer 23 forming the third semiconductor layer, are successively stacked on the substrate 10 by MOVPE, as illustrated in
The p-type layer 21 forming the first semiconductor layer is made of p-GaN having a thickness of approximately 0.5 μm, and is doped with an impurity element, Mg, to a concentration of 1×1017/cm3. The channel layer 22 forming the second semiconductor layer is made of i-GaN having a thickness of approximately 0.2 μm. The electron supply layer 23 forming the third semiconductor layer is made of n-Al0.25Ga0.75N having a thickness of approximately 20 nm, and is doped with an impurity element, Si, to a concentration of 1×1018/cm3. Hence, the 2DEG 22a is generated in the channel layer 22 at the vicinity of the interface between the channel layer 22 and the electron supply layer 23.
Thereafter, an element isolation region that is not illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Otherwise, the semiconductor device in this embodiment is similar in configuration and method of manufacture to the semiconductor device in the first embodiment described above.
Next, a description will be given of the semiconductor device, a power supply device, and a high-frequency amplifier in a fifth embodiment.
(Semiconductor Device)
The semiconductor device in this embodiment has a discrete package of the semiconductor device in any of the first through fourth embodiments described above. Next, a description will be given of the semiconductor device having the discrete package in this embodiment, by referring to
First, the semiconductor device manufactured according to any of the first through fourth embodiments described above is cut by a dicing process or the like, in order to form a semiconductor chip 410 including a HEMT that uses the GaN semiconductor material. This semiconductor chip 410 is fixed on a lead frame 420 by a die attaching agent 430 such as solder or the like. The semiconductor chip 410 corresponds to the semiconductor device in any of the first through fourth embodiments described above.
Next, a gate electrode 411 is connected to a gate lead 421 by a bonding wire 431, a source electrode 412 is connected to a source lead 422 by a bonding wire 432, and a drain electrode 413 is connected to a drain lead 423 by a bonding wire 433. The bonding wires 431, 432, and 433 is made of a metal material such as Al or the like. In this embodiment, the gate electrode 411 is a kind of a gate electrode pad, and is connected to the gate electrode 41 of the semiconductor device in any of the first through fourth embodiments described above. In addition, the source electrode 412 is a kind of a source electrode pad, and is connected to the source electrode 42 of the semiconductor device in any of the first through fourth embodiments described above. Further, the drain electrode 413 is a kind of a drain electrode pad, and is connected to the drain electrode 43 of the semiconductor device in any of the first through fourth embodiments described above.
Next, a resin encapsulation of the semiconductor device is made by transfer molding using a mold resin 440. Hence, it is possible to manufacture the discrete package of the semiconductor device including the HEMT that uses the GaN semiconductor material.
(PFC Circuit, Power Supply Device, and High-Frequency Amplifier)
Next, a description will be given of the PFC circuit, the power supply device, and the high-frequency amplifier in this embodiment. The PFC circuit, the power supply device, and the high-frequency amplifier in this embodiment uses the semiconductor device of any of the first through fourth embodiments described above.
(PFC Circuit)
Next, a description will be given of the PFC (Power Factor Correction) circuit in this embodiment, by referring to
A PFC circuit 450 illustrated in
In the PFC circuit 450, a drain electrode of the switching element 451, an anode terminal of the diode 452, and one terminal of the choke coil 453 are connected. In addition, a source electrode of the switching element 451, one terminal of the capacitor 454, and one terminal of the capacitor 455 are connected. The other terminal of the capacitor 454 and the other terminal of the choke coil 453 are connected. The other terminal of the capacitor 455 and a cathode terminal of the diode 452 are connected. The A.C. power supply is connected between the two terminals of the capacitor 454 via the diode bridge 456. In the PFC circuit 450 having the configuration illustrated in
(Power Supply Device)
Next, a description will be given of the power supply device in this embodiment, by referring to
A power supply device illustrated in
The primary side circuit 461 includes the PFC circuit 450 of this embodiment described above, and a full bridge inverter circuit 460 which is an example of an inverter circuit connected between the two terminals of the capacitor 455 of the PFC circuit 450. The full bridge inverter circuit 460 includes a plurality of switching elements, and the secondary side circuit 462 includes a plurality of switching elements. In this example, the full bridge inverter circuit 460 includes four switching elements 464a, 464b, 464c, and 464d, and the secondary side circuit 462 include three switching elements 465a, 465b, and 465c. An A.C. power supply 457 is connected to the diode bridge 456.
In this embodiment, the switching element 451 of the PFC circuit 450 in the primary side circuit 461 uses the HEMT in the semiconductor device of any of the first through fourth embodiments described above. In addition, each of the switching elements 464a, 464b, 464c, and 464d of the full bridge inverter circuit 460 uses the HEMT in the semiconductor device of any of the first through fourth embodiments described above. On the other hand, each of the switching elements 465a, 465b, and 465c of the secondary side circuit 462 uses an FET having the MIS structure using Si.
(High-Frequency Amplifier)
Next, a description will be given of the high-frequency amplifier in this embodiment, by referring to
The high-frequency amplifier illustrated in
The digital predistortion circuit 471 compensates for a nonlinear distortion of an amplifier output signal. The mixer 472a mixes an A.C. signal and the input signal compensated of the nonlinear distortion. The power amplifier 473 amplifies a mixed output of the mixer 472a, and includes the HEMT in the semiconductor device of any of the first through fourth embodiments described above. The directional coupler 474 monitors the amplifier output signal. In
According to the embodiments, it is possible to provide a semiconductor device that uses a nitride semiconductor, has a low ON-resistance, and is operable in a high-frequency region, and to provide a method of manufacturing such a semiconductor device.
Although the embodiments are numbered with, for example, “first,” “second,” . . . or “fifth,” the ordinal numbers do not imply priorities of the embodiments. Many other variations and modifications will be apparent to those skilled in the art.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-254111 | Dec 2013 | JP | national |
This application is a divisional of U.S. patent application Ser. No. 14/551,576, filed Nov. 24, 2014, which is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2013-254111, filed on Dec. 9, 2013, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4632713 | Tiku | Dec 1986 | A |
5060031 | Abrokwah et al. | Oct 1991 | A |
6307232 | Akiyama et al. | Oct 2001 | B1 |
6476431 | Ohno et al. | Nov 2002 | B1 |
7038252 | Saito et al. | May 2006 | B2 |
7075125 | Saito et al. | Jul 2006 | B2 |
7078743 | Murata et al. | Jul 2006 | B2 |
7250641 | Saito et al. | Jul 2007 | B2 |
7298123 | Watanabe et al. | Nov 2007 | B2 |
7339207 | Murata et al. | Mar 2008 | B2 |
7759700 | Ueno et al. | Jul 2010 | B2 |
8003525 | Okamoto | Aug 2011 | B2 |
8304809 | Kaya et al. | Nov 2012 | B2 |
8624265 | Saito | Jan 2014 | B2 |
20010023964 | Wu et al. | Sep 2001 | A1 |
20020017696 | Nakayama et al. | Feb 2002 | A1 |
20030020092 | Parikh et al. | Jan 2003 | A1 |
20030183844 | Yokoyama et al. | Oct 2003 | A1 |
20030213975 | Hirose et al. | Nov 2003 | A1 |
20050001235 | Murata et al. | Jan 2005 | A1 |
20050279992 | Gupta et al. | Dec 2005 | A1 |
20060011915 | Saito et al. | Jan 2006 | A1 |
20060073621 | Kneissel et al. | Apr 2006 | A1 |
20060081897 | Yoshida | Apr 2006 | A1 |
20060157735 | Kanamura et al. | Jul 2006 | A1 |
20060197107 | Kanamura et al. | Sep 2006 | A1 |
20060278892 | Harris et al. | Dec 2006 | A1 |
20070051977 | Saito et al. | Mar 2007 | A1 |
20070131968 | Morita et al. | Jun 2007 | A1 |
20070187717 | Sadaka et al. | Aug 2007 | A1 |
20070228415 | Kanamura et al. | Oct 2007 | A1 |
20080230786 | Heikman et al. | Sep 2008 | A1 |
20090008679 | Saito | Jan 2009 | A1 |
20090072272 | Suh et al. | Mar 2009 | A1 |
20090166815 | Makiyama et al. | Jul 2009 | A1 |
20090194791 | Kanamura | Aug 2009 | A1 |
20090267078 | Mishra et al. | Oct 2009 | A1 |
20090283776 | Iwamuro | Nov 2009 | A1 |
20090321854 | Ohta et al. | Dec 2009 | A1 |
20100006894 | Ohta | Jan 2010 | A1 |
20100038682 | Lahreche | Feb 2010 | A1 |
20100213503 | Yanagihara et al. | Aug 2010 | A1 |
20100230717 | Saito | Sep 2010 | A1 |
20100314666 | Saito et al. | Dec 2010 | A1 |
20100320505 | Okamoto et al. | Dec 2010 | A1 |
20110079771 | Kanamura et al. | Apr 2011 | A1 |
20110272708 | Yoshioka et al. | Nov 2011 | A1 |
20120032188 | Kanamura et al. | Feb 2012 | A1 |
20120061729 | Shibata et al. | Mar 2012 | A1 |
20120091522 | Ozaki et al. | Apr 2012 | A1 |
20120138944 | Kanamura et al. | Jun 2012 | A1 |
20120138958 | Fujikawa | Jun 2012 | A1 |
20120139630 | Ozaki et al. | Jun 2012 | A1 |
20120153300 | Lidow et al. | Jun 2012 | A1 |
20120223319 | Dora | Sep 2012 | A1 |
20130069115 | Nakazawa et al. | Mar 2013 | A1 |
20130082307 | Okamoto et al. | Apr 2013 | A1 |
20130134443 | Terano et al. | May 2013 | A1 |
20130141156 | Teo et al. | Jun 2013 | A1 |
20130161698 | Marino et al. | Jun 2013 | A1 |
20130248928 | Yoshioka et al. | Sep 2013 | A1 |
20130256686 | Kanamura | Oct 2013 | A1 |
20130256690 | Nakamura et al. | Oct 2013 | A1 |
20140001557 | Mishra et al. | Jan 2014 | A1 |
20140021511 | Jeon et al. | Jan 2014 | A1 |
20140091424 | Makiyama | Apr 2014 | A1 |
20140094223 | Dasgupta et al. | Apr 2014 | A1 |
20140169045 | Ueno | Jun 2014 | A1 |
20140197418 | Chen et al. | Jul 2014 | A1 |
20140209893 | Okamoto | Jul 2014 | A1 |
20140264379 | Kub et al. | Sep 2014 | A1 |
20140346526 | Kanamura | Nov 2014 | A1 |
20150048421 | Park et al. | Feb 2015 | A1 |
20150060875 | Kume et al. | Mar 2015 | A1 |
20150144953 | Hill et al. | May 2015 | A1 |
20150162413 | Kanamura | Jun 2015 | A1 |
20150179782 | Yamamura | Jun 2015 | A1 |
20150325660 | Hitora et al. | Nov 2015 | A1 |
20160056145 | Nagumo et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
2002-359256 | Dec 2002 | JP |
2009-038392 | Feb 2009 | JP |
2010-109086 | May 2010 | JP |
2011-249500 | Dec 2011 | JP |
Entry |
---|
Uncredited “Common Work Functions” article from pulsedpower.net which was archived by Wayback Machine webarchive as of Jul. 13, 2008 and is available online at www.pulsedpower.net/Info/WorkFunctions.htm as of Aug. 23, 2015 pp. 1. |
Number | Date | Country | |
---|---|---|---|
20160365419 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14551576 | Nov 2014 | US |
Child | 15250147 | US |