1. Field of the Invention
The present invention relates generally to semiconductor packages and methods for fabricating the same, and more particularly to a sensor semiconductor package and a method for fabricating the same.
2. Description of Related Art
In a conventional image sensor semiconductor package, a sensor chip is mounted to a chip carrier and electrically connected to the chip carrier through bonding wires, and the sensor chip is covered with a transparent member to allow image light to be captured by the sensor chip. Typically, the image sensor semiconductor package is installed in an external device such as a printed circuit board (PCB) so as to be applied in various electronic products such as digital still cameras (DSCs), digital videos (DVs), optical mice, mobile phones and so on.
However, during formation of the encapsulant 16, since the transparent member 15 is directly abutted against the top of the inner wall of an upper mold, a molding press applied to the transparent member 15 may easily cause breakage of the transparent member 15 and even damage the sensor chip 12 located below the transparent member 15. On the other hand, if the transparent member 15 and the inner wall of the upper mold are not tightly pressed together and spacing exists therebetween, the encapsulant 16 may overflow to the surface of the transparent member 15. Also, since the sensor chip 12 needs a space reserved for disposing of the adhesive layer between the sensor area 12a and the bond pads 12b, size of the sensor area 12a must be reduced or size of the sensor chip 12 must be increased, which thus reduces the use efficiency of the sensor chip 12.
Accordingly, referring to
However, the fluid adhesive has high fabrication cost and low reliability and cannot be widely applied in the industry.
U.S. Pat. No. 5,950,074, No. 6,060,340, No. 6,262,479, No. 6,384,472, and No. 6,590,269 disclose another kind of sensor semiconductor package. Referring to
Referring to
In the above-described techniques, the dam structure 34 is applied to prevent the transparent member 35 from directly contacting the sensor chip 32, thereby preventing damage of the sensor chip 32. However, the integral planar size of the package comprises chip size, wire bonding space and the width of the dam structure 34. Particularly, space required by the dam structure 34 prevents the packages from becoming lighter, thinner, smaller and shorter.
Referring to
However, as shown in
Therefore, how to provide a sensor semiconductor package and a method for fabricating the same to overcome the above-described drawbacks has become urgent.
According to the above drawbacks, the present invention is to provide a sensor semiconductor package and a method for fabricating the same so as to prevent delamination, eliminate the requirement of a dispensing process, simplify fabrication processes, and reduce the fabrication costs.
Accordingly, the present invention provides a sensor semiconductor package, which comprises: a substrate; a sensor chip, having a sensor area, mounted on the substrate and electrically connected to the substrate via bonding wires; an adhesive layer encapsulating a periphery of the sensor chip and the bonding wires without contacting the sensor area of the sensor chip; and a transparent member mounted to the substrate via the adhesive layer for hermetically sealing the sensor area.
The substrate is a LGA (Land Grid Array) substrate. The height of the adhesive layer is greater than that of a wire loop of each of the bonding wires. The adhesive layer is made of a material that has low viscosity when heated, which is a resin material in the form of a tape at room temperature. The transparent member is made of glass material.
The present invention further provides a method for fabricating a sensor semiconductor package, comprising: mounting on a substrate a sensor chip having a sensor area and electrically connecting the sensor chip to the substrate via bonding wires; and mounting on the substrate a transparent member pre-adhered with an adhesive layer in a manner that the adhesive layer is interposed between the substrate and the transparent member for encapsulating the bonding wires and a periphery of the sensor chips, and that the sensor area of the sensor chip is exposed from an opening formed in the adhesive layer, so as to allow the sensor area to be hermetically isolated from the atmosphere by the transparent member cooperative with the adhesive layer.
Another method for fabricating a sensor semiconductor package comprises: mounting on a batch-type substrate a plurality of sensor chips each having a sensor area and electrically connecting the sensor chips to the substrate through bonding wires; mounting on the batch-type substrate a plurality of transparent members each pre-adhered with an adhesive layer in a manner that the adhesive layer is interposed between the batch-type substrate and a corresponding one of the transparent members for encapsulating the bonding wires and a periphery of a corresponding one of the sensor chips while the sensor area of the corresponding one of the sensor chips is exposed from an opening formed in the adhesive layer, so as to allow the sensor area to be hermetically isolated from the atmosphere by the transparent member cooperative with the adhesive layer; and performing a singulation process to form a plurality of sensor semiconductor packages.
Another method for fabricating a sensor semiconductor package comprises: mounting on a batch-type substrate a plurality of sensor chips each having a sensor area and electrically connecting the sensor chips to the substrate via bonding wires; mounting on the batch-type substrate a sheet of transparent member pre-adhered with an adhesive layer having a plurality of openings formed corresponding in position to the sensor areas, in a manner that the adhesive layer is interposed between the sheet of the transparent member and the batch-type substrate for encapsulating the bonding wires and peripheries of the sensor chips, and the sensor areas of the sensor chips are exposed from the openings of the adhesive layer so as to allow the sensor areas to be hermetically isolated from the atmosphere by the sheet of the transparent member cooperative with the adhesive layer; and performing a singulation process to form a plurality of sensor semiconductor packages. According to another embodiment, the adhesive layer is further formed with a plurality of through openings in positions corresponding to cutting lines for performing the singulation process.
Therefore, the present invention pre-disposes an adhesive layer to a transparent member and mounts the transparent member with the adhesive layer on a substrate such that the adhesive layer encapsulates the periphery of the sensor chip and the bonding wires, thereby saving space for disposing of the adhesive layer between the sensor area and the bond pads as in the prior art and increasing the sensor area ratio of the sensor chip. Meanwhile, the whole planar size of the package only comprises the chip size and the space for wire bonding, thereby saving the space for disposing of a dam structure as in the prior art and facilitating fabrication of lighter, thinner, shorter and smaller packages. Further, the present invention eliminates the need of a dam structure, the dispensing process and formation of several kinds of encapsulants as in the prior art. Instead, the present invention uses only one kind of encapsulants in the process, thereby simplifying the fabrication process, saving the fabrication cost and time, and preventing the delamination problem occurring between different kinds of the encapsulants as in the prior art and accordingly increasing the product yield.
The following illustrative embodiments are provided to illustrate the disclosure of the present invention, these and other advantages and effects can be apparent to those skilled in the art after reading the disclosure of this specification.
The following embodiments are described in sufficient detail to enable those skilled in the art to make and use the invention. It is to be understood that other embodiments would be evident based on the present disclosure, and that proves or mechanical changes may be made without departing from the scope of the present invention.
In the following description, numerous specific details are given to provide a thorough understanding of the invention. However, it will be apparent that the invention may be practiced without these specific details. In order to avoid obscuring the present invention, some well-known configurations and process steps are not disclosed in detail.
Likewise, the drawings showing embodiments of the structure are semi-diagrammatic and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown greatly exaggerated in the drawing FIGS. Similarly, although the views in the drawings for ease of description generally show similar orientations, this depiction in the FIGs. is arbitrary for the most part. Generally, the invention can be operated in any orientation.
For expository purposes, the term “horizontal” as used herein is defined as a plane parallel to the plane or surface of the substrate, regardless of its orientation. The term “vertical” refers to a direction perpendicular to the horizontal as just defined. Terms, such as “on”, “above”, “below”, “bottom”, “top”, “side” (as in “sidewall”), “higher”, “lower”, “upper”, “over”, and “under”, are defined with respect to the horizontal plane.
As shown in
As shown in
As shown in
It should be noted that the bonding wires 53, which are conventional gold wires, are merely encapsulated by the adhesive layer 54 rather than two different adhesives as in the prior arts, whereby the severing of the bonding wires 53 can be prevented and the product reliability can be accordingly improved. In addition, since the adhesive layer 54 is used to encapsulate the bonding wires 53 and attach the transparent member 55, the package size of the finished semiconductor package can be desirably reduced to meet industrial requirements and the fabrication cost can be lowered. Moreover, interfaces among various elements are reduced, and delamination issues can thus be effectively prevented.
The substrate 51 is an LGA substrate. The adhesive layer 54 has a height greater than that of a wire loop of each of the bonding wires 53. The adhesive layer 54 may be such as an epoxy tape, which has a low viscosity when heated. The transparent member 55 is made of glass material.
As shown in
As shown in
As shown in
As shown in
Therefore, such a method implements mass production and simplifies the fabrication process.
As shown in
As shown in
As shown in
As shown in
Therefore, mass production is implemented and the fabrication process is simplified.
The present embodiment is mostly similar to the first embodiment, a main difference from the first embodiment is a plurality of sensor chips 82 having sensor areas 82a is mounted on and electrically connected to a batch-type substrate 81, a transparent member 85 with an adhesive layer 84 is mounted on the substrate 81, and the adhesive layer 84 is further formed with a plurality of openings 84a in positions corresponding to the sensor areas 82a and a plurality of through openings 84b in positions corresponding to cutting lines for performing a singulation process so as to save material of the adhesive layer 84.
Therefore, the present invention pre-disposes an adhesive layer to a transparent member and mounts the transparent member with the adhesive layer on a substrate such that the adhesive layer encapsulates the periphery of the sensor chip and the bonding wires, thereby saving space for disposing of the adhesive layer between the sensor area and the bond pads as in the prior art and increasing the sensor area ratio of the sensor chip. Meanwhile, the whole planar size of the package only comprises the chip size and the space for wire bonding, thereby saving the space for disposing of a dam structure as in the prior art and facilitating fabrication of lighter, thinner, shorter and smaller packages. Further, the present invention eliminates the need of a dam structure, the dispensing process and formation of several kinds of encapsulants as in the prior art. Instead, the present invention uses only one kind of encapsulant in the process, thereby simplifying the fabrication process, saving the fabrication cost and time, and preventing the delamination problem occurring between different kinds of the encapsulants as in the prior art and accordingly increasing the product yield.
The above-described descriptions of the detailed embodiments are only to illustrate the preferred implementation according to the present invention, and it is not to limit the scope of the present invention, Accordingly, all modifications and variations completed by those with ordinary skill in the art should fall within the scope of present invention defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
096150714 | Dec 2007 | TW | national |
097150714 | Dec 2008 | TW | national |