Circuit board, manufacturing method therefor, and bump-type contact head and semiconductor component packaging module using the circuit board

Information

  • Patent Grant
  • 6239983
  • Patent Number
    6,239,983
  • Date Filed
    Thursday, October 15, 1998
    26 years ago
  • Date Issued
    Tuesday, May 29, 2001
    23 years ago
Abstract
A circuit board which is formed with bump patterns subject to a narrow variation in height on the surface of the circuit board, and which permits high-density packaging of a semiconductor component thereon. In this circuit board, conductor circuits formed by electroplating are embedded in an insulating base that is formed of a resist layer and an insulating substrate, and bumps are exposed in the surface of the insulating base. The bumps and the conductor circuits are connected electrically with one another by means of pillar-shaped conductors that are formed by electroplating. Each bump is a multilayer structure in two or more layers formed by successively depositing different electrically conductive materials by electroplating.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a circuit board having patterns in the form of bumps with a very narrow variation-in height projecting from at least one surface thereof, and more specifically, to a circuit board formed having high-reliability conduction structures between its general output and input terminals and conductor circuits and which is capable of high-density packaging of semiconductor devices. The present invention also relates to a bump-type contact head obtained with use of the circuit board, capable of satisfactorily checking even fine-pitch circuit components, such as LSIs, liquid crystal panels, TABs, PDPs, etc., for wiring failures, and which enjoys high accuracy in pitches between inspection terminals and excellent high-frequency characteristics. In addition, the present invention relates to a method for manufacturing these elements with high productivity and at low cost.




Still further, the invention relates to a semiconductor component packaging module of a novel connection structure, using the aforesaid circuit board as a packaging substrate and having various semiconductor components mounted on the substrate by die bonding.




2. Prior Art




Usually, a semiconductor device package, which may be incorporated in various electronic apparatuses such as a computer, portable communication apparatus, liquid crystal panel, etc., is constructed so that one semiconductor device, such as a bare chip, is mounted on a circuit board that is formed with predetermined patterns for conductor circuits, the continuity between this device and the respective output and input terminals of the conductor circuits is established to package the semiconductor device, and the whole structure is resin-molded.




The semiconductor device may be packaged by a method in which it is die-bonded to the circuit board and the output and input terminals of the circuit board and the terminals (lands) of the semiconductor device are wire-bonded, a method in which a flip chip is connected to the output and input terminals of the circuit board by, for example, soldering, or a method in which the output and input terminals of the circuit board and lead terminals of the semiconductor device are directly connected by soldering.




The semiconductor device package manufactured in this manner is incorporated in practical equipment by being mounted on a mother board (packaging substrate) on which the conductor circuits with the predetermined patterns are arranged. Usually, in this case, the area ratio of one semiconductor device package to the mother board ranges from about 1/10 to 1/5, so that a plurality of semiconductor device packages can be mounted on the mother board.




Conventionally, wire bonding is partially used for the mounting on the mother board. To meet the requirement for high-density packaging, however, a novel method has recently started to be widely used such that cream solder is pattern-printed on the lands of the mother board, the terminals (lead terminals or ball grid arrays) of the semiconductor device package are registered on the resulting pattern, and the whole resulting structure is subjected to blanket soldering in a reflow device.




There is a growing tendency for modern electronic apparatuses to become smaller in size, higher in operating speed, and more diverse in function. Accordingly, there is an increasing demand for the development of circuit boards capable of high-density packaging of semiconductor components despite the smallness in overall size.




To this end, it is advisable to use multilayer circuit boards and fine-pattern conductor circuits to be formed. Usually, however, conventional multilayer circuit boards are manufactured by the so-called build-up method, so that they involve the following problems.




In manufacturing a multilayer circuit board by the build-up method, a unit circuit board is first prepared by forming a conductor circuit, which serves as a signal pattern, on the surface of an insulating substrate as a bottom layer. Another unit circuit board, which is formed with another conductor circuit as another signal pattern, is put on the first one for unification. This operation is repeated so that a plurality of unit circuit boards are successively assembled from bottom to top.




In this case, a conduction structure between conductor circuits in each two adjacent layers, upper and lower, usually includes a plurality of through holes bored in a predetermined plane pattern through the unit circuit board in the thickness direction thereof. After the wall surface of each through hole is given electrical conductivity by, for example, electroless plating, electroplating is carried out with use of the conductor circuit in the lower layer as an electrical conduction path, and the respective lands of the conductor circuits in the upper and lower layers are connected electrically by means of the resulting deposit.




In,order to effect the high-density packaging, therefore, the through holes should be made small in diameter. Practically, however, the hole diameter can be reduced only limitedly.




Generally, the through holes are formed by drilling, so that their diameter cannot be made very small in consideration of the drilling strength. Normally, the diameter of drilled holes ranges from 150 to 200 μm. The diameter of through holes formed by photolithography ranges from about 100 to 150 μm.




In the case where a deposit is formed on the wall surface of each bored through hole by combining the electroless plating and electroplating, it must secure a certain measure of thickness, since the electrical continuity between the conductor circuits in the upper and lower layers cannot be satisfactory if the deposit is too thin. For good electrical conduction between the conductor circuits, the thickness of the deposit is normally adjusted to about 20 to 30 μm, depending on the type of the circuit board.




In general, therefore, a deposit with a thickness of 15 to 20 μmis formed on the surface of each through hole with a diameter of 150 to 200 μm, in the conduction structure based on the through holes. In the center of each through hole, in this case, exists a dead space with a diameter of about 100 to 150 μm that has no connection with the conduction between the conductor circuits at all.




Also in the case of inner via holes, a dead space with a diameter of about 60 to 70 μm is created if the diameter of each hole is, for example, 100 μm. Thus, the diameter of the conventional through holes or inner via holes can be reduced only limitedly, and has no effect on the conduction between the conductor circuits, inevitably.




Normally, the following operation is carried out to form the deposit on the wall surface of each through hole in each of inner layers that are built up in succession. After electrical conductivity is given to the whole surface of a target inner layer (including the wall surface of each existing through hole or inner via hole) by electroless plating, a thin deposit is formed by electroplating the inner layer surface. Then, a dry film, for example, is sticked on the surface of the deposit so as to cover it, and is exposed and developed to expose only those portions corresponding to the through holes. The resulting structure is further electroplated with the remaining portion masked, whereupon a deposit of a given thickness is formed on the surface of each through hole (and land). Thereafter, the dry film is separated, and the thin deposit on the exposed surface of the inner layer and the deposit formed by the electroless plating are removed by, for example, soft etching.




In manufacturing a multilayer circuit board by building up the individual inner layers, therefore, the aforesaid operation must be repeated for each inner layer, so that complicated manufacturing processes are required. Thus, the manufacture takes long time, inevitably entailing high manufacturing costs.




In the case of the inner via holes, solid conduction structures may be formed between the layers by forming a deposit on the wall surface of each via hole and then embedding, for example, electrically conductive paste in the dead space remaining in the center of the deposit.




In this case, the solid conduction structures may possibly be formed by simultaneously electrodepositing and filling a conductive material in all the via holes by electroplating in place of the embedding of the conductive paste. In the build-up method, however, it is necessary to provide a conduction path separately for an input terminal for electroplating in advance in the first stage of the manufacture, so that the manufacturing processes are more complicated.




In forming a packaging substrate such as a semiconductor device package or a circuit board, such as a mother board, that has a projecting bump pattern on its packaging surface by the build-up method, a bump material is electrodeposited by, for example, electroplating to form the bump pattern with an intended height on a predetermined portion of a conductor circuit in the top layer, among other conductor circuits built up in succession.




In actual electroplating operation, however, all bumps that constitute the bump pattern cannot be formed with the same height, due to influences of delicate fluctuation in the plating conditions or variation in the flows of electric current to spots for the formation of the individual bumps, so that the bump height varies. In the case where the target bump height is 0.03 mm, for example, the bump height variation is about ±0.003 mm.




If the variation in the bump height is too wide, then some bumps will not be connected to the lands of the semiconductor device package even though the lands are positioned for a reflow process. Thus, reliable packaging cannot be effected.




In consideration of these circumstances, it is necessary to minimize the variation in the height of the bumps in the case of the circuit board that has the bump pattern formed on its packaging surface.




A contact head for checking wiring circuits in LSIs, liquid crystal panels, etc. for troubles is a kind of circuit board. Conventionally, in the contact head of this type, pin probes or L-shaped needles are embedded in an electrically insulating rigid material, and are fixed to the body of the head at predetermined pitches so that their respective tip ends can come into contact with predetermined inspection spots in a wiring circuit as an object of inspection. Also, wires are soldered individually to the respective other ends of the probes or needles so that signals for the inspection spots can be fetched from the other ends. On the other hand, there is a bump system in which bumps are formed by, for example, electroplating in specific circuit portions of a circuit board that has a predetermined circuit pattern, or by a film forming method that is used in the field of semiconductor production, and these bumps are operated in place of the aforesaid pin probes or L-shaped needles.




Recently, the circuit patterns of various circuit components as objects of inspection, and therefore, the pitches between the inspection spots have been becoming finer and finer.




To match the fine pitches between the inspection spots, in the case of a pin-probe head, holes to allow the tip ends of the pin probes to project are formed and arranged zigzag at infinitesimal intervals in the surface of the head. In the case of a head that uses L-shaped needles, the needles to be fixed are tiered.




These countermeasures, however, entail operation to fix at regular pitches the individual pin probes or L-shaped needles that increase remarkably in number as the pitches between the inspection spots become finer, and also, operation to solder a wire to each probe or needle. Thus, completion of products requires a great deal of skill and long operating time, so that the resulting heads are very expensive, inevitably. Even after the pin probes or L-shaped needles are fixed to the head, moreover, their respective tip ends require an accurate location and rearrangement therefor. During storage before shipping, furthermore, close attention must be paid not to run the probe or needle tips against other articles.




In the case of a head having tiered L-shaped needles, the respective elongate portions of the needles are arranged parallel to one another. If the frequencies of input and output signals are heightened, for example, to increase the speed of inspection, therefore, the resulting characteristics of the head may be adversely affected to cause inspection errors, in some cases.




In forming bumps of a bump-type head by electroplating, on the other hand, the bump height is subject to a substantial variation, as mentioned before. The wide variation in the bump height is fatal to the head in which all the bumps must be brought securely into contact with their corresponding inspection spots in the wiring circuit, as a vital necessity.




In the case where bumps are formed by means of a thin film manufacturing apparatus, which is used in the field of semiconductor production and is very expensive, the resulting heads are also very expensive, and a mechanism for integrating the heads with probe cards is necessary. Also required is a drive mechanism for moving the bumps upward, in order to bring them into contact with the inspection spots in the wiring circuit at the time of inspection, and downward after the inspection. Thus, the heads obtained are complicated in construction and more expensive.




If an attempt is made to mount semiconductor components on the conventional packaging substrate at high density, the dead space inevitably enlarges with the increase of spots for mounting the components, since the conduction structures are based on through holes or inner via holes, as mentioned before. In a packaging substrate of a certain standard size, therefore, the number of regions for the formation of necessary bump patterns (or lands) for component packaging and the extent thereof are limited, so that the effort toward high-density packaging is restricted. If high-density packaging is intended, arrangement of additional signal patterns is needed to be achieved the so that the multilayer structure of the substrate or circuit board is bound to be further complicated. Accordingly, wires in the signal patterns are lengthened, so that the reliability of the electrical properties of the resulting packaging substrate may be lowered, in some cases.




OBJECTS AND SUMMARY OF THE INVENTION




An object of the present invention is to provide a circuit board which has a bump pattern or patterns formed on at least one surface thereof so that the surface serves as a packaging surface for a bare chip or semiconductor device package, whereby the circuit board can be used as a substrate or mother board for semiconductor device packaging.




Another object of the invention is to provide a circuit board subject to a very narrow variation in bump height.




Still another object of the invention is to provide a circuit board designed so that small-diameter conduction structures can be secured between conductor circuits, thus permitting high-density packaging of a bare chip or semiconductor device package, etc.




A further object of the invention is to provide a circuit board capable of mounting a bare chip or semiconductor device package directly by means of bumps, thus ensuring labor-saving component packaging.




An additional object of the invention is to provide a manufacturing method for a circuit board, in which bump patterns with a narrow variation in height are formed on at least one surface of the circuit board by, so to speak, an inverted build-up process, without carrying out machining that is required in manufacturing a multilayer circuit board by the conventional build-up process.




Another object of the invention is to provide a manufacturing method for a circuit board, in which conductor circuits and conduction structures can be formed by an electroplating process with a high current density such that the desired circuit board can be manufactured with high productivity.




A further object of the invention is to provide a bump-type contact head, capable of readily matching finepitch arrangement, if any, of an object of inspection, ensuring high-frequency inspection without errors, and enjoying low-cost production, and a manufacturing method therefor.




A further object of the invention is to provide a semiconductor component packaging module of a novel structure, in which a bare chip or semiconductor device package is mounted or packaged by means of bumps, and the bumps and land circuits of the bare chip or semiconductor device package are mechanically in contact with one another for electrical continuity.




In order to achieve the above objects, according to the present invention, there is provided a circuit board comprising: an insulating base having at least bumps on at least one surface thereof; conductor circuits in at least one layer on at least the one surface of and/or inside the insulating base; and a conduction structure for electrical connection formed between the bumps and the conductor circuits and/or between the conductor circuits, at least each of the bumps being a multilayer structure formed by successively electrodepositing at least two different electrically conductive materials.




Preferably, the conduction structure is formed of pillar-shaped conductors, and each bump is a two-layer structure having an outer layer portion formed of a corrosion-resistant conductive material, such as gold, nickel, or nickel alloy, and an inner layer portion formed of copper.




According to the invention, there is provided a method for manufacturing a circuit board, comprising: a step A of manufacturing a member A composed of an electrically conductive substrate, a thin conductor layer formed on at least one surface of the conductive substrate, an electrodeposit layer formed on one surface of the thin conductor layer, bumps of a multilayer structure embedded in predetermined positions in the electrodeposit layer and formed by successively electrodepositing at least two different electrically conductive materials, a resist portion A formed by coating the electrodeposit layer, first pillar-shaped conductors, conductor circuits, or land circuits embedded in the resist portion A and connected-to the bumps, and second pillar-shaped conductors embedded in the resist portion A, connected to the conductor circuits or land circuits, and having an end face exposed in the surface of the resist portion A; a step B of manufacturing a member B(


1


) having a conductor circuit in a layer on the surface of the resist portion A of the member A or a member B(


2


) having conductor circuits in a plurality of layers and pillar-shaped conductors embedded in another resist portion B, the pillar-shaped conductors connecting the conductor circuits, and the last conductor circuit being formed on the surface of the resist portion B; a step C of manufacturing an integrated structure C formed by bonding that surface of the member B(


1


) or B(


2


) on the conductor circuit side to the surface of the insulating base by thermocompression so that the conductor circuits are embedded in the insulating base; and a step D of exposing the bumps by separating the conductive substrate from the integrated structure C and then successively removing the thin conductor layer and the electrodeposit layer by etching.




Preferably, the step A includes: a step A


1


of forming the thin conductor layer by coating at least the one surface of the conductive substrate by electroplating; a step A


2


of forming a resist layer a


1


by coating the thin conductor layer and then optically exposing and developing the resist layer a


1


so that the other surface of the thin conductor layer is exposed with the resist layer a


1


left only on expected bump formation spots; a step A


3


of forming the electrodeposit layer by electrodepositing an electrically conductive material on the exposed surface of the thin conductor layer by electroplating so that the conductive material is flush with the resist layer a


1


; a step A


4


of forming recesses for bump, through which the surface of the thin conductor layer is exposed, in the electrodeposit layer by removing the resist layer a


1


left on the expected bump formation spots; a step A


5


of forming a resist layer a


2


by coating the surface of the electrodeposit layer and then optically exposing and developing the resist layer a


2


, thereby forming the resist layer a


2


with first holes connecting individually with the recesses for bump and plane patterns corresponding to the respective circuit patterns of the land circuits to be formed; a step A


6


of electrodepositing a first conductive material in a layer in the recesses for bump and the first holes and on the plane patterns by electroplating, then additionally electrodepositing at least one conductive material different from the first conductive material on the resulting lamina, and filling up the recesses for bump, first holes, and plane patterns with a multilayer structure formed of two or more different conductive materials stacked in layers, thereby collectively forming the bumps, first pillar-shaped conductors, and land circuits; a step A


7


of exposing the surface of the electrodeposit layer by removing the resist layer a


2


; a step A


8


of coating the exposed surface of the electrodeposit layer, thereby forming a resist layer a


3


with a thickness such that the respective end faces of the first pillar-shaped conductors are exposed; a step A


9


of coating the respective end faces of the resist layer a


3


and the first pillar-shaped conductors and forming a deposit film by electroless plating; a step A


10


of forming a resist layer a


4


by coating the deposit film, then optically exposing and developing the resist layer a


4


, and forming a plane pattern corresponding to the circuit pattern of the conductor circuit to be formed and plane patterns of holes connecting with the land circuits on the resist layer a


4


so that the surface of the deposit film is exposed from the plane patterns; a step A


11


of electrodepositing a conductive material on the plane patterns by electroplating, thereby collectively forming the conductor circuit and the pillar-shaped conductors connected to the land circuits; a step A


12


of exposing the resist layer a


3


by removing the resist layer a


4


and removing the exposed deposit film by etching; a step A


13


of forming the resist portion A composed of the resist layer a


3


and a resist layer a


5


by coating the conductor circuit, the pillar-shaped conductors connected to the land circuits, and the resist layer a


3


with the resist layer a


5


and then optically exposing and developing the resist layer a


5


, thereby forming second holes connecting with the conductor circuit and the pillar-shaped conductors connected to the land circuits; and a step A


14


of forming the second pillar-shaped conductors by filling up the second holes with a conductive material by electroplating.




According to the invention, moreover, the step B(


1


). preferably includes: a step B


1


of coating the whole surface of the resist layer a


5


of the member A and forming a deposit film by electroless plating; a step B


2


of forming a resist layer b


1


by coating the deposit film, then optically exposing and developing the resist layer b


1


, and forming a plane pattern corresponding to the circuit pattern of the conductor circuit to be formed so that the surface of the deposit film is exposed from the plane pattern; a step B


3


of electrodepositing a conductive material on the exposed surface of the deposit film by electroplating, thereby forming the conductor circuit; and a step B


4


of exposing the resist layer a


5


by removing the resist layer b


1


and removing the exposed deposit film by etching.




According to the invention, moreover, the step B(


2


) includes: a step B


5


of forming a resist layer b


2


by coating the resist layer a


5


and the conductor circuit of the member B(


1


), then optically exposing and developing the resist layer b


2


, and forming the resist layer b


2


with a hole connecting with the conductor circuit; a step B


6


of electrodepositing a conductive material in the hole by electroplating, thereby forming the pillar-shaped conductors; a step B


7


of coating the whole surface of the resist layer b


2


and forming a deposit film by electroless plating; a step B


8


of forming a resist layer b


3


by coating the deposit film, then optically exposing and developing the resist layer b


3


, and forming the resist layer b


3


with a plane pattern corresponding to the circuit pattern of the conductor circuit to be formed so that the surface of the deposit film is exposed from the plane pattern; a step B


9


of electrodepositing a conductive material on the plane pattern by electroplating, thereby forming the conductor circuit; and a step B


10


of exposing the resist layer b


2


by removing the resist layer b


3


and removing the exposed deposit film by etching, each of the steps B


5


to B


10


being carried out at least once for the resist layer b


2


and the conductor circuit on the surface thereof.




According to the invention, furthermore, the step A preferably includes: a step A


1


of forming the thin conductor layer by coating at least the one surface of the conductive substrate by electroplating; a step A


2


of forming a resist layer a


1


by coating the thin conductor layer and then optically exposing and developing the resist layer a


1 l


so that the other surface of the thin conductor layer is exposed with the resist layer a


1


left only on expected bump formation spots; a step A


3


of forming the electrodeposit layer by electrodepositing an electrically conductive material on the exposed surface of the thin conductor layer by electroplating so that the conductive material is flush with the resist layer a


1


; a step A


4


of forming recesses for bump, through which the surface of the thin conductor layer is exposed, in the electrodeposit layer by removing the resist layer a


1


left on the expected bump formation spots; a step A


15


of forming a resist layer a


2


by coating the surface of the electrodeposit layer and then optically exposing and developing the resist layer a


2


, thereby forming the resist layer a


2


with plane patterns connecting individually with the recesses for bump and corresponding to the respective circuit patterns of the conductor circuits to be formed, and if necessary, plane patterns corresponding to the respective circuit patterns of the land circuits; a step A


16


of electrodepositing a first conductive material in a layer in the recesses for bump and on the plane patterns by electroplating, then electrodepositing at least one conductive material different from the first conductive material on the resulting lamina, and filling up the recesses for bump, the conductor circuits, and if necessary, the land circuits with a multilayer structure formed of two or more different conductive materials stacked in layers, thereby collectively forming the bumps, conductor circuits, and if necessary, land circuits; a step A


17


of forming a resist layer a


3


by coating the conductor circuits, and if necessary, the land circuits, then optically exposing and developing the resist layer a


3


, and forming the resist layer a


3


with first holes connecting individually with the conductor circuits, and if necessary, the land circuits; and a step A


18


of electrodepositing a conductive material in the first holes by electroplating, thereby forming the pillar-shaped conductors.




According to the present invention, moreover, there is provided a bump-type contact head comprising: an insulating substrate; a movable region formed in a predetermined position in the insulating substrate so that at least the upper surface of the movable region can move up and down, the upper surface of the movable region being flush with the upper surface of the insulating substrate; a plurality of signal conductors arranged on the upper surface of and/or inside the insulating substrate and extending to the movable region, at least the tip end of each of the signal conductors being situated in the movable region; and bumps protruding individually from the upper surfaces of the respective tip ends of the signal conductors, each of the bumps being a multilayer structure formed by successively electrodepositing at least two different electrically conductive materials.




Preferably, the movable region includes an aperture formed across the thickness of the insulating substrate and an elastic member disposed in the aperture, the upper surface of the elastic member being exposed through the top opening of the aperture.




Preferably, moreover, the movable region includes a thin-wall portion of an aperture having a stepped structure formed across the thickness of the insulating substrate so that the top side of the insulating substrate is thin-walled, the top opening of the aperture having a square plane shape such that slits extending toward the peripheral edge portion of the insulating substrate are cut individually in the four corners of the square opening so as to reach at least the basal part of the thin-wall portion of the stepped structure, the thin-wall portion having a plane shape analogous to a tongue.




Preferably, furthermore, the movable region includes an aperture having a stepped structure formed across the thickness of the insulating substrate so that the top side of the insulating substrate constitutes a thin-wall portion, the top opening having a square plane shape such that slits extending toward the peripheral edge portion of the insulating substrate are cut individually in the four corners of the square opening so as to reach at least the basal part of the thin-wall portion of the stepped structure, the thin-wall portion having a plane shape analogous to a tongue; and an elastic member disposed in the aperture, the upper surface of the elastic member being exposed through the top opening of the aperture so that the signal conductors are arranged extending up to the upper surface of the elastic member.




According to the present invention, there is provided a method for manufacturing a bump-type contact head, comprising: a step of forming a first resist layer by coating the surface of an electrically conductive sheet and then optically exposing and developing the first resist layer so that the surface of the conductive sheet is exposed in spots corresponding to the positions of bumps to be formed; a step of forming recesses for bump in the exposed surface of the conductive sheet by etching and then removing the first resist layer; a step of forming a second resist layer by coating the exposed surface of the conductive sheet and then optically exposing and developing the second resist layer, thereby exposing the surface of the conductive sheet in plane patterns corresponding to the respective patterns of signal conductors to be formed; a step of electrodepositing a first conductive material in a layer in the recesses for bump and on the plane patterns by electroplating, then additionally electrodepositing at least one conductive material different from the first conductive material on the resulting lamina, and filling up the recesses for bump and the plane patterns with a multilayer structure formed of two or more different conductive materials stacked in layers, thereby collectively forming the bumps and the signal conductors; a step of removing the second resist layer and then bonding the resulting exposed surface to the opening-side surface of an insulating substrate formed with an aperture having an opening in a predetermined shape; and a step of filling up a hollow portion defined by the aperture and the conductive sheet with an elastic member and then removing the conductive sheet by etching, thereby exposing the respective upper surfaces of the bumps and the signal conductors.




According to the present invention, moreover, there is provided a method for manufacturing a bump-type contact head, comprising: a step of forming a thin conductor layer by coating at least one surface of a conductive substrate by electroplating; a step of forming a first resist layer by coating the thin conductor layer and then optically exposing and developing the first resist layer so that the other surface of the thin conductor layer is exposed with the first resist layer left only on expected bump formation spots; a step of forming an electrodeposit layer by electrodepositing an electrically conductive material on the exposed surface of the thin conductor layer by electroplating so that the conductive material is flush with the first resist layer; a step of forming recesses for bump, through which the surface of the thin conductor layer is exposed, in the electrodeposit layer by removing the first resist layer left on the expected bump formation spots; a step of forming a second resist layer by coating the surface of the electrodeposit layer and then optically exposing and developing the second resist layer, thereby exposing the surface of the electrodeposit layer in plane patterns corresponding to the respective patterns of signal conductors to be formed; a step of electrodepositing a first conductive material in a layer in the recesses for bump and on the plane patterns by electroplating, then additionally electrodepositing at least one conductive material different from the first conductive material on the resulting lamina, and filling up the recesses for bump and the plane patterns with a multilayer structure formed of two or more different conductive materials stacked in layers, thereby collectively forming the bumps and the signal conductors; a step of removing the second resist layer and then bonding the resulting exposed surface to the opening-side surface of an insulating substrate formed with an aperture having an opening in a predetermined shape; and a step of filling up a hollow portion defined by the aperture and the electrodeposit layer with an elastic member, then separating the conductive substrate, successively removing the thin conductor layer and the electrodeposit layer by etching, thereby exposing the bumps and the signal conductors.




According to the present invention, furthermore, there is provided a semiconductor component packaging module comprising: a circuit board including an insulating base having bumps on at least one surface thereof, the bumps having a multilayer structure formed by electrodepositing two or more different conductive materials in layers; and a semiconductor component mounted on the circuit board with an adhesive, the semiconductor component having lands mechanically in contact with the bumps.




Preferably, the adhesive used for packaging is a bonding agent that contracts when set.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view showing a circuit board M


1


according to the present invention;





FIG. 2

is a sectional view taken along line II—II of

FIG. 1

;





FIG. 3

is a perspective view showing another circuit board M


2


according to the invention;





FIG. 4

is a sectional view taken along line IV—IV of

FIG. 3

;





FIG. 5

is a perspective view showing a multi-chip bump board M


3


as a modification of the circuit board M


1


;





FIG. 6

is a perspective view showing another multichip bump board M


4


according to the invention;





FIG. 7

is a partial sectional view showing a profile of the circuit board M


1


near the upper surface thereof;





FIG. 8

is a partial sectional view showing a profile of the circuit board M


2


near the upper surface thereof;





FIG. 9

is a sectional view showing a structure in which a thin conductor layer is formed by coating the surface of a conductive substrate;





FIG. 10

is a sectional view showing a structure obtained by forming a resist layer a


1


on the surface of the thin conductor layer;





FIG. 11

is a sectional view showing a structure obtained by leaving the resist layer a


1


in expected bump formation spots;





FIG. 12

is a sectional view showing a structure obtained by forming an electrodeposit layer on the surface of the thin conductor layer;





FIG. 13

is a sectional view showing a structure obtained by forming recesses for bump in the electrodeposit layer;





FIG. 14

is a sectional view showing a structure obtained by forming a resist layer a


2


with first holes connecting individually with the recesses for bump and plane patterns corresponding to land circuits;





FIG. 15

is a sectional view showing a structure formed having bumps, first pillar-shaped conductors, and land circuits;





FIG. 16

is a sectional view showing a structure obtained by removing the resist layer a


2


to expose the surface of the electrodeposit layer;





FIG. 17

is a sectional view showing a structure including a resist layer a


3


formed by coating the surface of the electrodeposit layer;





FIG. 18

is a sectional view showing a structure obtained by forming a deposit film on the respective surfaces of the resist layer a


3


, first pillar-shaped conductors, and land circuits by electroless plating;





FIG. 19

is a sectional view showing a structure obtained by forming a resist layer a


4


on the deposit film of FIG.


18


and then forming the layer a


4


with a plane pattern corresponding to a conductor circuit to be formed and holes for pillar-shaped conductors;





FIG. 20

is a sectional view showing a structure obtained by electroplating the plane pattern and the holes for the pillar-shaped conductors of

FIG. 19

with a conductive material;





FIG. 21

is a sectional view showing a structure obtained by removing the resist layer a


4


and then removing the deposit film to form the conductor circuit and the pillar-shaped conductors on the resist layer a


3


;





FIG. 22

is a sectional view showing a structure including a resist layer a


5


formed by coating the conductor circuit and the pillar-shaped conductors;





FIG. 23

is a sectional view showing a structure obtained by forming holes in the resist layer a


5


;





FIG. 24

is a sectional view showing a member A obtained by forming pillar-shaped conductors by filling up the holes of

FIG. 23

with a conductive material by electroplating;





FIG. 25

is a sectional view showing a structure obtained by coating the resist layer a


5


and the respective end faces of the pillar-shaped conductors of the member A to form a deposit film thereon by electroless plating;





FIG. 26

is a sectional view showing a structure obtained by forming a resist layer b


1


on the deposit film and then forming the layer b


1


with plane patterns corresponding to conductor circuits to be formed;





FIG. 27

is a sectional view showing a structure obtained by electroplating the plane patterns of

FIG. 26

with a conductive material;





FIG. 28

is a sectional view showing a structure obtained by removing the resist layer b


1


;





FIG. 29

is a sectional view showing a member B(


1


) obtained by forming conductor circuits on the resist layer a


5


;





FIG. 30

is a sectional view showing a structure including a resist layer b


2


formed by coating the conductor circuits of

FIG. 29

;





FIG. 31

is a sectional view showing a structure obtained by forming holes for pillar-shaped conductors in the resist layer b


2


;





FIG. 32

is a sectional view showing a structure obtained by forming pillar-shaped conductors by filling up the holes of

FIG. 31

with a conductive material by electroplating;





FIG. 33

is a sectional view showing a structure obtained by coating the surface of the resist layer b


2


and the respective end faces of the pillar-shaped conductors to form a deposit film thereon by electroless plating;





FIG. 34

is a sectional view showing a structure obtained by forming a resist layer b


3


on the deposit film of FIG.


33


and then forming the layer b


3


with plane patterns corresponding to conductor circuits to be formed;





FIG. 35

is a sectional view showing a structure obtained by electroplating the plane patterns of

FIG. 34

with a conductive material;





FIG. 36

is a sectional view showing a structure obtained by removing the resist layer b


3


;





FIG. 37

is a sectional view showing a member B(


2


) obtained by forming conductor circuits on the resist layer b


2


;





FIG. 38

is a sectional view showing the way the surface of the member B(


1


) and an insulating substrate are bonded together by thermocompression;





FIG. 39

is a sectional view showing an integrated structure C composed of the member B(


1


) and the insulating substrate;





FIG. 40

is a sectional view showing a structure obtained by separating the conductive substrate from the integrated structure C;





FIG. 41

is a sectional view showing a circuit board M


1


according to the invention;





FIG. 42

is a sectional view showing a structure obtained by leaving a resist layer a


1


in expected bump formation spots on the deposit film;





FIG. 43

is a sectional view showing a structure obtained by forming recesses for bump in an electrodeposit layer;





FIG. 44

is a sectional view showing a structure obtained by forming a resist layer a


2


with plane patterns for conductor circuits, which connect individually with the recesses for bump, and plane patterns for land circuits;





FIG. 45

is a sectional view showing a structure obtained by electroplating the plane patterns of

FIG. 44

to form bumps, conductor circuits, and land circuits;





FIG. 46

is a sectional view showing a structure obtained by coating the conductor circuits, land circuits, and resist layer a


2


to form a resist layer a


3


and then forming the layer a


3


with holes for pillar-shaped conductors;





FIG. 47

is a sectional view showing a member A obtained by forming pillar-shaped conductors by filling up the holes of

FIG. 46

with a conductive material by electroplating;





FIG. 48

is a sectional view showing the way the members B(


1


) and B(


2


) are bonded to an insulating substrate by thermocompression;





FIG. 49

is a sectional view showing a circuit board M


5


for double-side packaging manufactured by a method according to the invention;





FIG. 50

is a sectional view showing the way a film is sticked on the member B(


2


) as the circuit board for doubleside packaging is manufactured;





FIG. 51

is a perspective view showing a circuit board M


6


for double-side packaging manufactured by using a circuit board according to the invention;





FIG. 52

is a perspective view showing a circuit board M


7


according to the invention provided with a heat sink and a heat transfer path;





FIG. 53

is a perspective view showing a head C


1


according to the invention;





FIG. 54

is a sectional view taken along line Y


1


—Y


1


of

FIG. 53

;





FIG. 55

is a partial sectional view showing an arrangement of bumps on the upper surface of an elastic member;





FIG. 56

is a sectional view showing the head C


1


provided with lift means (sealed air chamber);





FIG. 57

is a sectional view showing the head C


1


provided with another lift means;





FIG. 58

is a sectional view showing a head C


2


according to the invention;





FIG. 59

is a sectional view showing the head C


2


disposed on a mother board;





FIG. 60

is a sectional view showing a head C


3


according to the invention;





FIG. 61

is a perspective view showing a preferred example of the head C


3


according to the invention;





FIG. 62

is a partial enlarged view of a region Y


2


circled in

FIG. 61

;





FIG. 63

is a partial sectional view taken along line Y


3


—Y


3


of

FIG. 61

;





FIG. 64

is a partial sectional view illustrating the bump operation of the head C


3


;





FIG. 65

is a sectional view showing a head C


4


according to the invention;





FIG. 66

is a sectional view of a contact head manufactured by using the head C


4


of

FIG. 65

;





FIG. 67

is a sectional view showing a head C


5


according to the invention;





FIG. 68

is a sectional view showing the head C


5


of

FIG. 67

mounted on a mother board;





FIG. 69

is a perspective view showing a head C


6


according to the invention;





FIG. 70

is a sectional view taken along line Y


4


—Y


4


of

FIG. 69

;





FIG. 71

is a sectional view showing a structure obtained by forming a first resist layer on a conductive sheet;





FIG. 72

is a sectional view showing a structure obtained by forming apertures in the first resist layer;





FIG. 73

is a sectional view showing a structure obtained by forming recesses for bump in the conductive sheet;





FIG. 74

is a sectional view showing a structure obtained by forming a second resist layer on the conductive sheet and then forming the layer with patterns corresponding to groove patterns for signal conductors to be formed;





FIG. 75

is a sectional view showing a structure obtained by electrodepositing a conductive material in the recesses for bump and on the groove patterns for signal conductors;





FIG. 76

is a sectional view showing a structure obtained by forming the surface of the conductive sheet with bumps and signal conductors;





FIG. 77

is a sectional view showing the way the surface of the conductive sheet of FIG.


76


and an insulating substrate are bonded together by thermocompression;





FIG. 78

is a sectional view showing another example of the way the conductive sheet and the insulating substrate are bonded by thermocompression;





FIG. 79

is a sectional view showing the way an elastic member is filled into a hollow portion formed when the conductive sheet of FIG.


76


and the insulating substrate are joined together;





FIG. 80

is a sectional view showing another method for filling the elastic member;





FIG. 81

is a sectional view showing a structure obtained by filling the elastic member into the hollow portion shown in

FIG. 79

;





FIG. 82

is a sectional view showing the way another insulating substrate is attached to the structure shown in

FIG. 81

;





FIG. 83

is a sectional view showing a structure obtained by separating the conductive sheet;





FIG. 84

is a partial plan view showing another contact head C


7


according to the invention; and





FIG. 85

is a sectional view showing an example of a semiconductor component packaging module according to the invention.











DETAILED DESCRIPTION OF THE INVENTION




First, circuit boards and a manufacturing method therefor according to the present invention will be described in detail with reference to the accompanying drawings.




FIG.


1


and

FIG. 2

, which is a sectional view taken long line II—II of

FIG. 1

, show a circuit board M


1


according to the invention, and FIG.


3


and

FIG. 4

, which is a sectional view taken along line IV—IV of

FIG. 3

, show another circuit board M


2


of the invention.





FIGS. 5 and 6

are perspective views showing further circuit boards (multi-chip bump boards) M


3


and M


4


according to the invention, respectively.




These circuit boards M


1


, M


2


, M


3


and M


4


have common bumps


3


in a predetermined plane pattern or patterns, projecting from a surface


1




a


of an insulating base


1


. In any of the circuit boards M


1


, M


2


and M


3


, land circuits (or lands)


4


are exposed in the surface


1




a


of the insulating base


1


. In the circuit board M


4


, however, the land circuits are formed within the base


1


without being exposed.




Although conductor circuits (mentioned) are not exposed in the surface


1




a


of the insulating base


1


in the case of the circuit board M


1


, a conductor circuit


2




a


is exposed in the base surface


1




a


in the case of the circuit board M


2


.




The respective basic constructions of these circuit boards can be represented by those of the circuit boards M


1


and M


2


. The circuit board (multi-chip bump board) M


3


differs from the circuit board M


1


only in the number of bump patterns, and can be regarded as a modification of the circuit board M


1


. The circuit board (multi-chip bump board) M


4


can be obtained by arranging the land circuits


4


in a predetermined pattern in the insulating base


1


by a manufacturing method mentioned later.




Based on these circumstances, the circuit boards M


1


and M


2


will first be described in detail.




In either of the circuit boards M


1


and M


2


, conductor circuits


2




a


and


2




b


in a plurality of layers (two layers as illustrated) are embedded in the insulating base


1


, spaced from each other in the thickness direction of the base


1


.




In the case of the circuit board M


1


, the bumps


3


project from the surface


1




a


of the insulating base


1


, and the land circuits


4


are exposed. The conductor circuit


2




a


in the top layer on the surface side is not exposed in the surface


1




a


, and the bumps


3


and conductor circuit


2




a


, the land circuits


4


and conductor circuit


2




b


, and the two conductor circuits


2




a


and


2




b


are connected electrically to one another by means of pillar-shaped conductors


5




1


and


5


(mentioned later), individually.




In this case, first pillar-shaped conductors


5




1


, which constitute a conduction structure for the bumps


3


and conductor circuit


2




a


, are larger than the bumps


3


in profile size, on account of conditions for the manufacturing method mentioned later. The other pillar-shaped conductors, however, have a smaller diameter.




In the case of the circuit board M


2


, on the other hand, the conductor circuit


2




a


in the top layer and the land circuits


4


are exposed in the surface


1




a


of the insulating base


1


, and the bumps


3


are formed integrally on the tip of the conductor circuit


2




a.






The circuit board M


2


with this construction can be used as a bump-type contact head (mentioned later) according to the present invention, if it is provided with only the conductor circuit


2




a


in the top layer without including a plurality of conductor layers.




As indicated by imaginary lines in

FIGS. 1 and 3

, a predetermined semiconductor component S is mounted on the bump pattern of each of the circuit boards M


1


and M


2


. If the semiconductor component S is a bare chip, in this case, each of the circuit boards M


1


and M


2


can be used as a packaging substrate for assembling a semiconductor device package. If the semiconductor component S is a semiconductor device package that is already assembled, on the other hand, each circuit board can be used as a mother board.




In the case of the circuit board M


1


, as shown in

FIG. 7

, each bump


3


is a multilayer structure (two-layer structure as illustrated) including stacked laminae


3




a


and


3




b


that are formed by successively electrodepositing different conductive materials, and each land circuit


4


is also a multilayer structure (two-layer structure as illustrated) including stacked laminae


4




a


and


4




b


that are formed by successively electrodepositing different conductive materials. The laminae


3




a


and


4




a


, which constitute outer layer portions of each bump


3


and each land circuit


4


, respectively, are formed of one and the same conductive material, while the laminae


3




b


and


4




b


, which constitute inner layer portions of each bump


3


and each land circuit


4


, respectively, are also formed of one and the same conductive material.




In this case, the outer layer portions


3




a


and


4




a


are expected to function as barrier layers against an etchant that is used in the manufacturing method mentioned later, so that they are formed of a conductive material that is resistant to corrosion by the etchant. In the case where the etchant used is one that is adapted for the etching of copper, for example, gold, nickel, or nickel-cobalt or other nickel alloy may be used as a suitable conductive material for the outer layer portions


3




a


and


4




a


. On the other hand, the inner layer portions


3




b


and


4




b


should preferably be formed of copper that is highly electrically conductive.




In the case of each first pillar-shaped conductor


5




1


, which has a profile larger than that of each bump


3


, a layer of-the conductive material that constitutes the outer layer portion


3




a


is formed in a stepped structure near the boundary between the conductor


5




1


and its corresponding bump


3


, while the whole remaining portion is formed of the same conductive material as the inner layer portion


3




b.






In the case of the circuit board M


2


, as shown in

FIG. 8

, on the other hand, each bump


3


and the conductor circuit


2




a


that are exposed in the surface


1




a


of the insulating base


1


, like each bump


3


of the circuit board M


1


, are multilayer structures each composed of the outer and inner layer portions


3




a


and


3




b


. Also, each land circuit


4


that is exposed in the surface


1




a


has its upper surface formed of a layer of the same material as the outer layer portion


3




a


, and the portion underlying the upper surface is formed of the same material as the inner layer portion


3




b.






Although each multilayer structure described above is a two-layer structure, it is not limited to this arrangement, and its outer layer portion may, for example, be a laminar structure formed by electrodepositing different conductive materials in two or more layers. Also in this case, however, the top layer should be formed of a material that is resistant to corrosion by the etchant used in the step described later, as mentioned before.




In these circuit boards M


1


and M


2


, the pillar-shaped conductors


5




1


and


5


are formed by filling a conductive material into holes that are formed by a method mentioned later. In doing this, the conductive material is electrodeposited by electroplating. Thus, if those holes have the same diameter as the conventional through holes or inner via holes, for example, the current capacity is much larger than in the case of the conventional conduction structure in which a deposit is formed on the wall surfaces of the through holes or inner via holes. In other words, the diameter of the pillar-shaped conductors


5


can be made smaller than in the conventional structure based on the through holes or inner via holes in the case where an attempt is made to secure a necessary current capacity for the activation of the circuit boards.




Accordingly, the aforesaid dead space can be minimized, as compared with the conventional conduction structure including the through holes or inner via holes. Thus, the distribution density of the bumps


3


that can be formed on the surface of the circuit board can be improved, and therefore, high-density packaging of semiconductor components can be effected.




In the circuit boards M


1


and M


2


, the continuity between the conductor circuits is secured by means of the pillar-shaped conductors


5


. Accordingly, manufacture of these circuit boards does not require machining such as drilling, which is necessary in forming the through holes or inner via holes that penetrate regions between the conductor circuits. Thus, the plane patterns can be made finer, and high-density packaging of semiconductor components can be effected also for this reason.




The most distinguishing feature of the manufacturing method for circuit boards according to the present invention is that the bumps are formed first and conductor circuits in a plurality of layers are then successively formed under the bumps with the pillar-shaped conductors between them.




Each circuit board of the invention is manufactured by carrying the aforementioned steps A, B, C and D in the order named. In the step A, a member A (mentioned later) is manufactured embedding bumps, first pillar-shaped conductors, and top-layer conductor circuits and/or land circuits in a resist portion. In the step B, a member B(


1


) or B(


2


) (mentioned later) is manufactured by attaching an additional conductor circuit and pillar-shaped conductors to the member A. In the step C, an integrated structure C is manufactured by integrating the member B(


1


) or B(


2


) with an insulating substrate. Finally, the intended circuit board is manufactured in the step D.




In this case, the circuit board M


1


can be manufactured by carrying out the steps A


1


to A


14


that constitute the step A, while the circuit board M


2


can be manufactured by executing the steps A


15


to A


18


in place of the steps A


5


to A


14


, out of the steps A


1


to A


14


of the step A.




The manufacturing method for the circuit board M


1


will be described first.




First, the member A is manufactured in the following manner. The individual steps will now be described in succession.




Step A


1


:




As shown in

FIG. 9

, a thin conductor layer


7


with a thickness of about 2 to 3 μm is formed on one surface


6




a


of an electrically conductive substrate


6


, such as a stainless-steel plate, by electroplating the surface with, for example, copper in a conventional manner. The conductive substrate may alternatively be a copper plate.




Step A


2


:




Then, a resist layer a


1


is formed by coating a surface


7




a


of the thin conductor layer


7


(FIG.


10


). The resist layer a


1


is formed, for example, by using a conventional dry film or printing a liquid resist. The thickness of the resist layer a


1


is adjusted so as to be substantially equal to the height of bumps to be formed.




The resist layer a


1


is optically exposed and developed, and all of it is removed except those portions which correspond to expected bump formation spots. Thereupon, the surface


7




a


of the thin conductor layer


7


is exposed in the region cleared of the resist layer al, as shown in FIG.


11


.




Step A


3


:




Subsequently, electroplating is carried out with the conductive substrate


6


used as a negative electrode, and an electrodeposit layer


8


is formed by electrodepositing a prescribed conductive material on the exposed surface


7




a


of the thin conductor layer


7


so that it is flush with the remaining resist layer a


1


(FIG.


12


).




The conductive material used in this step is not subject to any special restrictions, and may be copper, silver, aluminum, or gold, for example. Usually, copper is preferred.




Step A


4


:




Then, the resist layer a


1


remaining in the expected bump formation spots is removed. In consequence, recesses for bump


3


A are formed in a predetermined plane pattern in the electrodeposit layer


8


such that the surface


7




a


of the thin conductor layer


7


is exposed through the recesses, as shown in FIG.


13


.




Step A


5


:




Then, a resist layer a


2


is formed on a surface


8




a


of the electrodeposit layer


8


such that its thickness is substantially equal to the height of first pillar-shaped conductors to be formed, and is optically exposed and developed. Thereupon, first holes


5


A


1


, which connect individually with the recesses for bump


3


A, and plane patterns


4


A, which correspond to the circuit patterns of land circuits to be formed, are formed simultaneously in the resist layer a


2


, as shown in FIG.


14


.




The profile of each first hole


5


A


1


formed in this manner is larger than that of each bump recess


3


A. Thus, each first hole


5


A


1


and its corresponding bump recess


3


A form one cavity as a whole. The surface


7




a


of the thin conductor layer


7


and a side wall


8




b


of the electrodeposit layer


8


are exposed at the bottom of the bump recess


3


A, while the surface


8




a


of the electrodeposit layer


8


is exposed through the plane patterns


4


A. Since the profile of each first hole


5


A


1


is larger than that of the bump recess


3


A into which it opens, moreover, the cavity that is defined by the recess


3


A and the hole


5


A


1


has a stepped configuration, so that a partial surface


8




c


of the electrodeposit layer


8


is exposed in the first hole


5


A


1


in the boundary region between the two. Usually, a dry film is used in the formation of the resist layer a


2


in this step A


5


, although a liquid resist may be used instead.




If a permanent resist is used to form the resist layer a


2


in this step A


5


, steps A


7


and A


8


described below need not always be carried out.




Step A


6


:




Subsequently, the whole resulting structure is immersed in a plating bath to be electroplated with the conductive substrate


6


used as the negative electrode.




In this case, the electroplating is carried out at least twice in different plating baths. Specifically, in the case where the electrodeposit layer


8


is formed of copper, a first cycle of electroplating is carried out to electrodeposit layer a corrosion-resistant first conductive material, such as gold, nickel, or nickel-cobalt alloy, that cannot be corroded by the etchant used in an etching process in the step D, which will be mentioned later. In this first electroplating cycle, the first conductive material is electrodeposited in a layer on the exposed surface


7




a


of the thin conductor layer


7


, the side wall


8




b


of the electrodeposit layer


8


, and the partial surface


8




c


of the electrodeposit layer


8


in the boundary region, in each cavity that is formed of each bump recess


3


A and its corresponding first hole


5


A


1


. The same electrodeposition also advances in the plane patterns


4


A.




After the first electroplating cycle is finished, another cycle of electroplating is carried out. In this second cycle, another conductive material is electrodeposited on the lamina of the first conductive material. The conductive material deposited in this process may be any suitable material, such as copper or aluminum, that enjoys high electrical conductivity.




In this process of electroplating, the first conductive material, which is resistant to corrosion by the etchant used in the step D, is first deposited in a layer in the bump recess


3


A, and the second conductive material is further deposited on the layer, in each cavity formed of the bump recess


3


A and its corresponding first hole


5


A


1


and in each plane pattern


4


A. As a result, the cavity and the plane pattern are filled up with these conductive materials.




When the step A


6


is finished, therefore, the bumps


3


are formed in a manner such that each bump recess


3


A is filled up with a two-layer structure that is composed of the outer and inner stacked laminae (layer portions)


3




a


and


3




b


, as shown in FIG.


15


. Also in each plane pattern


4


A, a two-layer structure each composed of the outer and inner stacked laminae (layer portions)


4




a


and


4




b


, which are formed of the same materials as the laminae


3




a


and


3




b


, respectively, is formed as the land circuit


4


. Collectively formed in the first holes


5


A


1


are first pillar-shaped conductors


5




1


as two-layer structures, each including the lamina


3




a


in the vicinity of the stepped portion and an underlying portion formed of the same material as the lamina


3




b.






In this process of electroplating, the profile of each first hole


5


A


1


is larger than that of each bump recess


3


A, so that the individual conductive materials are smoothly electrodeposited in the recesses for bump and then in the first holes. If the plating bath is subjected to ultrasonic vibration during the electroplating process, it is allowed to penetrate securely into the first holes


5


A


1


and the recesses for bump


3


A, even though these holes and recesses are small-sized, and gas generated during the electroplating process can be quickly removed from the holes


5


A


1


and the recesses


3


A. Thus, high-reliability plating can be effected.




The conductive substrate


6


, thin conductor layer


7


, and electrodeposit layer


8


, which have a wide area, constitute a conduction path for the electroplating. Accordingly, a large electric current can be supplied, so that the current density for the electroplating can be increased. In consequence, the recesses for bump


3


A, first holes


5


A


1


, and plane patterns


4


A can be filled up with the conductive materials in a short time.




In this step A


6


, the cycles of electroplating are not limited to two in number, and the electroplating may be repeated thrice or more, if necessary. Even in this case, however, a corrosion-resistant first conductive material, such as the aforesaid one, must be electrodeposited in a layer in the first electroplating cycle.




Step A


7


:




When the recesses for bump


3


A, first holes


5


A


1


, and plane patterns


4


A are filled up with the multilayer structures of the conductive materials, that is, when the whole deposit surface becomes flush with the resist layer a


2


, the electroplating is suspended, and the layer a


2


is then removed. As a result, the surface


8




a


of the electrodeposit layer


8


is exposed, and the bumps


3


, each composed of a multilayer structure of a conductive material filling each bump recess, and the first pillar-shaped conductors


5




1


, projecting individually from the bumps, are integrally formed in predetermined portions of the electrodeposit layer


8


, as shown in FIG.


16


. At the same time, the land circuits


4


, each composed of a multilayer structure of a conductive material, is formed.




Step A


8


:




Then, the exposed surface


8




a


of the electrodeposit layer


8


is coated to form a resist layer a


3


with a thickness such that the profile of each first pillar-shaped conductor


5




1


and the surface of each land circuit


4


are exposed, as shown in FIG.


17


. More specifically, a liquid resist, for example, is applied to the surface


8




a


, and optically exposed and developed to form an insulating layer.




Step A


9


:




After the surface of the resist layer a


3


is roughened, it is subjected to electroless plating. Thereupon, the respective surfaces of the resist layer a


3


, first pillar-shaped conductors


5




1


, and land circuits


4


are coated to form a deposit film


9


, as shown in FIG.


18


.




Step A


10


:




Then, a resist layer a


4


substantially as thick as a conductor circuit to be formed is formed by coating the surface of the deposit film


9


, and is optically exposed and developed. Thereupon, a plane pattern


2


A corresponding to the circuit pattern of the conductor circuit to be formed and plane patterns


5


A


1


′ corresponding to pillar-shaped conductors to be connected to the land circuits


4


are formed simultaneously.




As a result, the plane patterns


2


A and


5


A


1


′ for the conductor circuit and pillar-shaped conductors are formed having predetermined plane shapes on a surface


9




a


of the deposit film


9


, and the film surface


9




a


is exposed through these plane patterns, as shown in FIG.


19


. Either a dry film or liquid resist may be used in forming the resist layer a


4


in this step. Step A


11


:




Subsequently, electroplating is carried out with the conductive substrate


6


used as the negative electrode, and a conductive material, such as copper, that enjoys high electrical conductivity is electrodeposited on the surface


9




a


of the deposit film


9


, which is exposed through the plane patterns


2


A and


5


A


1


′, so as to be flush with the surface of the resist layer a


4


, as shown in FIG.


20


.




Step A


12


:




After the resist layer a


4


is then removed to expose the surface


9




a


of the deposit film


9


, only the exposed surface is removed by soft etching, for example. As a result, the surface of the resist layer a


3


is exposed, and the conductor circuit


2




a


and the pillar-shaped conductors


5




1


′, which are connected to individually the land circuits


4


, are formed on the exposed surface, as shown in FIG.


21


.




Step A


13


:




Then, the exposed surface of the resist layer a


3


, the conductor circuit


2




a


, and the pillar-shaped conductors


5




1


′ are coated entire to form a resist layer a


5


, as shown in FIG.


22


. Although either a dry film or liquid resist may be used in forming the resist layer a


5


, the liquid resist is preferred.




Thus, the previously formed resist layer a


3


and the resist layer a


5


are unified to form a resist portion A as an insulating layer, and the conductor circuit


2




a


and the pillar-shaped conductors


5




1


′ are embedded in the insulating layer. In this case, the thickness of the resist layer a


5


in the regions corresponding to the circuit


2




a


and the conductors


5




1


′ is adjusted so as to be substantially equal to the height of second pillar-shaped conductors (mentioned later) to be formed.




Thereafter, the resist layer a


5


is optically exposed and developed to be formed with the conductor circuit


2




a


and second holes


5


A


2


, which connect with the pillar-shaped conductors


5




1


′, as shown in FIG.


23


. Thus, the respective end faces of the circuit


2




a


and the conductors


5




1


′ are exposed through the second holes


5


A


2


.




Step A


14


:




Finally, electroplating is carried out with the conductive substrate


6


used as the negative electrode, a conductive material is electrodeposited on the respective surfaces of the conductor circuit


2




a


and the pillar-shaped conductors


5




1


′ that are exposed through the second holes


5


A


2


, and the holes


5


A


2


are filled up to form second pillar-shaped conductors


5




2


, whereupon the step A is finished. In this case, the second pillar-shaped conductors


5




2


which are connected electrically to the land circuits


4


, are formed integrally with their corresponding pillar-shaped conductors


5




1


′ that are formed previously.




When the step A is finished, the bumps


3


are situated in the electrodeposit layer


8


, the first pillar-shaped conductors


5




1


, land circuits


4


, conductor circuit


2




a


, and second pillar-shaped conductors


5




2


are embedded in a resist portion A, and the respective end faces of the pillar-shaped conductors


5




2


are exposed in a predetermined pattern on the surface of the resist layer a


5


, as shown in FIG.


24


. The member A is manufactured in this manner.




Thus, in this member A, conduction structures are formed individually between the bumps


3


, first pillar-shaped conductors


5




1


, deposit film


9


, conductor circuit


2




a


, and second pillar-shaped conductors


5




2


and between the land circuits


4


, deposit film


9


, and second pillar-shaped conductors


52






Then, another additional conductor circuit is attached to the resulting member A by subjecting the member A to the following step B.




In this case, the step B is composed of either the step B(


1


) or B(


2


) mentioned before. If the step B(


1


), which includes steps B


1


to B


4


(mentioned later), is employed, an intermediate member B(


1


) for the circuit board M


1


, in which the two conductor circuits are embedded, as shown in

FIGS. 1 and 2

, can be manufactured. If the step B(


2


), which includes steps B


5


to B


10


, is employed, on the other hand, an intermediate member B(


2


) for the circuit board M


1


having three or more conductor circuits embedded therein.




The step B(


1


) will be described first.




Step B


1


:




First, the surface of the resist layer a


5


of the member A manufactured in the step A is subjected to electroless plating, whereupon a deposit film


10


is formed covering the whole surface, as shown in FIG.


25


.




Step B


2


:




Then, a surface


10




a


of the deposit film


10


is coated to form a resist layer b


1


, which is optically exposed and developed, whereupon a plane pattern


2


B corresponding to the circuit pattern of a conductor circuit to be formed is formed. As a result, the conductor circuit pattern


2


B is formed having a predetermined plane shape on the surface


10




a


of the deposit film


10


, and the film surface


10




a


is exposed through the pattern


2


B, as shown in FIG.


26


. Either a dry film or liquid-resist may be used in forming the resist layer b


1


in this case.




Step-B


3


:




Subsequently, electroplating is carried out with the conductive substrate


6


used as the negative electrode, and a conductive material, such as copper, that enjoys high electrical conductivity is electrodeposited on the exposed surface


10




a


of the deposit film


10


, to a thickness such that it is flush with the resist layer b


1


. Thereupon, the conductor circuit


2




b


is formed on the plane pattern


2


B, as shown in FIG.


27


.




Step B


4


:




Then, the resist layer b


1


is removed. Thereupon, the surface


10




a


of the deposit film


10


is exposed in the region having so far been occupied by the layer b


1


, as shown in FIG.


28


.




The exposed deposit film


10


is removed by soft etching, for example.




As a result, the member B(


1


) is manufactured in which the conductor circuit


2




b


is formed in a predetermined plane pattern on the surface of the resist layer a


5


, as shown in FIG.


29


. In this member B(


1


), conduction structures are formed individually between the bumps


3


, first pillar-shaped conductors


5




1


, deposit film


9


, conductor circuit


2




a


, second pillar-shaped conductors


5




2


deposit film


10


, and conductor circuit


2




b


and between the land circuits


4


, deposit film


9


, second pillar-shaped conductors


5




2


deposit film


10


, and conductor circuit


2




b.






If the member B(


1


) is then subjected to the step C, the resulting circuit board M


1


has two conductor circuits embedded therein. More conductor circuits can be embedded by subjecting the member B(


1


) to the step B(


2


), which will be described below.




Step B


5


:




First, the conductor circuit


2




b


and the resist layer a


5


of the member B(


1


) are coated entire to form a resist layer b


2


, as shown in FIG.


30


. Although the resist layer b


2


may be formed using either a dry film or liquid resist, the liquid resist is preferred.




Thus, the resist layers a


3


and a


5


of the member B(


1


) and the resist layer b


2


are unified to form one insulating layer, and the conductor circuit


2




a


, land circuits


4


, and conductor circuit


2




b


are embedded in the insulating layer. In this case, the thickness of the resist layer b


2


in the region corresponding to the embedded circuit


2




b


is adjusted so as to be substantially equal to the height of pillar-shaped conductors (mentioned later) to be formed in the next stage.




Then, the resist layer b


2


is optically exposed and developed to be formed with holes


5


B


1


that connect with the conductor circuit


2




b


, as shown in FIG.


31


. Thus, the surface of the circuit


2




b


is exposed through the holes


5


B


1


.




Step B


6


:




Subsequently, electroplating is carried out with the conductive substrate


6


used as the negative electrode, and a conductive material is electrodeposited on the surface of the conductor circuit


2




b


that is exposed through the holes


5


B


1


, whereupon the holes


5


B


1


are filled up with the conductive material. As a result, pillar-shaped conductors


5




3


integral with the conductor circuit


2




b


are formed with their respective surfaces exposed from the resist layer b


2


, as shown in FIG.


32


.




Step B


7


:




The whole surface of the resist layer b


2


is coated, and a deposit film


11


is formed by electroless plating (FIG.


33


).




Step B


8


:




Then, a surface


11




a


of the deposit film


11


is coated to form a resist layer b


3


, which is optically exposed and developed, whereupon a plane pattern


2


C corresponding to the circuit pattern of a conductor circuit to be formed under the conductor circuit


2




b


is formed. As a result, the surface


11




a


of the deposit film


11


is exposed through the pattern


2


B, as shown in FIG.


34


. Either a dry film or liquid resist may be used in forming the resist layer b


3


.




Step B


9


:




Subsequently, electroplating is carried out with the conductive substrate


6


used as the negative electrode, and a conductive material is electrodeposited on the exposed surface


11




a


of the deposit film


11


, to a thickness corresponding to the remaining resist layer b


3


.




As a result, a conductor circuit


2




c


is formed in a predetermined plane pattern on the surface


11




a


of the deposit film


11


, as shown in FIG.


35


.




Step B


10


:




Then, the resist layer b


3


is removed. As a result, the surface


11




a


of the deposit film


11


is exposed in the region corresponding to the removed layer b


3


, as shown in FIG.


36


.




Then, the exposed deposit film


11


is removed by soft etching, for example. Thereupon, the member B(


2


) is manufactured in which the conductor circuit


2




c


is formed in a predetermined plane pattern on the surface of the resist layer b


2


, as shown in FIG.


37


.




In this member B(


2


), the two conductor circuits


2




a


and


2




b


are embedded in the resist layers a


5


and b


2


, respectively, while the conductor circuit


2




c


is formed on the surface of the resist layer b


2


.




In this case, the new conductor circuit


2




b


and the new pillar-shaped conductors


5




3


, which are additionally attached to the member A, are embedded in a resist portion B that is composed of the resist layer b


2


. Conduction structures are formed individually between the bumps


3


, first pillar-shaped conductors


5




1


, deposit film


9


, conductor circuit


2




a


, second pillar-shaped conductors


5




2


, deposit film


10


, conductor circuit


2




b


, pillar-shaped conductors


53


, deposit film


11


, and conductor circuit


2




c


and between the land circuits


4


, deposit film


9


, second pillar-shaped conductors


5




2


deposit film


10


, conductor circuit


2




b


, pillar-shaped conductors


53


, deposit film


11


, and conductor circuit


2




c.






Additional conductor circuits can be attached to the conductor circuit


2




c


by repeating the processes described with reference to

FIGS. 30

to


37


a desired number of times.




Thus, at the end of the step B, an intermediate member in which a prescribed conductor circuit is formed on the surface of a finally formed resist layer is manufactured in either of the steps B(


1


) and B(


2


).




This intermediate member is then subjected to the step C. This step will be described in connection with the case of the member B(


1


) shown in

FIG. 29

, for example.




An insulating substrate


12


is prepared, and its one surface


12




a


and that surface of the member B(


1


) on which the conductor circuit


2




b


is formed are bonded together by thermocompression, as shown in FIG.


38


. Thereupon, the conductor circuit


2




b


is embedded in the insulating substrate


12


, and the integrated structure C, which integrally incorporates the member B(


1


) and the substrate


12


, is manufactured, as shown in FIG.


39


.




Preferably, the insulating substrate


12


used in this arrangement should be formed of a material, such as a prepreg, that is semihard at normal temperature and softens when heated. The reason is that since the pattern of the conductor circuit


2




b


is formed projecting from the surface of the resist layer a


5


, it can be buried under the upper surface


12




a


of the plastic insulating substrate


12


when the substrate


12


is contact-bonded to it, and the substrate


12


is thermoset and fixed thereafter.




Even in the case where the insulating substrate


12


is formed of a rigid material, however, the whole pattern of the conductor circuit


2




b


can be covered by forming a layer of, for example, an uncured epoxy resin on that surface of the member B(


1


) on which the pattern of the circuit


2




b


is formed, and the member B(


1


) and the rigid insulating substrate


12


can be unified by bonding the substrate


12


to the resin layer by thermocompression.




Immediately after the thermocompression bonding, in this case, the layer of the epoxy resin is uncured and soft, so that the pattern of the conductor circuit


2




b


can be buried therein. At the same time, the resin layer is joined to the upper surface


12




a


of the insulating substrate


12


. As the layer is thermoset, the pattern of the conductor circuit


2




b


is integrated with the substrate


12


in a manner such that it is buried in the thermoset layer.




The insulating substrate used in this step C may be any electrically insulating substrate, e.g., a glass-epoxy resin substrate, flexible printed board, resin substrate or sheet formed of an epoxy resin, polyimide, polyester, urethane resin, or phenolic resin, ceramic sheet, etc. In consideration of the requirement that the pattern of the conductor circuit


2




b


be buried after the thermocompression bonding, as mentioned before, the insulating substrate should preferably be formed of a prepreg of a soft glass-epoxy resin. Also, the insulating substrate may be formed having a suitable thickness by stacking a plurality of prepregs in layers, for example.




The integrated structure C manufactured in this manner is then subjected to the step D.




In the step D, the conductive substrate


6


is separated first. The surface of the resulting member is covered by the thin conductor layer


7


, as shown in FIG.


40


.




Then, the thin conductor layer


7


and the electrodeposit layer


8


thereunder are successively removed by etching. Thereupon, the circuit board M


1


is obtained in which both the conductor circuits


2




a


and


2




b


are embedded in the insulating base


1


, which is composed of the resist layers a


3


and a


5


and the insulating substrate


12


, the bumps


3


project from the surface of the resist layer a


3


only, and the land circuits


4


are exposed, as shown in FIG.


41


.




As the thin conductor layer


7


and the electrodeposit layer


8


are removed by etching, the respective surfaces of the bumps


3


and the land circuits


4


come into contact with the etchant. Since the respective outer layer portions


3




a


and


4




a


of each bump


3


and each land circuit


4


are formed of the first electrically conductive material that is resistant to corrosion by the etchant, as mentioned before, however, the bumps and the land circuits cannot be corroded by the etchant during the etching process.




Since any of the bumps


3


are multilayer structures that individually fill the recesses for bump of the same depth in the electrodeposit layer


8


having the predetermined thickness, their height is equal to the depth of the recesses for bump and is subject to a very narrow variation.




The following is a description of a manufacturing method for the circuit board M


2


.




This manufacturing method is the same as the method for the circuit board M


1


except for the step A, that is, the other steps B, C and D are carried out in the same manner as aforesaid.




Accordingly, the step A for the manufacture of the circuit board M


2


will now be described with reference to the accompanying drawings.




First, the steps A


1


to A


4


are carried out in the same manner as in the manufacture of the circuit board M


1


. After the resist layer a


1


is left on the expected bump formation spots in the surface


7




a


of the thin conductor layer


7


, as shown in

FIG. 42

, an electrodeposit layer is formed on the other surface by electroplating, and the resist layer a


1


is then removed. Thereupon, the recesses for bump


3


A are formed in the electrodeposit layer


8


, and the surface


7




a


of the conductor layer


7


is exposed through the recesses


3


A, as shown in FIG.


43


.




In this step, either a dry film or liquid resist may be used in forming the resist layer a


1


.




Thereafter, the member A is manufactured by successively carrying out the following steps A


15


to A


18


.




Step A


15


:




The resist layer a


2


is formed by coating the surface


8




a


of the electrodeposit layer


8


, and is optically exposed and developed. Thereupon, the plane pattern


2


A corresponding to the circuit pattern of the conductor circuit to be formed is formed so as to connect with the recesses for bump


3


A, and at the same time, the plane patterns


4


A corresponding to the circuit patterns of the land circuits to be formed are formed, as shown in FIG.


44


.




Usually, a dry film is used in the formation of the resist layer a


2


in this step.




Step A


16


:




Subsequently, the whole resulting structure is immersed in a plating bath in the same manner as in the step A


6


for the manufacture of the circuit board M


1


, and is electroplated at least twice with the conductive substrate


6


used as the negative electrode, whereupon a multilayer structure of different conductive materials is obtained.




When this electroplating is finished, the plane patterns


4


A for the land circuits are filled up individually with the two-layer structures, each including the lamina


4




a


of a corrosion-resistant conductive material and the lamina


4




b


of another conductive material, whereupon the land circuits


4


are formed, as shown in FIG.


45


.




In the recesses for bump


3


A and the plane pattern


2


A for the conductor circuit, a corrosion-resistant first conductive material is electrodeposited in a layer on the surface


8




a


of the electrodeposit layer


8


, the side walls


8




b


of the recesses for bump, and the surface


7




a


of the thin conductor layer


7


, thereby forming the laminae (outer layer portions)


3




a


, in a first cycle of electroplating. In the next cycle of electroplating, another conductive material is electrodeposited on the laminae


3




a


to form the laminae (inner layer portions)


3




b


, whereupon the bumps


3


and the conductor circuit


2




a


are formed en bloc as a two-layer structure composed of these laminae.




Step A


17


:




Then, the resist layer a


3


is formed by coating the conductor circuit


2




a


and the land circuits


4


, as shown in

FIG. 46

, and is optically exposed and developed. Thereupon, the first holes


5


A


1


, which connect with the conductor circuit


2




a


(or land circuits


4


), are formed in the resist layer a


3


. Accordingly, the surface of the conductor circuit


2




a


(or land circuits


4


) is exposed through the first holes


5


A


1


. The thickness of the resist layer b


3


in this state is adjusted so as to be substantially equal to the height of pillar-shaped conductors to be formed, and either a dry film or liquid resist may be used in forming the layer a


3


.




Step A


18


:




Finally, electroplating is carried out with the conductive substrate


6


used as the negative electrode, a conductive material is electrodeposited on the surface of the conductor circuit


2




a


(or land circuits


4


) that are exposed through the first holes


5


A


1


, and the holes


5


A


1


are filled up to form the pillar-shaped conductors.




As a result, the member A is manufactured in which the respective first pillar-shaped conductors


5




1


are exposed in a predetermined pattern on the surface of the resist layer a


3


, as shown in FIG.


47


. In this member A, a conduction structure is formed between the bumps


3


, conductor circuits


2


, and first pillar-shaped conductors


5




1


.




Thereafter, the circuit board M


2


(

FIG. 3

) is manufactured by successively carrying out the aforementioned steps B, C and D. In the circuit board M


2


, the conductor circuit


2




a


and the land circuits


4


are exposed in a predetermined plane pattern in the surface of the insulating base, and the bumps


3


project from the tip surface of the conductor circuit


2




a.






In manufacturing the circuit board M


4


shown in

FIG. 6

, in which the land circuits are not exposed in the surface la of the insulating base


1


, the plane patterns


4


A that correspond to the circuit patterns of the land circuits are not formed in the step A


5


(

FIG. 14

) for the manufacture of the circuit board M


1


. Instead, the plane patterns


4


A are formed in any of the subsequent steps, e.g., step B. a conductive material is electrodeposit on the patterns to form the land circuits, and the land circuits are embedded in the resist layer so as to be connected to the exposed bump pattern.




Although the manufacture of the circuit boards for single-side packaging has been described above, circuit boards for double-side packaging can be also manufactured in the following manner. The following is a description of a case in which the members B(


1


) and B(


2


) obtained during the manufacture of the circuit board M


1


are used, for example.




First, as shown in

FIG. 48

, those respective surfaces of the members B(


1


) and B(


2


) on the conductor circuit side are bonded individually to their corresponding surfaces of the insulating substrate


12


by thermocompression, whereby the members B(


1


) and B(


2


) and the substrate


12


are unified. Then, the conductive substrates on the opposite sides of the integrated structure are separated, and the thin conductor layers and the electrodeposit layers are successively removed by etching. Thereafter, through holes (not shown) are formed in the resulting structure, whereupon a circuit board M


5


for double-side packaging is obtained, as shown in FIG.


49


.




Also, an intended circuit board for double-side packaging can be obtained by separating the conductive substrate


6


from the member shown in FIG.


39


and successively removing the thin conductor layer


7


and the electrodeposit layer


8


by etching after building up another conductor circuit on the insulating substrate


12


by the conventional subtractive or additive method.




Moreover, a circuit board for double-side packaging can be obtained by successively stacking the predetermined conductor circuit and pillar-shaped conductors on that surface of, for example, the member B(


1


) which carries the conductor circuit


2




b


thereon by means a permanent resist, without using the insulating substrate


12


shown in

FIG. 48

, and finally forming the predetermined conductor circuit and land circuits.




Alternatively, a circuit board for double-side packaging may be manufactured in the following manner. First, a-film


13


, having an adhesive layer


13




a


on one side thereof, is sticked on that surface of, for example, the member B(


2


) which carries the conductor circuit


2




c


thereon, as shown in FIG.


50


. Then, the film


13


and the adhesive layer


13




a


are subjected to, for example, laser processing or machining to form hole patterns for pillar-shaped conductors in the film. The hole patterns are electroplated to form the pillar-shaped conductors, and the whole resulting structure is subjected to electroless plating. After a predetermined circuit pattern is formed on the surface of the structure by a conventional method, e.g., the subtractive or additive method, a conductive material is electrodeposited by electroplating with the conductive substrate


6


used as the negative electrode, the substrate


6


is separated, and the thin conductor layer


7


and the electrodeposit layer


8


are removed in succession. Thereupon, a circuit board M


6


for double-side packaging, which has the land circuits formed in its lower surface


1




b


, can be obtained, as shown in FIG.


51


.




In forming the conductor circuit


2




c


of the member B(


2


) shown in

FIG. 37

, moreover, pillar-shaped conductors may be formed in place of the circuit


2




c


. In this case, a soft thermosetting resin sheet is hot-pressed on the pillar-shaped conductors so that the conductors penetrate the resin sheet and project on the opposite side. If the pillar-shaped conductors are not made to project, the surface of the resin sheet is polished by machining to expose the respective surfaces of the pillar-shaped conductors. Thereafter, the whole resulting structure is subjected to electroless plating, and a predetermined circuit pattern is then formed by the aforesaid conventional method. The circuit board M


6


for double-side packaging may be manufactured in this manner.




According to the method of the present invention, furthermore, a circuit board M


7


can be obtained in which a heat sink


14


is formed in a position corresponding to the bumps


3


to which the semiconductor component is to be connected, and a pattern of a ground wire circuit


15


is exposed in the surface


1




a


of the insulating base


1


, as shown in FIG.


52


.




In the steps shown in

FIGS. 14

to


16


, for example, the heat sink


14


may formed at the same with the land circuits. As the conductor circuits and pillar-shaped conductors are formed in the subsequent steps, it is necessary only that solid pillars


16


of a conductive material be formed by electroplating, thereby constituting a heat transfer path


16


, so that the path


16


is exposed n the other surface


1




b


of the insulating base


1


. In this case, the bumps


3


, heat sink


14


, and land circuits are simultaneously formed in at least two cycles of electroplating, so that the sink


14


is also a multilayer structure of electrically conductive materials.




In a preferred arrangement shown in

FIG. 52

, the solid heat transfer path


16


is formed so as to extend halfway, a conductor film portion


16




c


about 100 μm thick is formed thereafter, and a hole


16




a


that leads to the film portion


16




c


is bored through the other surface


1




b


of the insulating base


1


by machining, for example. Then, a deposit


16




b


is formed by electroplating the conductive material to a thickness of, e.g., about 10 to 30 μm on the wall surface of the hole


16




a


. By doing this, the radiating area of the whole structure is increased so that an outstanding heat dissipation effect can be obtained.




In the case of this circuit board M


7


, heat generated from the semiconductor component when component is die-bonded to the bumps


3


, for example, can be dissipated-from the surface


1




b


of the board M


7


via the heat sink


14


, solid heat transfer path


16


, conductor film portion


16




c


, and deposit


16




b.






The ground wire circuit


15


may be formed as a predetermined pattern at the same time with the land circuits


4


in the steps shown in

FIGS. 14

to


16


. In this case, the wire circuit


15


is also a multilayer structure of electrically conductive materials. As the conductor circuits and pillar-shaped conductors are formed in the subsequent steps, it is necessary only that signal conductors


15




a


and signal grounds


15




b


be formed in a predetermined pattern at the same time.




Thus, a measure is taken to counter EMS by providing the ground wire circuit


15


on the surface of the circuit board M


7


. In the case where the circuit board is a multi-chip bump board, such as the one shown in

FIG. 5

, the bumps only project from its surface on the component packaging side, so that a signal conductor circuit need not be formed on the remaining surface portion. Accordingly, the ground wire circuit


15


can be formed over the whole remaining surface portion, thereby providing a measure to counter electromagnetic waves in conjunction with the signal conductors


15




a


and the signal grounds


15




b


that are embedded in the insulating base


1


.




Presently, multi-chip bump boards are protected against electromagnetic waves by fixing packaged circuit boards to frames or casings. In contrast with this, the measure according to the present invention can reduce the number of assembly processes.




In the circuit boards of the invention arranged in this manner, the bumps projecting from the board surface are each formed as a multilayer structure that is formed in a predetermined position in the electrodeposit layer of a uniform thickness and has a height equal to the thickness of the electrodeposit layer. Therefore, the height of the bumps is subject to a very narrow variation, and the packaging reliability for the connection between the bumps and the semiconductor component is very high.




Moreover, the circuit boards according to the present invention can be manufactured by combining the light exposure and developing processes, which are applied to the manufacture of the conventional circuit boards, and electroless plating or electroplating, without requiring machining operation. Accordingly, the conductor circuits and the conduction structures between them can be made finer, so that the semiconductor component can enjoy high-density packaging. Since the conductor circuits are connected by means of the pillar-shaped conductors, in particular, their current capacity is larger than that of the conventional through hole structure, so that the bump distribution density can be increased, and therefore, high-density packaging of the semiconductor component can be realized. Since the packaged component can be directly in contact with the bumps, moreover, the component packaging can be labor-saving. Since the inner via holes need not be left hollow at all, furthermore, their diameters can be made much smaller (e.g., 30 to 50 μm) than in the conventional case.




In any of the aforesaid cases, electroplating is carried out with the conductive substrate


6


used as the negative electrode, so that all the small holes can be filled up together with the conductive material, and much higher productivity can be ensured than in the case of through hole plating.




The bump-type contact head according to the present invention, which uses the aforementioned circuit boards, and the manufacturing method therefor will now be described in detail with reference to the accompanying drawings.





FIG. 53

is a perspective view showing an example C


1


of the head according to the invention, and

FIG. 54

is a sectional view taken along line Y


1


—Y


1


of FIG.


53


. In the case of this head C


1


, an aperture


18


is formed penetrating a predetermined portion (central portion as illustrated) of a disk-shaped insulating substrate


17


from an upper surface


17




a


thereof to a lower surface


17




b


. A top opening


18


A having a suitable shape (square as illustrated) is formed at the top of the hole


18


. The aperture


18


is filled up with an elastic member


19


, of which an upper surface


19




a


is flush with the upper surface


17




a


of the insulating substrate


17


.




If a predetermined upward force is applied to the elastic member


19


, therefore, the member


19


is deformed so that its upper surface


19




a


bulges upward. When the upward force is removed, the upper surface


19




a


of the elastic member


19


is restored to its original position, where it is flush with the upper surface


17




a


of the insulating substrate


17


.




Thus, at least the upper surface


19




a


of the elastic member


19


functions as a movable region E that can move up and down.




Signal conductors


20


having a given width and length and ground wires


20


′ are arranged at predetermined pitches on the upper surface


17




a


of the insulating substrate


17


. The ground wires


20


′ serve to reduce the generation of noises when high frequency is applied to the signal conductors


20


. The conductors


20


extends for a given length from the upper surface


17




a


of the insulating substrate


17


to the upper surface


19




a


of the elastic member


19


. A bump


21


with a given height protrudes from an upper tip surface


20




b


of an extending portion


20




a


of each signal conductor


20


.




In this head C


1


, as shown in

FIG. 54

, each signal conductor


20


is arranged so that the whole body thereof except its upper surface


20




c


is buried in the insulating substrate


17


and the elastic member


19


, and only the upper surface


20




c


is exposed so as to be flush with the respective upper surfaces


17




a


and


19




a


of the substrate


17


and the member


19


. An end portion


20




d


at the other end of each signal conductor


20


is connected, as a terminal of the conductor


20


, to a terminal of a signal processor (not shown).




The respective extending portions


20




a


of the signal conductors


20


are arranged extending parallel to one another for about 2 to 3 mm on the upper surface


19




a


of the elastic member


19


. On the upper surface


17




a


of the insulating substrate


17


, the signal conductors


20


are arranged substantially radially lest they extend parallel to one another. With this wire arrangement, patterns (lines) to form the ground wires


20


′ can be provided between the signal conductors


20


on the upper surface


17




a


of the insulating substrate


17


. As a result, the parallel extending portions


20




a


of the signal conductors in the movable region E can be shortened to the length of about 2 to 3 mm. If input and output signals for inspection are high-frequency signals, therefore, errors in the resulting inspection signals are much smaller than in the case of the conventional head that uses the L-shaped needles, so that the head can enjoy better high-frequency characteristics.




When the upper surface


19




a


of the elastic member


19


is caused to bulge upward, the respective extending portions


20




a


of the signal conductors


20


on the upper surface


19




a


of the elastic member


19


and the bumps


21


on the respective upper tip surfaces


20




b


of the conductors


20


move up. The bumps


21


serve as connecting terminals that come into contact with predetermined inspection spots and can fetch detection signals from the spots. When the upward force on the elastic member


19


is removed, the upper surface of the member


19


is restored to its original position, whereupon the bumps move downward and leave the inspection spots.




In the case of the head C


1


, the bumps


21


arranged on the upper surface


19




a


of the elastic member


19


enjoy a high degree of freedom such that they can independently move up and down without interfering with one another.




If a bump


21


(


2


) moves up and down as indicated by the arrow in

FIG. 55

, for example, the influence of its up-and-down motion on the surroundings is absorbed by the elastic member


19


, and the propagation of the motion to adjacent bumps


21


(


1


) and


21


(


3


) is retarded considerably. Even though the bump


21


(


2


) moves up and down, therefore, the bumps


21


(


1


) and


21


(


3


) cannot easily move accompanying it.




This implies that the individual bumps can freely independently move up and down, absorbing variation, if any, of the inspection spots in height, and moreover, can move without exerting any bad influence on the functions of their adjacent bumps, so that the performance of the head is improved.




In actual operation, the head C


1


is located in a predetermined position on a wiring circuit as an object of inspection. As the elastic member


19


is elastically pushed up to bulge by lift means, which will be mentioned later, the bumps


21


are brought individually into contact with the inspection spots. After the inspection is finished, the elastic member


19


is restored to its original state, whereupon the bumps


21


are disengaged from the inspection spots.




The lift means may be previously located under the elastic member


19


so that the upward force acts on the member


19


. In this case, the head is manufactured with the bumps


21


raised at a given height above the top opening


18


A of the aperture


18


so that it can be set directly in a measuring device in actual use.




A sealed air chamber


22


formed under the elastic member


19


, as shown in

FIG. 56

, can be used as the lift means. More specifically, a sealed space of a given volume is secured in the lower part of the insulating substrate


17


. In this case, compressed air may be forced directly into the space or a balloon that is set in the space.




As the sealed air chamber


22


is pressurized, the elastic member


19


is deformed to bulge upward by its own elasticity, so that the extending portions


20




a


of the signal conductors


20


and the bumps


21


move upward. Normally, the bumps


21


are designed so as to be able to move up for about 200 to 300 μm. When the air chamber


22


is depressurized, the elastic member


19


is restored to its original state by its own elasticity, whereupon the bumps


21


are disengaged from the inspection spots.





FIG. 57

is a sectional view showing another lift means.




In this case, the head C


1


shown in

FIG. 53

is located over an aperture


23




a


of a mother board


23


, the aperture


23




a


having a given diameter. The other end of each signal conductor


20


is connected to a terminal of a circuit on the mother board


23


.




Fixed under the aperture


23




a


is a lift jig


24


having a large number of lift pins


24




a


, which stand together in contact with the lower surface of the elastic member


19


. The pins


24




a


cause the member


19


to bulge upward for about 200 to 300 μm. Preferably, the lift pins


24




a


are arranged so that they can collectively push up the bumps that are arranged-at predetermined pitches on the upper surface of the elastic member


19


.




When the lift means is actuated, the upper surface


19




a


of the elastic member


19


moves up and down, whereupon the respective extending portions


20




a


of the signal conductors buried under the surface


19




a


bend vertically around the boundary between the elastic member


19


and the insulating substrate


17


, that is, around points on an edge portion


18




a


of the insulating substrate that form the four sides of the top opening


18


A of the aperture


18


. Thereupon, the extending portions


20




a


of the signal conductors


20


embedded in the elastic member


19


are subjected to a force such that they are separated from the member


19


.




In the case of the head C


1


, however, the whole body-of each signal conductor


20


except the upper surface


20




c


is embedded in the insulating substrate and the elastic member. If each conductor


20


is urged to bend, therefore, the three other surfaces of its extending portion


20




a


, which are secured by the elastic member


19


, can be positively restrained from being separated from the member


19


.




In actually using the heads constructed according to the present invention, including the head C


1


, therefore, it is advisable to embed the signal conductors


20


in the insulating substrate and the elastic member.




Further, this embedding of the signal conductors


20


can produce the following effect.




Normally, the ambient temperature for the head C


1


in actual use ranges from 70 to 80° C. In the process of actual use, therefore, the respective temperatures of the signal conductors


20


and the points of contact between the bumps


21


and the inspection spots increase. With the progress of this temperature increase, the insulating substrate, elastic member, signal conductors, and bumps thermally expand to specific lengths, depending on their respective coefficients of thermal expansion. In some cases, therefore, the signal conductors may be separated from the insulating substrate or elastic member, for example.




In the case of the head C


1


, however, a glass-epoxy resin substrate and a rubber material may be used as the insulating substrate


17


and the elastic member


19


, respectively. Since the coefficient of thermal expansion of the glass-epoxy resin substrate is lower than that of the rubber material, in this case, the rubber material is restrained from thermally expanding by the substrate surrounding it. Thus, thermal expansion of the signal conductors (formed of a metal with the highest coefficient of thermal expansion) in the elastic member in the pitch direction is also restrained, so that the pitch accuracy can be prevented from being changed by heat.





FIG. 58

is a sectional view showing another example C


2


of the head according to the present invention.




In this head C


2


, a through hole


25


is bored through the other end of each of signal conductors


20


, which is embedded in an insulating substrate


17


and an elastic member


19


, so as to penetrate the substrate


17


in its thickness direction. Electrical conductivity is given to the inner wall of each through hole


25


by a conventional method. Each signal conductor


20


is led out to a lower surface


17




b


of the insulating substrate


17


through its corresponding through hole


25


, and another bump


21


′ is formed protruding from its corresponding lead-out land. A large number of bumps


21


′ can be formed simultaneously by blanket soldering if solder is selected as the material of the bumps


21


′.




As shown in

FIG. 59

, the head C


2


is placed directly on a mother-board


23


, which is formed with an aperture


23




a


having a given diameter, or a specified terminal (not shown) of a sub-board. Further, predetermined input and output signals can be delivered to the signal conductors


20


and the bumps


21


′ with the head C


2


fixed to the mother board


23


by means of fixing jigs


26


such as screws.




Since the head C


2


can be used in this manner, it can be removed from the mother board


23


and replaced with another one in case a change of the inspection machine type requires the replacement of the head.





FIG. 60

is a sectional view showing still another example C


3


of the head.




In the case of the head C


3


, an aperture


18


that is formed across the thickness of an insulating substrate


17


is profiled in the same manner as that of the aforesaid head C


1


except for a stepped structure such that its top opening


18


A is smaller in diameter than its bottom opening


18


B.




Since the aperture


18


has the stepped structure described above, the top side of the insulating substrate


17


forms a thin-wall portion


17




c


that is thinner than the remaining portion of the substrate


17


, and is more liable to vertical elastic deformation than the other portion.




When the aperture


18


is filled up with an elastic member


19


, the thin-wall portion


17




c


and the member


19


form a movable region E.




When the elastic member


19


is caused to bulge upward, extending portions


20




a


of signal conductors


20


and bumps


21


can receive upward lifting force from both an upper surface


19




a


of the member


19


and the thin-wall portion


17




c


, which is situated over a stepped portion


18




b


, so that the bumps


21


can more smoothly move up and down than those of the head C


1


.




Preferably, the head C


3


is formed with a sealed air chamber, such as the one shown in

FIG. 56

, in the lower part of its elastic member, and is constructed in the manner shown in

FIGS. 61

to


63


.





FIG. 61

is a perspective view of the head C


3


,

FIG. 62

is a partial enlarged view showing a circled region Y


2


, and

FIG. 63

is a sectional view taken along line Y


3


—Y


3


of FIG.


61


.




In the case of the head C


3


, the top opening


18


A of the aperture


18


has a square plane shape, and slits


27


having a given width and length are cut individually in the four corners of the square opening


18


A, as shown in

FIGS. 61 and 62

. Each slit


27


extends toward the peripheral edge of the insulating substrate


17


and reaches the basal part of the thin-wall portion


17




c.






As shown in

FIG. 63

, the aperture


18


of the head C


3


has the stepped profile one shown in

FIG. 60

, and the upper surface


19




a


of the elastic member


19


, which fills the aperture


18


, is exposed in its top opening


18


A so as to be flush with the upper surface of the insulating substrate


17


. Lift means, such as a sealed air chamber


22


, is provided in the lower part of the aperture


18


.




At an edge portion


18




a


of the top opening


18


A, therefore, that part of the insulating substrate


17


which has a length l


1


shown in

FIGS. 62 and 63

is situated as the thin-wall portion


17




c


on the stepped portion


18




b


, and this part is formed as a tongue portion of the substrate


17


. The signal conductors


20


on the insulating substrate


17


extend along the upper surface of the tongue portion (thin-wall portion)


17




c


to the upper surface


19




a


of the elastic member


19


, and the bumps


21


protrude individually from their respective tip ends.




In the case of the head C


3


, the tongue portion


17




c


of the insulating substrate


17


situated on the stepped portion


18




b


is thin-walled, so that it can elastically move up and down, and the edge portion


18




a


of the top opening


18


A can make an arcuate motion (indicated by arrow p in

FIG. 63

) around a point or line P (basal part of the thin-wall portion) at a distance equivalent to the length


11


from the edge portion


18




a


. Thus, the tongue portion


17




c


acts like a leaf spring as a whole. When the sealed air chamber


22


is pressurized to cause the elastic member


19


to bulge upward, the upper surface


19




a


of the member


19


also bulges upward, so that the respective extending portions


20




a


of the signal conductors


20


are pushed up. At the same time, the tongue portion (thin-wall portion with the length


11


shown in

FIGS. 62 and 63

)


17




c


is pushed up, and the extending portions


20




a


of the conductors


20


are also pushed up correspondingly.




Thus, the up-and-down motion of the bumps


21


is regulated not only by the bulging and restoration of the upper surface


19




a


of the elastic member


19


, but also by the upward bending of the tongue portion (thin-wall portion)


17




c


of the insulating substrate


17


. Accordingly, the adjustment effect for the up-and-down motion of the bumps


21


is greater than in the case without the tongue portion


17




c


. Even if the bumps


21


are subject to variation in height, for example, all of them can be brought securely into contact with the inspection spots by properly selecting the length


11


and thickness of the tongue portion


17




c


and adjusting the bending angle of the portion


17




c.






Since the tongue portion


17




c


is thin-walled as a whole, moreover, it is very liable to bend, so that it can make an independent up-and-down motion in any desired point Q in the side direction of the edge portion


18




a


, as shown in

FIG. 62

, as well as the aforesaid arcuate motion p.




Accordingly, if the inspection spots are subject to substantial indentations, for example, the four tongue portions


17




c


can independently undergo elastic deformation in both the side direction and the vertical direction, depending on the state of the indentations, so that all the bumps


21


can be brought securely into contact with the inspection spots. If the inspection spots are subject to relatively small indentations, the bumps


21


can be brought satisfactorily into contact with the inspection spots by only moving the elastic member


19


up and down.




In the case of the head C


3


, moreover, only the inspection spots can be moved up and down with the sealed air chamber


22


pressurized so that the elastic member


19


and the tongue portions


17




c


bulge upward to be kept in contact with the inspection spots in advance.




In the case of the head C


3


constructed in this manner, furthermore, the contact resistance between the bumps


21


and the inspection spots can be stabilized when the bumps


21


are actually used in contact with the inspection spots.




Let it be supposed, for example, that the elastic member


19


is caused to bulge upward so that its upper surface


19




a


is moved up by a height h, as indicated by imaginary line in FIG.


64


.




Thereupon, each tongue portion


17




c


with the length l


1


makes the arcuate motion in the direction p around the point P, thereby bending upward, so that the bumps


21


also move up by the height h. As this is done, the bumps


21


also makes the arcuate motion in the direction p, so that the horizontal position of each bump


21


is deviated from its original position by a distance d, as indicated by imaginary line.




In other words, each bump


21


moves horizontally for the distance d as it moves up by the height h.




When the bumps


21


are individually in contact with the inspection spots, therefore, they scratch the inspection spots under pressure as they move for the distance d.




Accordingly, electrical contact between the inspection spots and the bumps


21


can be secured. If there are resistance increasing elements, such as dust, oxide films, etc. in the inspection spots, therefore, the scratching effect enables the bumps


21


to remove these elements and come into contact with the inspection spots. Thus, the contact resistance is stabilized.





FIG. 65

is a sectional view showing a further example C


4


of the head.




The foregoing heads to C


1


to C


3


are premised on an assumption that the insulating substrate


17


and the elastic member


19


are formed of different materials. In the case of the head C


4


shown in

FIG. 65

, however, an insulating substrate and an elastic member are formed of the same material.




More specifically, an elastic member


19


constitutes an entire structure in which signal conductors


20


are arranged. The conductors


20


are buried under an upper surface


19




a


of the elastic member


19


, and a bump


21


protrudes from an upper tip surface


20




b


of each conductor


20


.




This head C


4


, unlike the foregoing heads to C


1


to C


3


, is not formed with any aperture. The respective tip ends of the signal conductors


20


are arranged in a plane pattern, such as the one shown in

FIG. 53

, for example. The wiring area for the signal conductors


20


or at least their respective tip ends forms a movable region E in which the bumps


21


can move up and down.




If the elastic member


19


is formed of a thin sheet, in the case of the head C


4


, the whole structure is flexible enough to be able to bend freely. Accordingly, a lower surface


19




b


of the elastic member


19


can be sticked on a base member having a predetermined shape, so that contact heads in various shapes can be manufactured with improved design freedom.




As shown in

FIG. 66

, for example, a contact head can be obtained by forming bumps


21


′ individually on the respective other ends of the signal conductors


20


and sticking the lower surface


19




b


of the elastic sheet of the head C


4


on a rigid member


28


having a trapezoidal surface, for example.




Further, a contact head C


5


with the construction shown in

FIG. 67

can be manufactured by using the head C


4


shown in FIG.


65


.




First, the head C


4


shown in

FIG. 65

is manufactured by using a thin sheet for the elastic member


19


, and an aperture is formed in a spot to define the movable region E in which the bumps


21


are moved up and down.




On the other hand, a rigid insulating substrate


29


being formed a stepped aperture


29




a


in a spot corresponding to the aforesaid opening of the elastic member


19


and having an overall size smaller than that of the sheet of the elastic member


19


is prepared. The lower surface


19




b


of the sheet of the elastic member


19


is sticked on a surface


29




b


of the insulating substrate


29


so that the two members are unified, the resulting hollow portion


29




a


is filled with another elastic member


19


A, and a sealed air chamber


22


is provided under the member


19


A, whereupon the head C


5


is completed.




Thus, in the case of the head C


5


, the elastic member


19


with high flexibility, in which the signal conductors


20


are embedded projects from the sheet of the insulating substrate


29


, and the spot filled with the second elastic member


19


A forms the movable region E in which the bumps


21


can move up and down.




The head C


5


can be actually used in the manner shown in FIG.


68


.




Another bump


21


′ is formed on the other end of each signal conductor


20


, and a base member


28


is mechanically fixed to the peripheral edge of a back surface


29




c


of the insulating substrate


29


by means of, for example, screws. Then, the projecting portion of the sheet of the elastic member


19


is bent, the back surface


19




b


of the member


19


is put on and fixed to another base member


28




a


by mechanical means such as screws, and the bumps


21


are connected to a mother board (not shown).




A cushioning effect can be obtained if either of the base members


28


and


28




a


is formed of a soft material.




With the head C


5


used in this manner, the elastic member


19


need not be formed with any through holes for connecting the bumps


21


and


21


′. In case of head replacement required by a change of the inspection machine type, moreover, the base members


28


and


28




a


can be easily disassembled to facilitate the replacement.





FIG. 69

is a perspective view showing another head C


6


according to the present invention, and

FIG. 70

is a sectional view taken along line Y


4


—Y


4


of FIG.


69


.




The head C


6


is constructed in the same manner as the head C


3


shown in

FIGS. 60

to


63


except that its aperture


18


is not filled up with any elastic member.




More specifically, the stepped aperture


18


is formed across the thickness of an insulating substrate


17


. A top opening


18


A of the aperture


18


has a square plane shape, and slits


27


are cut individually in the four corners of the square opening


18


A. Thus, as in the case of the head C


3


, the top side of the insulating substrate


17


forms a thin-wall portion (tongue portion)


17




c.






Signal conductors


20


are arranged extending close to the peripheral edge of the thin-wall portion


17




c


, and a bump


21


protrudes from an upper tip surface


20




b


of each conductor


20


.




Thus, in the head C


6


, the flexible thin-wall portion


17




c


itself forms a movable region E in which the bumps


21


can move up and down.




The thin-wall portion


17




c


, and therefore, the bumps


21


can be moved up and down by properly adjusting the thickness and projection length (length of slits


27


) of the portion


17




c


and by inflating and deflating, for example, a balloon that is set in the aperture (hollow)


18


.




In the head C


1


to C


6


described above, at least the bumps


21


in the movable region E, like the bumps


3


of the aforementioned circuit boards M


1


to M


6


, have a multilayer structure of which an outer layer portion is formed of a corrosion-resistant first conductive material.




The following is a description of manufacturing methods for bump-type contact heads according to the present invention.




A first manufacturing method will now be described with reference to the accompanying drawings.




A conductive sheet


30


A of, for example, phosphor bronze with a thickness of about 100 to 150 μm is prepared, and a conventional dry film is sticked on or a liquid resist is applied to the sheet, thereupon a first resist layer


31


A with a given thickness is formed entirely covering a surface


30




a


of the sheet, as shown in FIG.


71


.




Then, the resist layer


31


A is optically exposed and developed so that apertures


31




a


having predetermined shapes are formed in those portions of the resist layer


31


A which correspond individually to spots for the formation of bumps, and the surface


30




a


of the conductive sheet


30


A is exposed through the apertures


31




a


, as shown in FIG.


72


. Subsequently, the resist layer


31


A is removed after only those portions of the surface


30




a


which are exposed through the apertures


31




a


are etched to a given depth.




Thereupon, recesses for bump


21




a


of a given depth are formed in those portions of the surface


30




a


of the conductive sheet


30


A in which bumps are to be formed, as shown in FIG.


73


.




Then, a resist layer


31


B having a given thickness is formed by sticking the conventional dry film to or applying the liquid resist to the whole surface


30




a


, and is then optically exposed and developed. Thereafter, those portions of the resist layer


31


B which correspond to the respective patterns of signal conductors to be formed are removed so that groove patterns (plane patterns)


31




b


deep enough to reach the surface


30




a


of the conductive sheet


30


A is formed to expose the sheet surface


30




a


, as shown in FIG.


74


. Thus, the recesses for bump


21




a


are exposed individually at the respective tip ends of the resulting groove patterns


31




b


. The thickness of the resist layer


31


B is adjusted so as to be substantially equal to that of each signal conductor to be formed.




Each groove pattern


31




b


is made wider than each underlying bump recess


21




a


. Thus, a hollow portion defined by each bump recess


21




a


and its corresponding groove pattern


31




b


has a stepped profile, and the base of the stepped structure or a part of the conductive sheet


30


A is exposed in the groove pattern


31




b.






Then, the whole resulting structure is immersed in a specified plating bath, and is electroplated with use of the conductive sheet


30


A as a negative electrode.




This electroplating is carried out at least twice in different plating baths. In a first cycle of electroplating, a corrosion-resistant first conductive material is electrodeposited, such as gold, nickel, or nickel cobalt alloy that cannot be corroded by any etchant used in an etching process, which will be mentioned later. In this first electroplating cycle, the first conductive material is electroplated in a layer on the exposed surface of the conductive sheet


30


A, in the hollow portions defined by the recesses for bump


21




a


and the groove patterns


31




b.






Another cycle of electroplating is carried out following the first electroplating cycle, whereupon another conductive material is electrodeposited on the lamina of the first conductive material so as to be flush with the resist layer


31


B. This electrodeposited conductive material may be any material that enjoys high electrical conductivity. Copper and aluminum are preferred examples of this material.




In this process of electroplating, the first conductive material is first deposited in a layer in the recesses for bump


21




a


, in the hollow portions defined by the recesses


21




a


and the groove patterns


31




b


, and the second conductive material is then deposited on the lamina of the first material. As a result, the hollow portions are filled up with these conductive materials.




At the end of the electroplating process, therefore, bumps


21


are formed in a manner such that each bump recess is filled up with a two-layer structure that is composed of a lamina


21




b


covering the exposed surface of the conductive sheet


30


A and a lamina


21




c


formed thereon, as shown in FIG.


75


. Also, each groove pattern is formed with a two-layer structure that is composed of a lamina electrodeposited on the exposed surface of the conductive sheet


30


A and another conductive material deposited thereon.




Then, the resist layer


31


B is removed.




Thereupon, signal conductors


20


having a predetermined pattern and the bumps


21


are formed on the surface


30




a


of the conductive sheet


30


A in a manner such that the conductors


20


project above the surface


30




a


and that the bumps


21


are buried in the sheet


30


A so as to be integral with the respective tip ends of the conductors, as shown in FIG.


76


.




Subsequently, a top surface


17




a


of an insulating substrate


17


and the surface


30




a


of the conductive sheet


30


A, having the patterns for the signal conductors


20


thereon, are unified by thermocompression bonding, as shown in FIG.


77


. The insulating substrate


17


is formed with an aperture


18


, penetrating it from the upper surface


17




a


thereof to its lower surface


17




b


. The aperture


18


has a stepped profile and a square plane shape as viewed from above, and is slit in its four corners. Thus, the tip end portion of the pattern of each signal conductor


20


, on which the bump


21


is formed, is situated corresponding to a top opening


18


A of the aperture


18


, the remaining portion of the pattern is buried in the insulating substrate


17


, and the aperture


18


itself is left as a hollow portion.




Preferably, the insulating substrate


17


used in this arrangement should be formed of a material, such as a prepreg, that is semihard at normal temperature and softens when heated. The reason is that since the pattern of each signal conductor


20


is formed projecting from the surface


30




a


of the conductive sheet


30


A, it can be buried in the upper surface


17




a


of the plastic insulating substrate


17


when the substrate


17


is contact-bonded to it, and the substrate


17


is thermoset and fixed thereafter.




Even in the case where the insulating substrate


17


is formed of a rigid material, however, a layer


17


A of, for example, an uncured epoxy resin can be formed on the surface


30




a


of the conductive sheet


30


A so that the patterns-of the signal conductors


20


are buried in the surface


30




a


, as shown in

FIG. 78

, for example, and the rigid insulating substrate


17


, having the aperture


18


with the top opening


18


A in a predetermined shape, can be boned to the layer


17


A by thermocompression for unification




Immediately after the thermocompression bonding, in this case, the layer


17


A is uncured and soft, so that the patterns of the signal conductors


20


can be buried therein. At the same time, the layer


17


A is joined to the upper surface


17




a


of the insulating substrate


17


. As the layer


17


A is thermoset, the patterns of the signal conductors


20


are integrated with the substrate


17


in a manner such that they are buried in the thermoset layer


17


A.




The insulating substrate used in this process may be any electrically insulating substrate, e.g., a glass-epoxy resin substrate, flexible printed board, resin substrate or sheet formed of an epoxy resin, polyimide, polyester, urethane resin, or phenolic resin, ceramic sheet, etc. In consideration of the requirement that the patterns of the signal conductors


20


on the conductive sheet


30


A be buried after the thermocompression bonding, as mentioned before, the insulating substrate should preferably be formed of a prepreg of a soft glass-epoxy resin.




Also, the insulating substrate may be formed having a suitable thickness by stacking a plurality of prepregs in layers, for example.




After the unification of the conductive sheet


30


A and the insulating substrate


17


is finished, a hollow portion


18


C defined by the conductive sheet


30


A and the aperture


18


of the insulating substrate


17


is filled up with an elastic member


19


.




As shown in

FIG. 79

, for example, the elastic member


19


may be provided on the lower surface


17




b


of the insulating substrate


17


so that it can be filled into the hollow portion


18


C by means o a squeegee


32


, moving in the direction of arrow a, for example, and solidified. Alternatively, as shown in

FIG. 80

, the bottom of the hollow portion


18


C may be sealed. In this case, a decompression device


33




a


is connected to the hollow portion


18


C, whereby the sealed space in the hollow portion is decompressed, and a container


33




b


for storing the elastic member


19


is connected to the sealed space. In this arrangement, the stored elastic member


19


can be solidified after it is injected into the sealed space under differential pressure.




By carrying out this process, the hollow portion


18


C is filled up with the elastic member


19


in a manner such that the upper surface


19




a


of the member


19


is in contact with the surface


30




a


of the conductive sheet


30


A and the lower surface of the thin-wall portion (tongue portion)


17




c


of the insulating substrate


17


at the stepped portion


18




b


, and that the respective tip ends of the signal conductors


20


and the bumps


21


are buried in the member


19


in the top opening


18


A of the aperture


18


, as shown in FIG.


81


.




In forming a sealed air chamber


22


under the elastic member


19


, as shown in

FIG. 63

, it is necessary only that another insulating substrate


17


B having a aperture


22


A large enough to house the elastic member


19


in the hollow portion


18


C be adhered to or bonded by thermocompression to the lower surface of the insulating substrate


17


, as shown in FIG.


82


.




Preferably, the elastic member used in this case should be formed of a material that can maintain appropriate elasticity after it is filled into the hollow portion and solidified, e.g., fluororubber, silicone rubber, acrylic rubber, ethylene-propylene rubber, ethylene-vinyl acetate rubber, chloroprene rubber, nitrile rubber, styrene-butadiene rubber, natural rubber, etc. Also, liquid rubbers, such as liquid polybutadiene, liquid silicone, etc., or thermoplastic elastomers, such as polystyrene, polybutadiene, etc., may be used for this purpose.




According to the above-described method for embedding the signal conductors in the elastic member, the conductive sheet


30


A and the insulating substrate


17


are bonded together by thermocompression, and the resulting hollow portion


18


C is filled up with the elastic member. Alternatively, however, a predetermined portion of a conductive sheet


30


A, such as the one shown in

FIG. 76

, including the respective tip end portions of the signal conductors


20


, may be molded from an elastic member, further solidified, and released from the mold. Thereafter, in this case, the insulating substrate


17


is bonded to the resulting structure by thermocompression for unification, as shown in FIG.


77


.




Finally, the elastic member


19


in the hollow portion


18


C is solidified, and the whole resulting structure is immersed in a specified etchant, whereupon the conductive sheet


30


A is removed by etching.




Thus, as shown in

FIG. 83

, a head is obtained such that each signal conductor


20


is transferred so as to be buried under the respective upper surfaces


17




a


and


19




a


of the insulating substrate


17


and the elastic member


19


, having only its upper surface exposed, and that the bumps


21


protrude individually upward from the respective tip ends of the conductors


20


. The intended head can be obtained by coating the exposed upper surface of the pattern of each signal conductor with, for example, gold by electroplating or electroless plating.




An outer layer portion


21




b


of each bump


21


is formed of a conductive material that cannot be corroded by an etchant used, so that it can serve as a barrier layer against the etchant. Thus, there is no possibility of the bumps


21


being etched in the etching process.




According to the method described above, the conductive sheet


30


A shown in

FIG. 71

is formed with the patterns for the recesses for bump and the signal conductors.




However, the bump-type contact heads according to the present invention may be also manufactured by the aforementioned manufacturing method for the circuit board M


2


.




More specifically, as shown in

FIGS. 42

to


45


, the recesses for bump


3


A are formed in the electrodeposit layer


8


in the step A for the circuit board M


2


, the plane pattern (groove pattern)


2


A for the signal conductors is formed in the resist layer a


2


under the electrodeposit layer


8


, and the resulting structure is electroplated at least twice. Thereupon, the bumps


3


of a multilayer structure are formed individually in the recesses for bump, and at the same time, the groove pattern is formed with the conductor circuit


2




a


of a multilayer structure.




After the resulting member is integrated with the insulating substrate, as shown in

FIG. 77

, the hollow portion defined by the aperture of the insulating substrate is filled up with elastic member. Thereafter, it is necessary only that the conductive substrate-be removed, and the thin conductive layer and the electrodeposit layer thereunder be successively removed by etching.




Further, the head C


4


shown in

FIG. 65

can be manufactured by using an elastic sheet for the insulating substrate


17


in the process for unification shown in FIG.


77


.




In manufacturing the head C


6


shown in

FIG. 69

, moreover, it is necessary only that the signal conductors


20


formed on the surface


30




a


of the conductive sheet


30


A be situated on the upper surface of the thin-wall portion (tongue portion)


17




c


of the insulating substrate


17


as the unification process shown in

FIG. 77

is carried out, and that the aperture


18


of the substrate


17


be not filled up with the elastic member.




In the bump-type contact heads according to the invention, as seen from the above description, the signal conductors are arranged extending to the movable region that is flush with the insulating substrate, and the bumps are formed individually on the respective tip ends of the conductors. Accordingly, the bumps can be brought into contact with or disengaged from the inspection spots by pushing up or releasing the upper surface of the movable region.




In any of the heads according to the invention, only the upper surface of each signal conductor is exposed, and the other portions are buried in the insulating substrate and the elastic member (movable region). Thus, these heads exhibit a strong resistance against separating stresses on the signal conductors that are generated as the bumps move up and down during inspection, operate with high reliability, and enjoy a long working life.




In the case of the head C


3


, those portions of the insulating substrate which are situated close to the top opening of the aperture are in the form of thin-walled independent tongues divided by slits, and these tongue portions can independently act as leaf springs with a high degree of freedom. Thus, the adjustment function for the up-and-down motion of the bumps is improved.




Further, the heads according to the present invention contain the means for pushing up the elastic member and have a simple construction as a whole, never requiring any complicated mechanisms that are used in the conventional heads.




In the case of the heads according to the invention, moreover, the elastic member enables the bumps on its upper surface to move up and down independently of one another.




Furthermore, the heads according to the invention can be designed so that the signal conductors are led out onto the opposite surface side through the through holes, individually, and carry their corresponding bumps thereon. In actual use, in this case, the bumps are removably mounted on a mother board, and one head can be easily replaced with another in case of a change of the inspection machine type.




In the head C


4


, the insulating substrate is formed of an elastic member, so that it is flexible enough to be attached to base members having various shapes. Accordingly, this head is useful to improve the design freedom.




Further, any of these heads can be manufactured combining the exposure/developing process and the electroplating method that are applied to the manufacture of the conventional circuit boards. Even in the case where a large number of signal conductors and bumps are arranged at fine pitches, therefore, they can be collectively formed with high pitch accuracy in accordance with design criteria, without requiring any readjustment that is essential to the conventional heads. Moreover, the heads according to the invention can be manufactured by utilizing equipment that has conventionally been used in the manufacture of printed boards. Thus, the gross manufacturing cost can be lowered considerably, as compared to the manufacture of the conventional heads.




In each head constructed according to the invention, as shown in

FIG. 84

, moreover, the surface


19


of the elastic member


19


may be exposed through the top opening


18


A of the aperture of the insulating substrate


17


, which has a square plane shape, so as to be flush with the substrate


17


. In this case, a plurality of signal conductors


20


and ground wires


20


′ are arranged parallel to one another, and the bumps


21


are formed individually on the respective tip ends of the conductors


20


. The head constructed in this manner can be readily used for the inspection of circuit components, such as a liquid crystal panel, PDP, TAB, etc.




The following is a description of a semiconductor component packaging module according to the present invention.





FIG. 85

is a sectional view showing a state in which the semiconductor component S is mounted on the circuit board M


1


according to the invention in the manner shown in FIG.


1


.




In this module, the semiconductor component S is die-bonded to the surface of the circuit board M


1


with an adhesive


34


, and a mounting spot is resin-molded, as indicated by imaginary line in FIG.


85


.




The bumps


3


projecting in the predetermined pattern from the surface


1




a


of the circuit board M


1


and lands S


1


formed in the lower surface of the semiconductor component S are only in mechanical contact with one another.




This arrangement can be obtained by using a bonding agent that contracts when it is cured, as the adhesive


34


for die-bonding the semiconductor component S.




Thus, when the semiconductor component S is adhered to the surface of the insulating base


1


with the adhesive


34


having the aforesaid properties in a manner such that its lands SI and the bumps


3


are in alignment, the component S is pulled downward by dimensional contraction of the adhesive


34


that advances as the adhesive


34


is cured. In consequence, the lands S


1


of the component S and the bumps


3


are brought directly into mechanical contact with one another by the contractile force of the adhesive


34


, whereupon a conduction structure is formed.




In this case, the bumps


3


of the circuit board M


1


are subject to a very narrow variation in height, so that all of them can securely come into mechanical contact with their corresponding lands S


1


of the semiconductor component S. Virtually, therefore, all of a large number of bumps and the lands of the semiconductor component can enjoy secure contact without exception. Thus, the reliability of connection for packaging is very high.




The adhesive


34


for this purpose may be formed of any material that contracts when it is cured. For example, it may be an adhesive that is conventionally used for die bonding.




When the module is in actual operation, the points of contact between the lands S


1


and the bumps


3


are subjected to heat load that is attributable to the difference in thermal expansion between the semiconductor component S and the circuit board M


1


. Even in this case, however, only a rubbing force acts between the lands S


1


and the bumps


3


, and there is no force acting to separate them, so that the conduction structure between them cannot be broken.




This module can be assembly by only die-bonding the semiconductor component to the circuit board with the adhesive. In contrast with the case of the conventional die bonding, the lands of the semiconductor component and the connecting terminals (e.g., bumps) of the circuit board are not brought indirectly into contact with one another by using, for example, molten solder. Thus, the module can be manufactured very easily.




Although the circuit board M


1


has been described above as an example of the packaging substrate, the module according to the present invention is not limited to this, and can be assembled by using any circuit boards, including the aforementioned ones, in which bump patterns project from the board surface.



Claims
  • 1. A semiconductor component packaging module comprising:a circuit board; and a semiconductor component that has first lands and that is mounted on the circuit board with an adhesive; wherein the circuit board comprises: an insulating base having bumps and second lands formed on at least a first surface of the insulating base, conductor circuits formed in at least one layer on at least one of: (i) the first surface of the insulating base, and (ii) an inside portion of the insulating base, and a conduction structure formed at least one of: (i) between the bumps and the conductor circuits, and (ii) between the conductor circuits; wherein the bumps and the second lands of the circuit board each comprise a same multilayer structure formed by successively electrodepositing at least two different electrically conductive materials; and wherein the first lands of the semiconductor component and the bumps of the circuit board are brought into mechanical contact with one another by the adhesive used to mount the semiconductor component on the circuit board.
  • 2. The semiconductor component packaging module according to claim 1, wherein the adhesive is adapted to contract when set.
  • 3. The semiconductor component packaging module according to claim 1, wherein the conduction structure comprises pillar-shaped conductors.
  • 4. The semiconductor component packaging module according to claim 1, wherein said multilayer structure comprises an outer layer portion and an inner layer portion, said outer layer portion comprising a metal including any one of gold, nickel, and a nickel alloy, and said inner layer portion comprising copper.
  • 5. The semiconductor component packaging module according to claim 1, wherein the bumps and the second lands formed on the first surface of the insulating base are exposed.
  • 6. The semiconductor component packaging module according to claim 1, wherein a first layer of the conductor circuits having the same multilayer structure as the bumps and the second lands of the circuit board is formed on the first surface of the insulating base, and wherein the insulating base of the circuit board is formed with the bumps, the second lands, and the first layer of the conductor circuits exposed on the first surface of the insulating base.
Priority Claims (3)
Number Date Country Kind
7-265701 Oct 1995 JP
8-47744 Mar 1996 JP
8-88265 Apr 1996 JP
Parent Case Info

The instant Application is a Divisional of U.S. application Ser. No. 08/727,973, filed on Oct. 9, 1996, now U.S. Pat. No. 5,886,877.

US Referenced Citations (25)
Number Name Date Kind
3781596 Galli et al. Dec 1973
3832769 Olyphant, Jr. et al. Sep 1974
4332343 Koopman et al. Jun 1982
4922192 Gross et al. May 1990
4930001 Williams May 1990
4968589 Perry Nov 1990
5071787 Mori et al. Dec 1991
5072289 Sugimoto et al. Dec 1991
5090118 Kwon et al. Feb 1992
5118386 Kataoka et al. Jun 1992
5177438 Littlebury et al. Jan 1993
5251806 Agarwala et al. Oct 1993
5310965 Senba et al. May 1994
5361491 Oomachi et al. Nov 1994
5383093 Nagasaka Jan 1995
5431328 Chang et al. Jul 1995
5513430 Yanof et al. May 1996
5554887 Sawai et al. Sep 1996
5564617 Degani et al. Oct 1996
5583747 Baird et al. Dec 1996
5773889 Love et al. Jun 1998
5814894 Igarashi et al. Sep 1998
5874780 Murakami et al. Feb 1999
5886877 Shingai et al. Mar 1999
5905303 Kata et al. May 1999
Foreign Referenced Citations (5)
Number Date Country
0258451 A1 Mar 1988 EP
0259163 Mar 1988 EP
0321239 A2 Jun 1989 EP
0361779 Apr 1990 EP
0607732 A2 Jul 1994 EP
Non-Patent Literature Citations (2)
Entry
Patent Abstracts of Japan, vol. 017, No. 235 (P-1533), May 12, 1993 & JP 04 362507 A (TDK Corp.), Dec. 15, 1992.
Patent Abstracts of Japan, vol. 017, No. 640 (E-1465), Nov. 26, 1993 & JP 05 206201 A (Furukawa Electric Co., Ltd: The Others: 01), Aug. 13, 1993.