The present disclosure is related to computer modules carrying microelectronic packages with a plurality of semiconductor dies and associated methods of manufacturing.
Today's computer systems typically include a motherboard with a plurality of sockets spaced apart from one another for receiving memory modules, network interface cards, video cards, and/or other suitable computer modules. Such computer modules can include a printed circuit board that carries one or more microelectronic packages on a surface of the printed circuit board. The microelectronic packages typically include a substrate carrying one or more semiconductor dies encapsulated in a protective covering.
Stacking a plurality of dies in the microelectronic packages is a technique for increasing the processing power of the computer modules. However, stacking the dies also increases the thickness of the computer modules by increasing the extension of the microelectronic packages from the surface of the printed circuit board. As a result, the limited spacing between adjacent sockets may be insufficient for accommodating a large number of stacked dies in the microelectronic packages.
Specific details of several embodiments of the disclosure are described below with reference to computer modules with small thicknesses and associated methods of manufacturing. The computer modules can carry at least one microelectronic package having a plurality of stacked dies. Typical microelectronic packages include microelectronic circuits or components, thin-film recording heads, data storage elements, microfluidic devices, and other components manufactured on microelectronic substrates. Micromachines and micromechanical devices are included within this definition because they are manufactured using technology similar to that used in the fabrication of integrated circuits. Microelectronic substrates can include semiconductor pieces (e.g., doped silicon wafers or gallium arsenide wafers), non-conductive pieces (e.g., various ceramic substrates), or conductive pieces. A person skilled in the relevant art will also understand that the disclosure may have additional embodiments, and that the disclosure may be practiced without several of the details of the embodiments described below with reference to
In certain embodiments, the substrate material 103 can include a printed circuit board that has a first surface 106a opposite a second surface 106b and a first edge 108a opposite a second edge 108b. The first and second edges 108a and 108b extend between the first and second surfaces 106a and 106b. In the illustrated embodiment, the substrate material 103 includes a sheet-like structure with a generally rectangular shape. In other embodiments, the substrate material 103 can include other types of structure with other desired shapes. Even though the substrate material 103 is shown in
The aperture 110 can be shaped and sized to accommodate at least a portion of the microelectronic packages 104. In the illustrated embodiment, the aperture 110 has a generally rectangular cross-section and extends between the first and second surfaces 106a and 106b of the substrate material 103 at a depth D. As a result, the depth D of the aperture 110 generally equals to the thickness of the module substrate 102. In other embodiments, the aperture 110 can have a stepped cross-section, a curved cross-section, a partially curved cross-section, and/or other suitable cross-sectional geometries corresponding to the geometry of the microelectronic packages 104. In yet further embodiments, the aperture 110 may extend only partially between the first and second surfaces 106a and 106b with a depth that is less than D. The aperture 110 may be formed by cutting, punching, etching, and/or other suitable techniques for removing a portion of the substrate material 103.
The microelectronic packages 104 can include a package substrate 118 carrying one or more semiconductor dies 130 (not shown in
In certain embodiments, the depth D of the aperture 110 can be larger than twice the height d of the encapsulant 120 with the encapsulated semiconductor dies 130 as follows:
D≧2d
As a result, the encapsulated semiconductor dies 130 of both the microelectronic packages 104 can be completely inside the aperture 110 of the module substrate 102. In other embodiments, the depth D of the aperture 110 can be larger than the height d of the encapsulant 120 with the encapsulated semiconductor dies 130 but less than twice the height d as follows:
2d>D≧d
As a result, in certain embodiments, the encapsulated semiconductor dies 130 of both the microelectronic packages 104 can be partially inside the aperture 110. In other embodiments, the encapsulated semiconductor dies 130 of one microelectronic package 104 may be substantially inside the aperture 110, and those of the other microelectronic package 104 may be only partially inside the aperture 110. In further embodiments, the depth D of the aperture 110 can be less than the height d of the encapsulant 120 with the encapsulated semiconductor dies 130 as follows:
D<d
As a result, the encapsulated semiconductor dies 130 of the microelectronic packages 104 may be partially inside the aperture 110.
During assembly, a plurality of electric couplers 124 (e.g., solder bumps, gold bumps, etc., not shown in
Several embodiments of the computer module 100 can have a reduced thickness when compared to conventional computer modules. By at least partially inserting the microelectronic packages 104 into the aperture 110 of the module substrate 102, the microelectronic packages 104 can have a reduced height from the first and/or second surfaces 106a and 106b of the module substrate 102. Accordingly, the microelectronic packages 104 may incorporate a larger number of stacked semiconductor dies 130 with a reduced impact on the thickness of the computer module 100 when compared to conventional computer modules.
Even though the computer module 100 is shown in
In certain embodiments, the microelectronic packages 104 individually include a processor die 138 encapsulated in the encapsulant 120. In the illustrated embodiment, the processor die 138 is electrically coupled to one of the semiconductor dies 130 with a plurality of conductive couplers 142 (e.g., solder balls). In other embodiments, the processor die 138 may be coupled to the second surface 119b of the package substrate 118 as shown in
In the embodiment shown in
In another embodiment, as shown in
In further embodiments, as shown in
As shown in
Even though the module substrate 502 is shown to have the recess 103 on the first side 102a, in other embodiments, the module substrate 502 may include the recess 103 on the second side 102b. In further embodiments, the module substrate 502 may include the recess 103 on the first side 102a and another recess (not shown) on the second side 102b. In yet further embodiments, the recess 103 may be omitted.
From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. In addition, many of the elements of one embodiment may be combined with other embodiments in addition to or in lieu of the elements of the other embodiments. Accordingly, the disclosure is not limited except as by the appended claims.
This application is a divisional of U.S. application Ser. No. 14/171,584 filed Feb. 3, 2014, now U.S. Pat. No. 8,959,759, which is a divisional of U.S. application Ser. No. 12/353,773 filed Jan. 14, 2009, now U.S. Pat. No. 8,644,030, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5394300 | Yoshimura | Feb 1995 | A |
6486549 | Chiang | Nov 2002 | B1 |
6545345 | Glenn et al. | Apr 2003 | B1 |
6846704 | Paek | Jan 2005 | B2 |
7112875 | Miks et al. | Sep 2006 | B1 |
7687899 | Berry | Mar 2010 | B1 |
7829990 | Scanlan | Nov 2010 | B1 |
20010015485 | Song | Aug 2001 | A1 |
20020053723 | Matsuura | May 2002 | A1 |
20030186486 | Swan | Oct 2003 | A1 |
20040157362 | Beroz et al. | Aug 2004 | A1 |
20050207133 | Pavier et al. | Sep 2005 | A1 |
20060108144 | Shizuno | May 2006 | A1 |
20060226241 | Hsu | Oct 2006 | A1 |
20070215380 | Shibamoto | Sep 2007 | A1 |
20080197479 | Kim et al. | Aug 2008 | A1 |
20080272477 | Do et al. | Nov 2008 | A1 |
20080283992 | Palaniappan et al. | Nov 2008 | A1 |
20100177490 | Gibbons et al. | Jul 2010 | A1 |
20140154844 | Gibbons et al. | Jun 2014 | A1 |
Entry |
---|
International Search Report and Written Opinion dated Mar. 26, 2010 in International Application No. PCT/US2009/068568, 11 pages. |
Office Action issued Aug. 16, 2012 in Taiwan Application No. 098146477, 24 pages. |
Number | Date | Country | |
---|---|---|---|
20150156908 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14171584 | Feb 2014 | US |
Child | 14617523 | US | |
Parent | 12353773 | Jan 2009 | US |
Child | 14171584 | US |