J.L. Liu, C.D. Moore, G.D. U'Ren, Y.H. Luo, Y. Lu, G. Lin, S.G. Thomas, M.S. Goorsky, K.L. Wang; “A surfactant-mediated relaxed Sio.5 Geo.5 graded layer with a very low threading dislocation density and smooth surface”, Appliedd Physics Letters, vol. 75 (11), pp. 1586-1588 (1999). |
Y. Takano, K. Kobayashi, H. Iwahori, N. Kuwahara, S. Fuke, S. Shirakata; “Low temperature growth of InGaAs layers on misoriented GaAs substrates by metalorganic vapor phase epitaxy”, Applied Physics Letters, vol. 80 (12), pp. 2054-2056 (2002). |
M.J. Manfra, N.G. Weimann, J.W.P. Hsu, L.N. Pfeiffer, K.W. West, S.N.G. Chu; “Dislocation and morphology control during molecular-beam epitaxy of AlGaN/GaN heterostructures directly on sapphire substrates”; Applied Physics Letters 81 (8), pp. 1456-1458 (2002). |
O. Conteras, F.A. Ponce, J. Christen, A. Dadgar, A. Krost; “Dislocation annihilation by silicon delta-doping in GaN epitaxy on Si”; Applied Physics Letters 81 (25), pp. 4712-4714 (2002). |
A.D. Capewell, T.J. Grasby, T.E. Whall, E.H.C. Parker; “Terrace grading of SiGe for high quality virtual substrates”; Applied Physics Letters 81 (25), pp. 4775-4777 (2002). |
“Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications”; by C.W. Wilmsen, H. Temkin, L.A. Coldren (editors), Cambridge University Press, 1999. |
N.N. Ledentsov, V.A. Shchukin; “Novel Concepts for Injection Lasers”, Optical Engineering, vol. 41 (12), pp. 3193-3203 (2002). |
N.N. Ledentsov et al., “1.3 um Luminescence and Gain From Defect-Free InGaAs-GaAs Quantum Dots Grown By Metal-Organic Chemical Vapor Deposition.” Semicond. Sci. Technol. 15, 2000, pp. 604-607. |
Chen, Y. et al, 1995, “Nucleation of misfit dislocations in In0.2Ga0.8 As epilayers grown on GaAs substrates”, Appl. Phys. Lett 66 (4) 499-501. |
Huffaker, D.L. et al, 1998, “1.3 μm room-temperature GaAs-based quantum-dot laser”, Appl Phys. Lett. 73 918), pp 2563-3566. |
Blum, O. et al, 2000, “Characteristics of GaAsSb Single-Quantum-Well-Lasers Emitting Near 1.3 μm”, IEEE Photonics Technology Letters, vol. 12, No. 7, pp 771-773. |
Nakahara, K. et al, 1998, “1.3μm Continuous-Wave Lasing Operation in GaIaNAs Quantum-Well Lasers”, IEEE Photonics Technology Letters, vol 10, No. 4, pp 487-488. |
Schlenker, D. et al, 1999, “1.17 μm Highly Strained GaIaAs-GaAs Quantum-Well Laser”, IEEE Photonics Technology Letters, vol. 11, No. 8, pp. 946-948. |
Lee, B. et al, 1996, “Optical properties of InGaAs Linear graded buffer layers on GaAs grown by metalorganic chemical vapor deposition” Appl. Phys. Lett. 68 (21), pp 2973-2975. |
Roan, E.J. et al, 1991, “Long-wavelenght (1.3 μm) luminescence in InGaAs strained quantum-well structures grown on GaAs”, Appl. Phys. Lett. 59 (21), pp 2688 2690. |
Herman, M.A. et al, 1991, “Heterointerfaces in quantum wells and epitaxial growth processes: Evaluation by luminescence techniques” J. Appl. Phys. 70 (2), pp. 52. |
Elman, B: et al, 1989, “In situ measurements of critical layer thickness and optical studies of InGaAs quantum wells grown on GaAs substrates”, Appl. Phys. Letter. 55 (16), pp 1659-1661. |
Alferov. Zh. et al, 1971, “Investigation of the Influence of the AlAs-GaAs Heterostructure Parameters on the Laser Threshold Current and The Realization of Continuous Emission at Room Temperature”, Soviet Physis—Semiconductors, vol. 4, No. 9, pp 1573-1575. |
Alferov, Zh. et al, 1970, “AlAs-GaAs Heterojunction Injection Laser With a Low Room-Temperature Threshold”, Soviet Physis—Semiconductors, vol. 3, No. 9, pp 1107-1110. |
Gourley, P.L. et al, 1988, “Controversy of Critical Layer Thickness for InGaAs/GaAs strained-Layer Epitaxy”, Appl. Phys. Lett. 52 (5), pp 377-379. |
Tsang, W.T., 1981, “Extension of lasing wavelenghts beyond 0.87 μm in GaAs/AlxGa1-xAs double-heterostructure lasers by in incorporation in the GaAs active layers during molecular beam epitaxy”, Appl. Phys. Lett. 38 (9), pp 661-663. |
Hayashi, I. et al, 1970, “Junction Lasers which Operate Continuously At Room Temperature”, Applied Physics Letters, vol. 17, No. 3, pp 109-111. |
Goldstein, L. et al, 1985, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices”, Appl. Phys. Lett. 47 (10), pp. 1099-1101. |
Beanland, R. et al, 1997, “Relaxation of strained epitaxial layers by dislocation rotation, reaction and generation during annealing”, Inst. Phys. Conf. Ser. No. 157, pp 145-148. |
Glas, F. et al, 1987, “TEM study of the molecular beam epitaxy island growth of InAs on GaAs”, Inst. Phys. Conf. Ser. No. 87: Section 2, pp 71-76. |
Scott A. McHugo and William D. Sawyer Impurity decoration of defects in float zone and polycrystalline silicon via chemomechanical polishing Applied Physics Letters (1993) vol. 62, Issue 20, pp. 2519-2521. |
B. Shen, X. Y. Zhang, K. Yang, P. Chen, R. Zhang, Y. Shi, Y. D. Zheng, T. Sekiguchi and K. Sumino Gettering of Fe impurities by bulk stacking faults in Czochralski-grown silicon Applied Physics Letters (1997) vol. 70, Issue 14, pp. 1876-1878. |
M. Herrera Zaldivar, P. Fernandez, and J. Pique Study of defects in GaN films by cross-sectional cathodoluminescence Journal of Applied Physics (1998)—vol. 83, Issue 5, pp. 2796-2799. |
Ledentsov, N. N. “Long-Wavelenght Quantum-Dot Lasers on GaAs substrates: From Media to Device Concepts” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, No. 5, Sep./Oct. 2002 pp. 1015-1024. |