The present invention relates to a functional device-embedded substrate with a functional device such as a semiconductor chip embedded therein.
For downsizing of electronic apparatuses such as mobile phones, techniques for thinning semiconductor devices that occupy a majority of the volumes of such apparatuses are being developed. As an example thereof, as disclosed in patent literatures 1 to 3, there is a technique in which a semiconductor chip is embedded in a wiring substrate. Furthermore, as disclosed in patent literature 4, there is a technique in which a wiring layer on the front side and a wiring layer on the back side of a functional device-embedded substrate are electrically connected by vias penetrating through an area surrounding the embedded semiconductor chip. Accordingly, stacking of such functional device-embedded substrate on another substrate enables effective use of the mounting area.
In each of the functional device-embedded substrates described in patent literatures 1 to 3, a recess portion is formed in a core substrate comprised of a resin, a semiconductor chip is buried in the recess portion with a terminal surface of the semiconductor chip facing up, and a wiring layer is formed on the electrode terminals. Use of the core substrate suppress occurrence of warpage of the substrate.
Also, in the functional device-embedded substrate described in patent literature 4, in order to suppress warpage, reinforcements are provided in side areas of a semiconductor chip buried in a core layer.
However, in each of the functional device-embedded substrates described in patent literatures 1 to 3, in order to prevent warpage, a core substrate having a certain degree of thickness is required, and if the core substrate is thinned in order to make the functional device-embedded substrate thinner, warpage may occur.
In the functional device-embedded substrate described in patent literature 4, it is difficult to form interlayer vias electrically that connects upper and lower wiring layers in the reinforcements. Also, the area in which the reinforcements are arranged is an outer peripheral portion of the substrate, and areas in the vicinity of end faces of the semiconductor chip where stress concentrates most are not reinforced.
Therefore, the present invention has been made in view of the aforementioned problems, and an object of the present invention is to provide a functional device-embedded substrate that can be thinned and can suppress occurrence of warpage.
As a result of the present inventors' diligent study to achieve the above object, it has been found that in a functional device-embedded substrate, plural types of materials having largely different thermal expansion coefficients are mixed in the embedded substrate, and thus, stress occurs on an interface between the materials, resulting in warpage of the embedded substrate and damage of the semiconductor chip.
Therefore, the present invention provides
a functional device-embedded substrate comprising at least a functional device including an electrode terminal, and a covering insulating layer covering at least an electrode terminal surface and a side surface of the functional device, wherein
the functional device-embedded substrate including a first pillar structure around the functional device inside the covering insulating layer, the first pillar structure being comprised of a material having a thermal expansion coefficient between thermal expansion coefficients of the functional device and the covering insulating layer,
wherein the first pillar structure is arranged at a position where a shortest distance from a side surface of the functional device to a side surface of the first pillar structure is smaller than a thickness of the functional device.
In the present invention, a pillar structure having a predetermined thermal expansion coefficient is arranged in the vicinity of a functional device, thereby resulting in relaxation of a stress generated on an interface between a covering insulating layer and a functional device. Accordingly, the functional device-embedded substrate according to the present invention can reduce an occurrence of warpage.
A functional device-embedded substrate according to the present invention is a functional device-embedded substrate including at least a functional device including an electrode terminal and a covering insulating layer covering at least an electrode terminal surface and a side surface of the functional device. Furthermore, the functional device-embedded substrate includes a first pillar structure around the functional device inside the covering insulating layer, and the first pillar structure being comprised of a material having a thermal expansion coefficient between thermal expansion coefficients of the functional device and the covering insulating layer. The first pillar structure is arranged at a position where a shortest distance d1 from the functional device to the first pillar structure is smaller than a thickness of the functional device.
In the present invention, a first pillar structure comprised of a material having a thermal expansion coefficient between thermal expansion coefficients of a functional device and a covering insulating layer is arranged in the vicinity of a functional device. With such configuration, a part of the covering insulating layer that is in an area including the first pillar structure can be regarded as having a reduced thermal expansion coefficient, thereby substantively reducing the difference in thermal expansion coefficient between the covering insulating layer and the functional device. Thus, a stress generated on an interface between the covering insulating layer and the functional device can be relaxed, thereby can suppress an occurrence of warpage. Also, the stress relaxation in the functional device-embedded substrate according to the present invention can prevent a damage of the functional device such as a semiconductor chip.
Also, the functional device-embedded substrate according to the present invention can reduce warpage and thus resulting in an increase of manufacturing yield.
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. Although the following exemplary embodiments will be described in terms of a case where a semiconductor chip is used as a functional device, the present invention is not specifically limited to this case.
In
A wiring layer 105 is provided on the covering insulating layer 102. Also, device vias 104 electrically connecting the wiring layer 105 and the functional device 100 are provided in the covering insulating layer 102. The wiring layer 105 includes wirings such as a signal wiring, a power supply wiring or a ground wiring. In the present description, a wiring layer arranged on the electrode terminal surface of the functional device (for example, the wiring layer 105 in
The wiring layer 105 is covered by a wiring insulating layer 106, and on the wiring insulating layer 106, a solder resist 109 is provided. Inside the solder resist 109, external connection terminals 108 used for connection with, e.g., an external substrate is provided. Also, wiring vias 107 electrically connecting the wiring layer 105 and the external connection terminals 108 are provided in the wiring insulating layer 106.
On the external connection terminals 108, for example, BGA balls are arranged to connect the external connection terminals 108 with an external substrate such as a motherboard. Alternatively, the external connection terminals 108 may be configured so that the signal wiring and the ground wiring are exposed in openings of the solder resist 109. In other words, a second wiring layer including a ground wiring and a signal wiring are provided on the wiring insulating layer 106, and the solder resist 109 can be formed on the ground wiring and the signal wiring so that the ground wiring and the signal wiring are exposed. Also, surfaces of the external connection terminals can be protected so as to prevent, for example, a flowage of a solder.
Here, in the present invention, the first pillar structure 103 is comprised of a material having a thermal expansion coefficient between thermal expansion coefficients of the functional device 100 and the covering insulating layer 102. Also, as described above, the first pillar structure 103 is arranged at a position where a shortest distance d1 from the side surface of the functional device 100 to a side surface of the first pillar structure is smaller than the thickness h of the functional device 100. With such configuration, a part of the covering insulating layer that is in an area including the first pillar structure can be regarded as having a reduced thermal expansion coefficient, thereby substantively reducing the difference between the thermal expansion coefficients of the covering insulating layer and the functional device. Thus, a stress generated on an interface between the covering insulating layer and the functional device can be relaxed, thus resulting in suppression of occurrence of warpage. Also, the stress relaxation can prevent damage of the functional device such as a semiconductor chip.
Also, the present invention may include a second pillar structure in the covering insulating layer in addition to the first pillar structure, the second pillar structure being arranged at a position where its shortest distance from the functional device is larger than the thickness of the functional device.
Also, since it is effective that the first pillar structure is arranged at position where a stress concentrates on the embedded functional device 100, it is preferable that the first pillar structure be arranged around a corner of the functional device. In this case, a shortest distance d1 from a corner of the functional device to a side surface of the first pillar structure is smaller than the thickness h of the functional device. For example, as illustrated in the horizontal cross-sectional diagram in
Also, it is preferable that the first pillar structure be formed in an area within a range in which a distance from the corresponding side surface of the functional device is no more than 10×d1, preferably, no more than 7×d1, more preferably no more than 5×d1.
Also, although in
Also, as illustrated in
As described above, the pillar structure is comprised of a material having a thermal expansion coefficient between the thermal expansion coefficients of the functional device and the insulating layer. For the material of the pillar structure, for example, a conductor material or an insulator material can be used.
Examples of the conductor material include metals such as Au, Cu, Al, Ag, Fe, Ti, Ni, Pt and Pd and alloys thereof. From among these, Au or Cu is preferably used. Also, a conductor having a large rigidity such as SUS is preferable. Where a material for the pillar structure is a conductor, the pillar structures can also be used as vias. Furthermore, a material that is the same as that used for vias can also be used for the pillar structure. In such case, the pillar structure can be formed by plating according to the same method for forming the vias. In such case, what is called a filled via, i.e., a structure in which a via opening is filled with a metal conductor is preferable. Examples of the other formation methods include a method in which the pillar structure is arranged in the vicinity of the side surface of the functional device in advance by, e.g., cutting wire-like, thin metal stick and then the pillar structure is buried in a resin.
Examples of the insulator material include resins and ceramic. Since it is preferable that the pillar structure have rigidity, it is preferable to use an insulator having a large rigidity such as ceramic. It is preferable to use an insulator as a material for the pillar structure because the pillar structure can be formed in the covering insulating layer without hindering a wiring design of a wiring layer formed on the covering insulating layer.
Also, for the functional device, a semiconductor material such as silicon is mainly used, and for example, a semiconductor chip such as an LSI is fabricated using silicon. Thus, the thermal expansion coefficient of the functional device is substantially equal to a thermal expansion coefficient of silicon, and have a value of approximately 2 to 3×10̂−6 [1/° C.]. Meanwhile, for the covering insulating layer covering the functional device, an organic resin having an excellent fluidity (for example, epoxy-based resin), and a thermal expansion coefficient of such organic resin is, for example, approximately 50×10̂−6[1/° C.]. Accordingly, the thermal expansion coefficient of the pillar structures can be made to be, for example, 5×10̂−6 to 30×10̂−6 [1/° C.], preferably, 7×10̂−6 to 20×10̂−6 [1/°C.], more preferably 8×10̂−6 to 15×10̂−6[1/° C.]. Thermal expansion coefficients of metals are approximately 10 to 20×10̂−6[1/° C.], and thus, a metal can preferably be used for the pillar structures. For example, Cu has a thermal expansion coefficient of approximately 17×10̂−6[1/° C.], Fe has a thermal expansion coefficient of approximately 12×10̂−6[1/° C.], and Pt has a thermal expansion coefficient of 9×10̂−6 [1/° C.].
For a material of the covering insulating layer, a resin having an insulating property can be used, and an insulator used for a normal wiring substrate can be used. Examples of the material for the covering insulating layer include, e.g., epoxy resin, epoxy acrylate resin, urethane acrylate resin, polyester resin, phenol resin, polyimide resin and polynorbornene resin. Furthermore, the examples also include, e.g., BCB (Benzocyclobutene) and PBO (Polybenzoxazole). From among these, polyimide resin and PBO are excellent in mechanical characteristics such as film strength, tensile elasticity and breaking extension coefficient, enabling provision of high reliability. The material for the covering insulating layer may be either photosensitive or non-photosensitive. The covering insulating layer may include a plurality of layers; however, in such case, it is preferable to use a same material for the plurality of layers.
Also, the thermal expansion coefficient of the material for the covering insulating layer is, for example, 35×10̂−6 to 70×10̂−6 [1/° C.], preferably 40×10̂−6 to 60×10̂−6 [1/° C.]. For the covering insulating layer, it is preferable to use an organic resin having an excellent fluidity for covering the functional device, and a thermal expansion coefficient of such organic resin is, for example, approximately 50×10̂−6 [1/° C.].
Examples of the functional device include active components such as a semiconductor chip and passive components such as a condenser. Examples of the semiconductor chip include, e.g., transistors, ICs and LSIs. Although the semiconductor chip is not specifically limited, for example, a CMOS (Complementary Metal Oxide Semiconductor) can be selected. In the case of a semiconductor chip, the thickness of the functional device is, for example, 50 to 200 μm. In the case of a chip-type passive component, the thickness is, for example, 200 to 400 μm. Also, in the case of a thin-film-like passive, the thickness is, for example, 100 to 200 μm. In the present invention, for the functional device, a semiconductor chip can preferably be used, and also, a semiconductor chip having a thickness of 50 to 200 μm can preferably be used.
For example, where the semiconductor chip has a thickness of 50 μm, the distance d1 between the side surface of the semiconductor chip and the side surface of the first pillar structure is preferably no more than 40 μm and more preferably no more than 10 μm. In such case, the first pillar structure can have a diameter of, for example, 100 μm.
Also, for a semiconductor chip as the functional device, a semiconductor chip having a terminal surface of, for example, full-grid type or peripheral pad type can be used. Furthermore, a method for connection with a wiring layer is not specifically limited, e.g., flip-chip connection, copper post connection or laser via connection may be used.
Also, it is preferable that the thickness of the pillar structure be equal to or larger than the thickness of the functional device to more effectively reduce a stress resulting from the difference between the thermal expansion coefficients of the covering insulating layer and the functional device. For example, when a semiconductor chip is selected as the functional device, it is preferable that the thickness of the pillar structure be equal to or larger than a thickness of the semiconductor chip. Also, the thickness of the pillar structure is preferably equal to or smaller than the thickness of the covering insulating layer and is more preferably equal to the thickness of the covering insulating layer. Also, it is preferable that the pillar structure be provided so as to penetrate through the covering insulating layer and have a thickness equal to the thickness of the covering insulating layer. The thickness in such range can effectively suppress warpage.
Also, the pillar structures may be in contact with one another.
For conductors used for the wiring layers and the vias, which are not specifically limited, for example, a metal including at least one selected from a group consisting of copper, silver, gold, nickel, aluminum and palladium or an alloy including some of the above as main components. From among them, Cu is preferably used as the conductors from the perspective of electric resistance value and cost.
Next, a method for fabricating the functional device-embedded substrate illustrated in
First, as illustrated in
Next, as illustrated in
The first pillar structures 103 can be formed by, for example a plating method.
Next, as illustrated in
Furthermore, the semiconductor chip 100 is arranged with electrode terminals (not illustrated) facing up. Furthermore, the semiconductor chip 100 may be mounted with an adhesive (not illustrated) between the semiconductor chip 100 and the back-side insulating layer 101. For the adhesive, for example, an epoxy resin, an epoxy acrylate resin, an urethane acrylate resin, a polyester resin, a phenol resin or a polyimide resin may be used.
Next, as illustrated in
Subsequently, as illustrated in
Next, as illustrated in
A method for forming the wiring insulating layer includes, e.g., a transfer molding method, a compression molding method, a printing method, vacuum pressing, vacuum laminating, a spin coating method, a die coating or a curtain coating method.
When the material used for the insulating layer has photosensitive, prepared holes can be formed by a photolithography method. When the material used for the insulating layer is non-photosensitive or has a low pattern resolution, prepared holes can be formed by a laser processing method, a dry etching method or an abrasive blasting method.
Also, for a method for forming device vias or wiring vias, e.g., electrolytic plating, non-electrolytic plating, a printing method or a molten metal suction method can be used.
Also, for device vias connecting with the electrode terminals of the semiconductor chip, a method in which metal posts for current application are provided in advance on the electrode terminals, the covering insulating layer 102 is formed and then surfaces of the insulating materials are shaved by means of, e.g., grinding to make surfaces of the metal posts be exposed to form vias may be employed. Examples of the shaving method include buffing and CMP.
The wiring layer can be formed by means of, for example, a subtractive process, a semi-additive process or a full additive process, using, for example, a metal such as Cu, Ni, Sn or Au.
The subtractive process is disclosed in, for example, in JP10-51105A. The subtractive process is a method in which etching is performed using a resist obtained by forming a copper foil provided on a substrate or a resin into a desired pattern as an etching mask and subsequently the resist is removed to obtain a desired wiring pattern. The semi-additive process is disclosed in, for example, JP9-64493A. The semi-additive process is a method in which after formation of a power feed layer, a resist is formed into a desired pattern, electrolyte plating is deposited in opening portions of the resist, and after removal of the resist, the power feed layer is etched to obtain a desired wiring pattern. The power feed layer can be formed by means of, for example, non-electrolyte plating, a sputtering method and a CVD method. The full additive process is disclosed in, for example, JP6-334334A. In the full additive process, first, a non-electrolyte plating catalyst is absorbed on a surface of a substrate or a resin and then a pattern is formed using a resist. Then, with the resist left as an insulating layer, the catalyst is activated to make a metal be deposited in opening portions of the insulating layer by means of a non-electrolyte plating method to obtain a desired wiring pattern.
The external connection terminals 108 may double as a signal wiring or a ground wiring, and in this case, a solder resist is etched so that the signal wiring or the ground wiring is partially exposed, whereby external connection terminals can be formed.
Next, as illustrated in
A method for fabricating the functional device-embedded substrate illustrated in
First, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
Next, as illustrated in
At this time, use of a via material as a material for the first pillar structures 203 enables easy formation of the first pillar structures 203 by means of, e.g., a plating method.
Next, as illustrated in
Next, as illustrated in
In the exemplary embodiment illustrated in
Although
A method for fabricating the functional device-embedded substrate illustrated in
First, as illustrated in
Next, as illustrated in
The first pillar structures 303 can be formed using, for example, a semi-additive process or a subtractive process.
Next, as illustrated in
Next, as illustrated in
Subsequently, as illustrated in
Next, as illustrated in
Next, as illustrated in
Also, as illustrated in
For a material for the metal plate, which is not specifically limited, for example, a metal including at least one selected from a group consisting of copper, silver, gold, nickel, aluminum and palladium or an alloy including some of the above as main components. From among them, it is preferable to use copper as the material for the metal plate from the perspective of electrical resistance value and cost. The metal plate also functions as an electromagnetic shield, and thus, is expected to reduce unwanted electromagnetic radiation.
In
Although
In
Also, in the present invention, one or more wiring layers can be provided not only on the electrode terminal surface of a functional device, but also, for example, as illustrated in
Also, when providing a wiring layer on the back side of the functional device, it is necessary to provide interlayer vias for electrically connecting the upper and lower wiring layers in the covering insulating layer 602. In the present exemplary embodiment, when a metal is used for a material for each of the first pillar structures and the second pillar structures, as described above, at least one of the pillar structures can be used as an interlayer via.
Also, it is not necessary that pillar structures be provided so as to penetrate through a covering insulating layer, and pillar structures may be arranged so as to be buried in the covering insulating layer. In this case, in order to more effectively reduce a stress resulting from a difference in thermal expansion coefficient between the insulating layer and a functional device, it is preferable that a thickness in a vertical direction of the pillar structures be equal to or larger than a thickness of the functional device (semiconductor chip) and equal to or smaller than a thickness of the covering insulating layer.
Also, as illustrated in
As illustrated in
For example, as illustrated in
Also, as illustrated in
Also, the pillar structures can be arranged so as to be on lines similar to lines of a horizontal cross-sectional shape of a functional device. The similar lines here are imaginary ones and not included in the configuration of the functional device-embedded substrate.
The present application claims priority from Japanese Patent Application No. 2010-059316 filed in Japan on Mar. 16, 2010, the entire disclosure of which is incorporated herein.
Although the invention according to the present application has been described with reference to the exemplary embodiments and examples, the invention according to the present application is not limited to the above exemplary embodiments and examples. Various alterations that can be understood by a person skilled in the art can be made to the configuration and details of the invention according to the present application as long as such alterations fall within the scope of the invention according to the present application.
Number | Date | Country | Kind |
---|---|---|---|
2010-059316 | Mar 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP11/50839 | 1/19/2011 | WO | 00 | 10/16/2012 |