Method for fabricating a strained structure and structure formed

Information

  • Patent Grant
  • 10510887
  • Patent Number
    10,510,887
  • Date Filed
    Monday, February 6, 2017
    7 years ago
  • Date Issued
    Tuesday, December 17, 2019
    5 years ago
Abstract
A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
Description
TECHNICAL FIELD

This disclosure relates to integrated circuit fabrication, and more particularly to a field effect transistor with a strained structure.


BACKGROUND

As the semiconductor industry has progressed into nanometer technology process nodes in pursuit of higher device density, higher performance, and lower costs, challenges from both fabrication and design issues have resulted in the development of three dimensional designs, such as a fin field effect transistor (FinFET). A typical FinFET is fabricated with a thin vertical “fin” (or fin structure) extending from a substrate, for example, etched into a silicon layer of the substrate. The channel of the FinFET is formed in this vertical fin. A gate is provided over (e.g., wrapping) the fin. Having a gate on both sides of the channel allows gate control of the channel from both sides. Further advantages of FinFET comprise reducing the short channel effect and enabling higher current flow.



FIG. 1A shows an isometric view of a conventional FinFET 100, and FIG. 1B illustrates a cross-sectional view of the FinFET 100 taken along the line a-a of FIG. 1A. The fin 104/108 comprises a raised active region 104 above a semiconductor substrate 102. Fin 104/108 is surrounded by a shallow trench isolation (STI) structure 106. A gate structure 110 comprising a gate dielectric 112, a gate electrode 114, and an optional hardmask layer 116 is formed above the fin 104/108. Sidewall spacers 118 are formed on both sides of the gate structure 110. Further, a portion of the fin 104/108 contains strained structures 108 in source and drain (S/D) recess cavities of the FinFET 100. The strained structures 108 are formed after a fin recessing process and an epitaxial growth step. The strained structures 108 utilizing epitaxial silicon germanium (SiGe) may be used to enhance carrier mobility.


However, there are challenges to implement such features and processes in complementary metal-oxide-semiconductor (CMOS) fabrication. As the gate length and spacing between devices decrease, these problems are exacerbated. For example, an ordered atomic arrangement does not exist due to lattice mismatch between the portion 104 of the fin 104/108 and strained portions 108. Thus, strain-induced crystal defects 108a may become embedded in the strained structure 108. The crystal defects 108a may provide carrier transportation paths during device operation, thereby increasing the likelihood of device instability and/or device failure.


Accordingly, what are needed are methods for fabricating a reduced-defect strained structure.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale and are used for illustration purposes only. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.



FIG. 1A shows an isometric view of a conventional FinFET;



FIG. 1B illustrates a cross-sectional view of the FinFET taken along the line a-a of FIG. 1A;



FIG. 2 is a flowchart illustrating a method for fabricating strained structures according to various aspects of the present disclosure;



FIGS. 3A-F show schematic cross-sectional views of a FinFET comprising a strained structure at various stages of fabrication according to various aspects of the present disclosure; and



FIGS. 4A-E show schematic cross-sectional views of a FinFET comprising a strained structure at various stages of fabrication according to various aspects of the present disclosure.





DESCRIPTION

It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the disclosure. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.


Referring to FIG. 2, illustrated is a flowchart of a method 200 for fabricating a semiconductor device according to various aspects of the present disclosure. The method 200 begins with block 202 in which a substrate is provided. The method 200 continues with block 204 in which a recess cavity comprising an upper portion and a lower portion may be formed in the substrate, wherein one sidewall of the recess cavity is dielectric and other sidewall of the recess cavity is the substrate. The method 200 continues with block 206 in which a dielectric film may be formed on the substrate sidewall portion and a bottom portion of the recess cavity. The method 200 continues with block 208 in which removing the dielectric film may include removing the dielectric film on the bottom portion of the recess cavity. The method 200 continues with block 210 in which epi-growing a first strained layer may be epi-grown in the lower portion of the recess cavity adjacent to a portion of the dielectric film. The method 200 continues with block 212 in which a portion of the dielectric film not adjacent to the first strained layer may be removed. The method 200 continues with block 214 in which a second strained layer may be epi-grown in the upper portion of the recess cavity. The discussion that follows illustrates various embodiments of semiconductor devices that can be fabricated according to the method 200 of FIG. 2.


Referring to FIGS. 3A-3F and 4A-4E, illustrated are schematic cross-sectional views of strained structures 308, 408 (in FIGS. 3F and 4E) of semiconductor devices 300, 400 at various stages of fabrication according to various aspects of the present disclosure. As employed in the present disclosure, the term semiconductor devices 300, 400 refer to a FinFET. The FinFET refers to any fin-based, multi-gate transistor. The semiconductor devices 300, 400 may be included in a microprocessor, memory cell, and/or other integrated circuit (IC). It is noted that the method of FIG. 2 does not produce completed semiconductor devices 300, 400. Completed semiconductor devices 300, 400 may be fabricated using complementary metal-oxide-semiconductor (CMOS) technology processing. Accordingly, it is understood that additional processes may be provided before, during, and after the method 200 of FIG. 2, and that some other processes may only be briefly described herein. Also, FIGS. 2 through 4E are simplified for a better understanding of the present disclosure. For example, although the figures illustrate the semiconductor devices 300, 400, it is understood the IC may comprise a number of other devices comprising resistors, capacitors, inductors, fuses, etc.


Referring to FIG. 3A, a substrate 102 is provided having a fin structure 104. In one embodiment, the substrate 102 comprises a crystalline silicon substrate (e.g., wafer). The substrate 102 may comprise various doped regions depending on design requirements (e.g., p-type substrate or n-type substrate). In some embodiments, the doped regions may be doped with p-type or n-type dopants. For example, the doped regions may be doped with p-type dopants, such as boron or BF.sub.2; n-type dopants, such as phosphorus or arsenic; and/or combinations thereof. The doped regions may be configured for an n-type FinFET, or alternatively configured for a p-type FinFET.


The substrate 102 may alternatively be made of some other suitable elementary semiconductor, such as diamond or germanium; a suitable compound semiconductor, such as gallium arsenide, silicon carbide, indium arsenide, or indium phosphide; or a suitable alloy semiconductor, such as silicon germanium carbide, gallium arsenic phosphide, or gallium indium phosphide. Further, the substrate 102 may include an epitaxial layer (epi-layer), may be strained for performance enhancement, and/or may include a silicon-on-insulator (SOI) structure.


The fin structure 104, formed over the substrate 102, comprises one or more fins. In the present embodiment, for simplicity, the fin structure 104 comprises a single fin. The fin comprises any suitable material, for example, the fin structure 104 comprises silicon. The fin structure 104 may further comprise a capping layer disposed on the fin, which may be a silicon-capping layer.


The fin structure 104 is formed using any suitable process comprising various deposition, photolithography, and/or etching processes. An exemplary photolithography process may include forming a photoresist layer (resist) overlying the substrate 102 (e.g., on a silicon layer), exposing the resist to a pattern, performing a post-exposure bake process, and developing the resist to form a masking element including the resist. The masking element may then be used to etch the fin structure 104 into the silicon layer. The fin structure 104 may be etched using reactive ion etching (RIE) processes and/or other suitable processes. In an example, the silicon fin 104 is formed by using patterning and etching of a portion of the silicon substrate 102. In another example, silicon fins of the fin structure 104 may be formed by using patterning and etching of a silicon layer deposited overlying an insulator layer (for example, an upper silicon layer of a silicon-insulator-silicon stack of an SOI substrate).


Isolation structure 106 may be formed on the substrate 102 to isolate the various doped regions. The isolation structure 106 may utilize isolation technology, such as local oxidation of silicon (LOCOS) or shallow trench isolation (STI), to define and electrically isolate the various doped regions. In the present embodiment, the isolation structure 106 includes a STI. The isolation structure 106 may comprise silicon oxide, silicon nitride, silicon oxynitride, fluoride-doped silicate glass (FSG), a low-K dielectric material, and/or combinations thereof. The isolation structure 106, and in the present embodiment, the STI, may be formed by any suitable process. As one example, the formation of the STI may include patterning the semiconductor substrate 102 by a conventional photolithography process, etching a trench in the substrate 102 (for example, by using a dry etching, wet etching, and/or plasma etching process), and filling the trench (for example, by using a chemical vapor deposition process) with a dielectric material. In some embodiments, the filled trench may have a multi-layer structure such as a thermal oxide liner layer filled with silicon nitride or silicon oxide.


Still referring to FIG. 3A, a gate stack 110 is formed over the substrate 102 and over a portion of the fin structure 104. The gate stack 110 typically comprises a gate dielectric layer 112 and a gate electrode layer 114. The gate stack 110 may be formed using any suitable process, including the processes described herein.


In one example, the gate dielectric layer 112 and gate electrode layer 114 are sequentially deposited on the substrate 102 and over a portion of the fin structure 104. In some embodiments, the gate dielectric layer 112 may include silicon oxide, silicon nitride, silicon oxy-nitride, or high-k dielectric. High-k dielectrics comprise metal oxides. Examples of metal oxides used for high-k dielectrics include oxides of Li, Be, Mg, Ca, Sr, Sc, Y, Zr, Hf, Al, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and mixtures thereof. In the present embodiment, the gate dielectric layer 112 is a high-k dielectric layer with a thickness in the range of about 10 to 30 angstroms. The gate dielectric layer 112 may be formed using a suitable process such as atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal oxidation, UV-ozone oxidation, or combinations thereof. The gate dielectric layer 112 may further comprise an interfacial layer (not shown) to reduce damage between the gate dielectric layer 112 and the fin structure 104. The interfacial layer may comprise silicon oxide.


In some embodiments, the gate electrode layer 114 may comprise a single layer or multilayer structure. In the present embodiment, the gate electrode layer 114 may comprise poly-silicon. Further, the gate electrode layer 114 may be doped poly-silicon with uniform or non-uniform doping. Alternatively, the gate electrode layer 114 may include a metal such as Al, Cu, W, Ti, Ta, TiN, TiAl, TiAlN, TaN, NiSi, CoSi, other conductive materials with a work function compatible with the substrate material, or combinations thereof. In the present embodiment, the gate electrode layer 114 comprises a thickness in the range of about 30 nm to about 60 nm. The gate electrode layer 114 may be formed using a suitable process such as ALD, CVD, PVD, plating, or combinations thereof.


Then, a layer of photoresist is formed over the gate stack 110 by a suitable process, such as spin-on coating, and patterned to form a patterned photoresist feature by a proper lithography patterning method. In one embodiment, a width of the patterned photoresist feature is in the range of about 15 to 45 nm. The patterned photoresist feature can then be transferred using a dry etching process to the underlying layers (i.e., the gate electrode layer 114 and the gate dielectric layer 112) to form the gate stack 110. The photoresist layer may be stripped thereafter.


In another example, a hard mask layer 116 is formed over the gate stack 110; a patterned photoresist layer is formed on the hard mask layer 116; the pattern of the photoresist layer is transferred to the hard mask layer 116 and then transferred to the gate electrode layer 114 and the gate dielectric layer 112 to form the gate stack 110. The hard mask layer 116 comprises silicon oxide. Alternatively, the hard mask layer 116 may optionally comprise silicon nitride, silicon oxynitride, and/or other suitable dielectric materials, and may be formed using a method such as CVD or PVD. The hard mask layer 116 has a thickness in the range from about 100 to 800 angstroms.


Still referring to FIG. 3A, the semiconductor device 300 further comprises a dielectric layer 118 formed over the substrate 102 and the gate stack 110. The dielectric layer 118 may include silicon oxide, silicon nitride, silicon oxy-nitride, or other suitable material. The dielectric layer 118 may comprise a single layer or multilayer structure. The dielectric layer 118 may be formed by CVD, PVD, ALD, or other suitable technique. The dielectric layer 118 comprises a thickness ranging from about 5 to 15 nm. Then, an anisotropic etching is performed on the dielectric layer 118 to form a pair of spacers 118 on two sides of the gate stack 110.


Still referring to FIG. 3A, other portions of the fin structure 104 (i.e., portions other than where the gate stack 110 and spacers 118 are formed thereover) are recessed to form source and drain (S/D) recess cavities 130 below a top surface of the substrate 102 disposed between the gate stack 110 and the isolation structure 106. In one embodiment, using the pair of spacers 118 as hard masks, a biased etching process is performed to recess a top surface of the fin structure 104 that are unprotected or exposed to form the S/D recess cavities 130. In an embodiment, the etching process may be performed under a pressure of about 1 mTorr to 1000 mTorr, a power of about 50 W to 1000 W, a bias voltage of about 20 V to 500 V, at a temperature of about 40° C. to 60° C., using a HBr and/or Cl2 as etch gases. Also, in the embodiments provided, the bias voltage used in the etching process may be tuned to allow better control of an etching direction to achieve desired profiles for the S/D recess cavities 130. The recess cavity 130 may comprise an upper portion 130u and a lower portion 1301 separated by the dotted line in FIG. 3A. One sidewall 130i of the recess cavity 130 is dielectric and other sidewall 130f of the recess cavity 130 is the substrate 102. In one embodiment, a ratio of a height of the upper portion 130u to a height of the lower portion 1301 may be from 0.8 to 1.2. In some embodiments, a height 130a between the top surface of the substrate 102 and a bottom of the S/D recess cavity 130 is in the range of about 300 to 2000 nm.


Referring to FIG. 3B, following formation of the recess cavity 130, a dielectric film 132 may be formed along the substrate surface of the recess cavity 130. The dielectric film 132 comprises a sidewall portion 132w and a bottom portion 132b. The dielectric film 132 may be formed of silicon oxide or silicon oxynitride grown using a thermal oxidation process. For example, the dielectric film 132 can be grown by a rapid thermal oxidation (RTO) process or in a conventional annealing process, which includes oxygen or NO.sub.2. A thickness t.sub.1 of the dielectric film 132 may be in the range of about 20 to 100 angstroms.


Referring to FIG. 3C, subsequent to the formation of the dielectric film 132, a dry etching process is performed to remove the bottom portion 132b of the dielectric film 132, whereby the sidewall portion 132w of the dielectric film 132 is not removed. For example, the dry etching process may be a plasma etch process performed under a source power of about 120 to 160 W, and a pressure of about 450 to 550 mTorr, using BF3, H2, and Ar as etching gases.


Referring to FIG. 3D, after the bottom portion 132b of the dielectric film 132 is removed, a first strained layer 136 is epi-grown in the lower portion 1301 of the recess cavities 130 adjacent to a portion of the dielectric film 132. In one embodiment, a first strained layer 136 comprising silicon germanium (SiGe) is epi-grown by a low-pressure chemical vapor deposition (LPCVD) process. The first strained layer 136 may serve as a relaxation layer and trap defects 136a to eliminate crystal defects in a second strained layer 138 (shown in FIG. 3F) in the source and drain regions of the n-type FinFET. The LPCVD process is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 and GeH.sub.4 as reaction gases. In another embodiment, a first strained layer 136 comprising silicon carbon (SiC) is epi-grown by a LPCVD process. The first strained layer 136 may serve as a relaxation layer and trap defects 136a to eliminate crystal defects in a second strained layer 138 (shown in FIG. 3F) in the source and drain regions of the p-type FinFET. The LPCVD process is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 and CH.sub.4 as reaction gases. A thickness t.sub.2 of the first strained layer 136 may be in the range of about 15 to 45 nm. The thickness t.sub.1 of the dielectric film 132 is less than the thickness t.sub.2 of the first strained layer 136.


Referring to FIG. 3E, subsequent to the formation of the first strained layer 136, a top portion of the sidewall portion 132w of the dielectric film 132 not adjacent to the first strained layer 136 has been removed using a wet etching process, for example, by dipping the substrate 102 in hydrofluoric acid (HF), exposing a top surface 132a of the remaining sidewall portion 132w of the dielectric film 132. Because the wet etching process has higher etch selectivity for oxide than to silicon, SiGe, and SiC, the etch process removes the dielectric film 132 faster than the fin structure 104 and the first strained layer 136.


In the present embodiment, the first strained layer 136 is disposed between the isolation structure 106 and the remaining sidewall portion 132w of the dielectric film 132. In an embodiment, a top surface 136b of the first strained layer 136 and the top surface 132a of the remaining sidewall portion 132w of the dielectric film 132 are substantially aligned. In another embodiment, the top surface 136b of the first strained layer 136 and the top surface 132a of the remaining sidewall portion 132w of the dielectric film 132 are below a top surface 106a of the isolation structure 106.


Referring to FIG. 3F, after the top portion of the sidewall portion 132w of the dielectric film 132 is removed, a second strained layer 138 overlying the first strained layer 136 and remaining sidewall portion 132w of the dielectric film 132 is epi-grown in the upper portion 130u of the recess cavities 130 in the fin structure 104. Further, the first strained layer 136, remaining sidewall portion 132w of the dielectric film 132, and second strained layer 138 are collectively hereinafter referred to as a strained structure 308. It should be noted that the first strained layer 136 serves as a relaxation layer and may trap defects 136a to eliminate crystal defects in the second strained layer 138. Crystal defects in the second strained layer 138 may provide carrier transportation paths during device operation, thereby increasing the likelihood of device instability and/or device failure. Accordingly, the above method of fabricating a semiconductor device 300 may form a reduced-defect strained structure 308 to enhance carrier mobility and upgrade the device performance.


In one embodiment, the second strained layer 138, such as silicon carbide (SiC), is epi-grown by a LPCVD process to form the source and drain regions of the n-type FinFET. An example the LPCVD process for the growth of SiC is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 and CH.sub.4 as reaction gases. In another embodiment, the second strained layer 138, such as silicon germanium (SiGe), is epi-grown by a LPCVD process to form the source and drain regions of the p-type FinFET. The LPCVD process is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 and GeH.sub.4 as reaction gases. In still another embodiment, the second strained layer 138, such as silicon, is epi-grown by a LPCVD process to form the source and drain regions of both the p-type FinFET and n-type FinFET. The LPCVD process is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 as a reaction gas.


Alternatively, FIG. 4A shows the substrate 102 of FIG. 3A after deposition of a dielectric film 142 by a CVD process. The dielectric film 142 formed by CVD will deposit over all exposed surfaces, and thus may be formed on the isolation structure 106, hard mask layer 116, spacers 118, and recess cavities 130. The dielectric film 142 may comprise a first sidewall portion 142w, a second sidewall portion 142s, and a bottom portion 142b. The dielectric film 142 may be formed of silicon oxide or silicon oxynitride deposited using a CVD process. For example, the dielectric film 142 can be deposited under a pressure less than 10 mTorr and a temperature of about 350° C. to 500° C., using SiH.sub.4 and N.sub.2O as reacting precursors. A thickness t.sub.3 of the dielectric film 142 may be in the range of about 20 to 100 angstroms.


Referring to FIG. 4B, subsequent to the formation of the dielectric film 142, a dry etching process is performed to remove the bottom portion 142b of the dielectric film 142, whereby the first sidewall portion 142w and second sidewall portion 142s of the dielectric film 142 are not removed. For example, the dry etching process may be performed under a source power of about 120 to 160 W, and a pressure of about 450 to 550 mTorr, using BF3, H2, and Ar as etching gases.


Referring to FIG. 4C, after the bottom portion 142b of the dielectric film 142 removing process, a first strained layer 146 is epi-grown in the lower portion 1301 of the recess cavities 130 adjacent to a portion of the dielectric film 142. In one embodiment, a first strained layer 146 comprising silicon germanium (SiGe) is epi-grown by a LPCVD process. The first strained layer 146 may serve as a relaxation layer and trap defects 146a to eliminate crystal defects in a second strained layer 148 (shown in FIG. 4E) in the source and drain regions of the n-type FinFET. The LPCVD process is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 and GeH.sub.4 as reaction gases. In another embodiment, a first strained layer 146 comprising silicon carbide (SiC) is epi-grown by a LPCVD process. The first strained layer 146 may serve as a relaxation layer and trap defects 146a to eliminate crystal defects in the second strained layer 148 (shown in FIG. 4E) in the source and drain regions of the p-type FinFET. In one embodiment, LPCVD process for SiC deposition is performed at a temperature of about 400 to 800 C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 and CH.sub.4 as reaction gases. A thickness t.sub.4 of the first strained layer 146 may be in the range of about 12 to 40 nm. The thickness t.sub.3 of the dielectric film 142 is less than the thickness t.sub.4 of the first strained layer 146.


Referring to FIG. 4D, subsequent to the formation of the first strained layer 146, top portions of the first and second sidewall portions 142w, 142s of the dielectric film 142 not adjacent to the first strained layer 146 are removed using a wet etching process, for example, by dipping the substrate 102 in hydrofluoric acid (HF), exposing top surfaces 142a, 142b of the remaining first and second sidewall portions 142w, 142s of the dielectric film 142. Because the wet etching process preferentially etches oxide over silicon, SiGe, and SiC, the etch process removes the dielectric film 142 faster than the fin structure 104 and the first strained layer 146.


In the present embodiment, the first strained layer 146 is disposed between the isolation structure 106 and the remaining first sidewall portion 142w of the dielectric film 142. Further, the remaining second sidewall portion 142s of dielectric film 142 is between the first strained layer 146 and the isolation structure 106. In an embodiment, a top surface 146b of the first strained layer 146 and the top surfaces 142a, 142b of the remaining first and second sidewall portions 142w, 142s of the dielectric film 142 are substantially aligned. In another embodiment, the top surface 146b of the first strained layer 136 and the top surfaces 142a, 142b of the remaining first and second sidewall portions 142w, 142s of the dielectric film 142 are below the top surface 106a of the isolation structure 106.


Referring to FIG. 4E, after the top portions of the first and second sidewall portions 142w, 142s of the dielectric film 142 are removed, a second strained layer 148 overlying the first strained layer 146 and remaining first and second sidewall portions 142w, 142s of the dielectric film 142 is epi-grown in the upper portion 130u of the recess cavities 130. Further, the first strained layer 146, remaining first sidewall portion 142w and second sidewall portion 142w of the dielectric film 142, and second strained layer 148 are collectively hereinafter referred to as a strained structure 408. It should be noted that the first strained layer 146 serves as a relaxation layer and may trap defects 146a to eliminate crystal defects in the second strained layer 148. Crystal defects in the second strained layer 148 may provide carrier transportation paths during device operation, thereby increasing the likelihood of device instability and/or device failure. Accordingly, the above method of fabricating a semiconductor device 400 may form a reduced-defect strained structure 408 to enhance carrier mobility and upgrade the device performance.


In one embodiment a second strained layer 148 comprising silicon carbide (SiC) is epi-grown by a LPCVD process to form the source and drain regions of the n-type FinFET. The LPCVD process is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 and CH.sub.4 as reaction gases. In another embodiment a second strained layer 148 comprising silicon germanium (SiGe) is epi-grown by a LPCVD process to form the source and drain regions of the p-type FinFET. The LPCVD process is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 and GeH.sub.4 as reaction gases. In still another embodiment a second strained layer 148 comprising silicon is epi-grown by a LPCVD process to form the source and drain regions of both the p-type FinFET and n-type FinFET. The LPCVD process is performed at a temperature of about 400 to 800° C. and under a pressure of about 1 to 200 Torr, using SiH.sub.4 as a reaction gas.


After the steps shown in FIGS. 2, 3 and 4 have been performed, subsequent processes, comprising silicidation and interconnect processing, are typically performed to complete the semiconductor device 300 and 400 fabrication.


One aspect of this description relates to a field effect transistor. The field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.


Another aspect of this description relates to a method for fabricating a semiconductor device. The method includes forming a recess cavity comprising an upper portion and a lower portion in a substrate, wherein the recess cavity includes a sidewall defined by an isolation structure. The method further includes forming a dielectric film on a bottom portion and a sidewall of the recess cavity opposite the isolation structure. The method further includes removing the dielectric film on the bottom portion of the recess cavity. The method further includes forming a first strained layer in the lower portion of the recess cavity in direct contact with the dielectric film, wherein the first strained layer is between the dielectric film and the isolation structure. The method further includes forming a second strained layer over the first strained layer in the upper portion of the recess cavity.


Still another aspect of this description relates to a field effect transistor. The field effect transistor includes an isolation structure in a substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate, wherein a sidewall of the S/D recess cavity is defined by the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a defect trapping layer, wherein the first defect trapping layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the defect trapping layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a strained layer overlying the defect trapping layer.


While the preferred embodiments have been described by way of example, it is to be understood that the disclosure is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the disclosure should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements. The disclosure can be used to form or fabricate a strained structure for a semiconductor device. In this way, a strained structure having no defect in a semiconductor device is fabricated.

Claims
  • 1. A device comprising: a fin structure disposed on a substrate;a gate structure disposed over the fin structure, the gate structure including a sidewall spacer;an isolation structure disposed in the substrate;a source/drain feature associated with the fin structure, the source/drain feature including: a first strained layer that is in direct contact with the isolation structure;a dielectric layer that is in direct contact with the fin structure, wherein the first strained layer is disposed between the isolation structure and the dielectric layer thereby preventing the dielectric layer from interfacing with the isolation structure; anda second strained layer overlying the first strained layer and in direct contact with the fin structure and the sidewall spacer, wherein the second strained layer does not extend under the sidewall spacer such that no portion of any source/drain feature is disposed under the sidewall spacer.
  • 2. The device of claim 1, wherein the second strained layer extends from the fin structure to the isolation structure.
  • 3. The device of claim 1, wherein the gate structure further includes: a gate dielectric disposed over the fin structure;a gate electrode disposed over the gate dielectric; andthe sidewall spacer disposed along a sidewall of the gate electrode and a sidewall of the gate dielectric.
  • 4. The device of claim 3, wherein the second strained layer is in direct contact with a sidewall of the fin structure and wherein the first strained layer is in direct contact within the sidewall of the fin structure.
  • 5. The device of claim 1, wherein the isolation structure is a shallow trench isolation structure.
  • 6. The device of claim 1, wherein the second strained layer is in direct contact with the dielectric layer and the first strained layer.
  • 7. The device of claim 1, wherein the fin structure is formed of the same material as the substrate.
  • 8. A device comprising: a dielectric isolation structure disposed in a substrate;a fin structure disposed on the substrate;a gate structure disposed over the fin structure, the gate structure including a sidewall spacer;a source/drain feature positioned between the dielectric isolation structure and the fin structure, the source/drain feature including: a defect trapping layer that is in direct contact with the dielectric isolation structure;a dielectric layer extending from a sidewall of the defect trapping layer to a sidewall of the fin structure, wherein the defect trapping layer is disposed between the dielectric isolation structure and the dielectric layer thereby preventing the dielectric layer from interfacing with the dielectric isolation structure; andan epitaxial layer overlying the defect trapping layer and in direct contact with the fin structure and the sidewall spacer, wherein the epitaxial layer does not extend under the sidewall spacer such that no portion of any source/drain feature is disposed under the sidewall spacer.
  • 9. The device of claim 8, wherein the epitaxial layer is in direct contact with a top surface of the dielectric layer that faces away from the substrate, and wherein the epitaxial layer is in direct contact with a top surface of the defect trapping layer that faces away from the substrate.
  • 10. The device of claim 9, wherein the top surface of the dielectric layer is substantially coplanar with the top surface of the defect trapping layer.
  • 11. The device of claim 8, wherein the defect trapping layer and the epitaxial layer are formed of different materials, and wherein one of the defect trapping layer and the epitaxial layer includes silicon germanium and the other one of the defect trapping layer and the epitaxial layer includes silicon carbide.
  • 12. The device of claim 8, wherein the epitaxial layer extends from the dielectric isolation structure to the fin structure.
  • 13. A device comprising: a semiconductor fin structure disposed on a substrate;a gate structure disposed over the semiconductor fin structure, the gate structure including a sidewall spacer;a shallow trench isolation structure disposed in the substrate;a source/drain feature positioned between the shallow trench isolation structure and the semiconductor fin structure, the source/drain feature including: a first strained layer physically contacting the shallow trench isolation structure and physically contacting the semiconductor substrate;a first dielectric layer physically contacting the semiconductor fin structure; anda second strained layer disposed over the first strained layer and physically contacting the semiconductor fin structure and the sidewall spacer, wherein the second strained layer does not extend under the sidewall spacer such that no portion of any source/drain feature is disposed under the sidewall spacer.
  • 14. The device of claim 13, wherein the first strained layer is formed of a first semiconductor material and the second strained layer is formed of a second semiconductor material that is different than the first semiconductor material.
  • 15. The device of claim 14, wherein the first semiconductor material includes SiGe and the second semiconductor material includes SiC.
  • 16. The device of claim 14, wherein the first semiconductor material includes SiC and the second semiconductor material includes SiGe.
  • 17. The device of claim 13, wherein the first dielectric layer physically contacts a sidewall of the semiconductor fin structure, and wherein the first strained layer extends from a sidewall of the first dielectric layer to a sidewall of the shallow trench isolation structure.
  • 18. The device of claim 13, wherein the second strained layer physically contacts the first dielectric layer and the first strained layer.
  • 19. The device of claim 13, wherein the gate structure further includes: a second dielectric layer disposed directly on a top surface of the semiconductor fin structure, the top surface of the semiconductor fin structure facing away from the substrate;a gate electrode disposed over the second dielectric layer; andthe sidewall spacer disposed along a sidewall of the second dielectric layer and a sidewall of the gate electrode, andwherein the second strained layer physically contacts a sidewall of the sidewall spacer and a sidewall of the semiconductor fin structure.
  • 20. The device of claim 13, wherein the first strained layer is disposed between the shallow trench isolation structure and the first dielectric layer thereby preventing the first dielectric layer from interfacing with the shallow trench isolation structure.
PRIORITY CLAIM

The present application is a continuation of U.S. application Ser. No. 14/844,247, filed Sep. 3, 2015, which is a continuation of U.S. application Ser. No. 13/910,633, filed Jun. 5, 2013, now U.S. Pat. No. 9,147,594, which is a continuation of U.S. application Ser. No. 12/775,006, filed May 6, 2010, now U.S. Pat. No. 8,497,528, issued Jul. 30, 2013, the disclosures of which are incorporated herein by reference in their entireties. The present application is related to U.S. patent application Ser. No. 12/707,788, filed on Feb. 18, 2010, titled MEMORY POWER GATING CIRCUIT AND METHODS; Ser. No. 12/758,426, filed on Apr. 12, 2010, titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/731,325, filed on Mar. 25, 2010, titled ELECTRICAL FUSE AND RELATED APPLICATIONS; Ser. No. 12/724,556, filed on Mar. 16, 2010, titled ELECTRICAL ANTI-FUSE AND RELATED APPLICATIONS; Ser. No. 12/757,203, filed on Apr. 9, 2010, titled STI STRUCTURE AND METHOD OF FORMING BOTTOM VOID IN SAME; Ser. No. 12/797,839, filed on Jun. 10, 2010, titled FIN STRUCTURE FOR HIGH MOBILITY MULTIPLE-GATE TRANSISTOR; Ser. No. 12/831,842, filed on Jul. 7, 2010, titled METHOD FOR FORMING HIGH GERMANIUM CONCENTRATION SiGe STRESSOR; Ser. No. 12/761,686, filed on Apr. 16, 2010, titled FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/766,233, filed on Apr. 23, 2010, titled FIN FIELD EFFECT TRANSISTOR; Ser. No. 12/757,271, filed on Apr. 9, 2010, titled ACCUMULATION TYPE FINFET, CIRCUITS AND FABRICATION METHOD THEREOF; Ser. No. 12/694,846, filed on Jan. 27, 2010, titled INTEGRATED CIRCUITS AND METHODS FOR FORMING THE SAME; Ser. No. 12/638,958, filed on Dec. 14, 2009, titled METHOD OF CONTROLLING GATE THICKNESS IN FORMING FINFET DEVICES; Ser. No. 12/768,884, filed on Apr. 28, 2010, titled METHODS FOR DOPING FIN FIELD-EFFECT TRANSISTORS; Ser. No. 12/731,411, filed on Mar. 25, 2010, titled INTEGRATED CIRCUIT INCLUDING FINFETS AND METHODS FOR FORMING THE SAME; Ser. No. 12/775,006, filed on May 6, 2010, titled METHOD FOR FABRICATING A STRAINED STRUCTURE; Ser. No. 12/886,713, filed Sep. 21, 2010, titled METHOD OF FORMING INTEGRATED CIRCUITS; Ser. No. 12/941,509, filed Nov. 8, 2010, titled MECHANISMS FOR FORMING ULTRA SHALLOW JUNCTION; Ser. No. 12/900,626, filed Oct. 8, 2010, titled TRANSISTOR HAVING NOTCHED FIN STRUCTURE AND METHOD OF MAKING THE SAME; Ser. No. 12/903,712, filed Oct. 13, 2010, titled FINFET AND METHOD OF FABRICATING THE SAME; 61/412,846, filed Nov. 12, 2010, 61/394,418, filed Oct. 19, 2010, titled METHODS OF FORMING GATE DIELECTRIC MATERIAL and 61/405,858, filed Oct. 22, 2010, titled METHODS OF FORMING SEMICONDUCTOR DEVICES.

US Referenced Citations (191)
Number Name Date Kind
5581202 Yano et al. Dec 1996 A
5658417 Watanabe et al. Aug 1997 A
5767732 Lee et al. Jun 1998 A
5963789 Tsuchiaki Oct 1999 A
6065481 Fayfield et al. May 2000 A
6121786 Yamagami et al. Sep 2000 A
6299724 Fayfield et al. Oct 2001 B1
6503794 Watanabe et al. Jan 2003 B1
6518109 Roberds Feb 2003 B2
6613634 Ootsuka et al. Sep 2003 B2
6622738 Scovell Sep 2003 B2
6642090 Fried et al. Nov 2003 B1
6706571 Yu et al. Mar 2004 B1
6713365 Lin et al. Mar 2004 B2
6727557 Takao Apr 2004 B2
6740247 Han et al. May 2004 B1
6743673 Watanabe et al. Jun 2004 B2
6762448 Lin et al. Jul 2004 B1
6791155 Lo et al. Sep 2004 B1
6828646 Marty et al. Dec 2004 B2
6830994 Mitsuki et al. Dec 2004 B2
6858478 Chau et al. Feb 2005 B2
6872647 Yu et al. Mar 2005 B1
6940747 Sharma et al. Sep 2005 B1
6949768 Anderson et al. Sep 2005 B1
6964832 Moniwa et al. Nov 2005 B2
7009273 Inoh et al. Mar 2006 B2
7018901 Thean et al. Mar 2006 B1
7026232 Koontz et al. Apr 2006 B1
7067400 Bedell et al. Jun 2006 B2
7078312 Sutanto et al. Jul 2006 B1
7084079 Conti et al. Aug 2006 B2
7084506 Takao Aug 2006 B2
7112495 Ko et al. Sep 2006 B2
7153744 Chen et al. Dec 2006 B2
7157351 Cheng et al. Jan 2007 B2
7190050 King et al. Mar 2007 B2
7193399 Aikawa Mar 2007 B2
7247887 King et al. Jul 2007 B2
7265008 King et al. Sep 2007 B2
7265418 Yun et al. Sep 2007 B2
7297600 Oh et al. Nov 2007 B2
7300837 Chen et al. Nov 2007 B2
7315994 Aller et al. Jan 2008 B2
7323375 Yoon et al. Jan 2008 B2
7338614 Martin et al. Mar 2008 B2
7351622 Buh et al. Apr 2008 B2
7358166 Agnello et al. Apr 2008 B2
7361563 Shin et al. Apr 2008 B2
7374986 Kim et al. May 2008 B2
7394116 Kim et al. Jul 2008 B2
7396710 Okuno Jul 2008 B2
7407847 Doyle et al. Aug 2008 B2
7410844 Li et al. Aug 2008 B2
7425740 Liu et al. Sep 2008 B2
7442967 Ko et al. Oct 2008 B2
7456087 Cheng Nov 2008 B2
7494862 Doyle et al. Feb 2009 B2
7508031 Liu et al. Mar 2009 B2
7528465 King et al. May 2009 B2
7534689 Pal et al. May 2009 B2
7538387 Tsai May 2009 B2
7550332 Yang Jun 2009 B2
7598145 Damlencourt et al. Oct 2009 B2
7605449 Liu et al. Oct 2009 B2
7682911 Jang et al. Mar 2010 B2
7759228 Sugiyama et al. Jul 2010 B2
7795097 Pas Sep 2010 B2
7798332 Brunet Sep 2010 B1
7820513 Hareland et al. Oct 2010 B2
7851865 Anderson et al. Dec 2010 B2
7868317 Yu et al. Jan 2011 B2
7898041 Radosavljevic et al. Mar 2011 B2
7923321 Lai et al. Apr 2011 B2
7923339 Meunier-Baillard et al. Apr 2011 B2
7960791 Anderson et al. Jun 2011 B2
7985633 Cai et al. Jul 2011 B2
7989846 Furuta Aug 2011 B2
7989855 Narihiro Aug 2011 B2
8003466 Shi et al. Aug 2011 B2
8043920 Chan et al. Oct 2011 B2
8076189 Grant Dec 2011 B2
8101475 Oh et al. Jan 2012 B2
8497528 Lee Jul 2013 B2
8975697 Cheng Mar 2015 B2
9147594 Lee Sep 2015 B2
9299837 Cheng Mar 2016 B2
9564529 Lee Feb 2017 B2
20020098667 Roberds Jul 2002 A1
20030080361 Murthy et al. May 2003 A1
20030109086 Arao Jun 2003 A1
20030234422 Want et al. Dec 2003 A1
20040075121 Yu et al. Apr 2004 A1
20040129998 Inoh et al. Jul 2004 A1
20040192067 Ghyselen et al. Sep 2004 A1
20040219722 Pham et al. Nov 2004 A1
20040259315 Sakaguchi et al. Dec 2004 A1
20050020020 Collaert et al. Jan 2005 A1
20050051865 Lee et al. Mar 2005 A1
20050082616 Chen et al. Apr 2005 A1
20050153490 Yoon et al. Jul 2005 A1
20050170593 Kang et al. Aug 2005 A1
20050212080 Wu et al. Sep 2005 A1
20050221591 Bedell et al. Oct 2005 A1
20050224800 Lindert et al. Oct 2005 A1
20050233598 Jung et al. Oct 2005 A1
20050266698 Cooney et al. Dec 2005 A1
20050280102 Oh et al. Dec 2005 A1
20060038230 Ueno et al. Feb 2006 A1
20060068553 Thean et al. Mar 2006 A1
20060091481 Li et al. May 2006 A1
20060091482 Kim et al. May 2006 A1
20060091937 Do May 2006 A1
20060105557 Klee et al. May 2006 A1
20060128071 Rankin et al. Jun 2006 A1
20060138572 Arikado et al. Jun 2006 A1
20060151808 Chen et al. Jul 2006 A1
20060153995 Narwankar et al. Jul 2006 A1
20060166475 Mantl Jul 2006 A1
20060214212 Horita et al. Sep 2006 A1
20060258156 Kittl Nov 2006 A1
20070001173 Brask et al. Jan 2007 A1
20070004218 Lee et al. Jan 2007 A1
20070015334 Kittl et al. Jan 2007 A1
20070018236 Tsuchiaki Jan 2007 A1
20070020827 Buh et al. Jan 2007 A1
20070024349 Tsukude Feb 2007 A1
20070029576 Nowak et al. Feb 2007 A1
20070048907 Lee et al. Mar 2007 A1
20070076477 Hwang et al. Apr 2007 A1
20070093010 Mathew et al. Apr 2007 A1
20070093036 Cheng et al. Apr 2007 A1
20070096148 Hoentschel et al. May 2007 A1
20070120156 Liu et al. May 2007 A1
20070122953 Liu et al. May 2007 A1
20070122954 Liu et al. May 2007 A1
20070128782 Liu et al. Jun 2007 A1
20070132053 King et al. Jun 2007 A1
20070145487 Kavalieros et al. Jun 2007 A1
20070152276 Arnold et al. Jul 2007 A1
20070166929 Matsumoto et al. Jul 2007 A1
20070178637 Jung et al. Aug 2007 A1
20070221956 Inaba Sep 2007 A1
20070236278 Hur et al. Oct 2007 A1
20070241414 Narihiro Oct 2007 A1
20070247906 Watanabe et al. Oct 2007 A1
20070254440 Daval Nov 2007 A1
20080001171 Tezuka et al. Jan 2008 A1
20080036001 Yun et al. Feb 2008 A1
20080042209 Tan et al. Feb 2008 A1
20080050882 Bevan et al. Feb 2008 A1
20080085580 Doyle et al. Apr 2008 A1
20080085590 Yao et al. Apr 2008 A1
20080095954 Gabelnick et al. Apr 2008 A1
20080102586 Park May 2008 A1
20080124878 Cook et al. May 2008 A1
20080157119 Tsai Jul 2008 A1
20080169490 Kawai Jul 2008 A1
20080185612 Fukuda et al. Aug 2008 A1
20080227241 Nakabayshie et al. Sep 2008 A1
20080246057 Lin Oct 2008 A1
20080265344 Mehrad et al. Oct 2008 A1
20080290470 King et al. Nov 2008 A1
20080296632 Moroz et al. Dec 2008 A1
20080318392 Hung et al. Dec 2008 A1
20090026540 Sasaki et al. Jan 2009 A1
20090039388 Teo et al. Feb 2009 A1
20090045411 Lin et al. Feb 2009 A1
20090066763 Fujii et al. Mar 2009 A1
20090075029 Thomas et al. Mar 2009 A1
20090108308 Yang et al. Apr 2009 A1
20090155969 Chakravarti et al. Jun 2009 A1
20090166625 Ting et al. Jul 2009 A1
20090181477 King et al. Jul 2009 A1
20090200612 Koldiaev Aug 2009 A1
20090239347 Ting et al. Sep 2009 A1
20090242995 Suzuki et al. Oct 2009 A1
20090273034 Woon et al. Nov 2009 A1
20090321836 Wei et al. Dec 2009 A1
20100155790 Lin et al. Jun 2010 A1
20100163926 Hudait et al. Jul 2010 A1
20100187613 Columbo et al. Jul 2010 A1
20100207211 Sasaki et al. Aug 2010 A1
20100308379 Kuan Dec 2010 A1
20110018065 Curatola et al. Jan 2011 A1
20110108920 Basker et al. May 2011 A1
20110129990 Mandrekar et al. Jun 2011 A1
20110195555 Tsai et al. Aug 2011 A1
20110195570 Lin et al. Aug 2011 A1
20110256682 Yu et al. Oct 2011 A1
20120086053 Tseng et al. Apr 2012 A1
Foreign Referenced Citations (8)
Number Date Country
1945829 Apr 2007 CN
101179046 May 2008 CN
101459116 Jun 2009 CN
2007194336 Aug 2007 JP
1020050119424 Dec 2005 KR
1020070064231 Jun 2007 KR
497253 Aug 2002 TW
2007115585 Oct 2007 WO
Non-Patent Literature Citations (13)
Entry
Anathan, Hari, et al., “FinFet SRAM—Device and Circuit Design Considerations”, Quality Electronics Design, 2004 Proceedings 5th International Symposium (2004); pp. 511-516.
Jha, Niraj, Low-Power FinFet Circuit Design, Dept. of Electrical Engineering, Princeton University n.d.
Kedzierski, J., et al., “Extension and Source/Drain Design for High-Performance FinFet Devices”, IEEE Transactions on Electronic Devices. vol. 50, No. 4, Apr. 2003, pp. 952-958.
Liow, Tsung-Yang et al., “Strained N-Channel FinFETs with 25 nm Gate Length and Silicon-Carbon Source/Drain Regions for Performance Enhancement”, VLSI Technology, 2006 Digets of Technical papers, 2006 Symposium on VLSI Technology 2006, pp. 56-57.
Quirk et al., Semiconductor Manufacturing Technology, Oct. 2001, Prentice Hall, Chapter 16.
McVittie, James P., et al., “SPEEDIE: A Profile Simulator for Etching and Deposition”, Proc. SPIE 1392, 126 (1991).
90 nm Technology. Retrieved from the internet http://tsmc.com/english/dedicatedFoundry/technology/90nm.htm.
Merriam Webster definition of substantially retrieved from the internet https://www.merriam-webster.com/dictionary/substantial.
Smith, Casey Eben, Advanced Technology for Source Drain Resistance, Diss. University of North Texas, 2008.
Liow, Tsung-Yang et al., “Strained N-Channel FinFETs Featuring in Situ Doped Silicon-Carbon Si1—YCy Source Drain Stressors with High Carbon Content”, IEEE Transactions on Electronic Devisces 55.9 (2008): 2475-483.
Chui, King-Jien et al., “Source/Drain Germanium Condensation for P-Channel Strained Ultra-Thin Body Transistors” Silicon Nano Device Lab, Dept. of Electrical and Computer Engineering, National University of Singapore, IEEE 2005.
Lenoble, Damien, STMicroelectronics, Crolles Cedex, France, “Plasma Doping as an Alternative Route for Ultra-Shallow Junction Intergrationto Standard CMOS Technologies”, Semicondcutor Fabtech—16th Edition, pp. 1-5.
Shikida, Mitsuhiro, et al., “Comparisonof Anisotropic Etching Properties Between KOH and TMAH Solutions”. IEEE Xplore, Jun. 30, 2010, pp. 315-320 Jun. 30, 2010.
Related Publications (1)
Number Date Country
20170148917 A1 May 2017 US
Continuations (3)
Number Date Country
Parent 14844247 Sep 2015 US
Child 15425552 US
Parent 13910633 Jun 2013 US
Child 14844247 US
Parent 12775006 May 2010 US
Child 13910633 US