Recently, wafer level processes have become increasingly attractive for various reasons, including the potential of these processes to provide for small package design of semiconductor devices and savings in manufacturing cost. Such processes can be used to produce a package with multiple stacked die to increase the effective semiconductor area in the package.
One embodiment provides a method of manufacturing a stacked die module. The method includes applying a plurality of stacked die structures to a carrier. Each stacked die structure includes a first semiconductor die applied to the carrier and a second semiconductor die stacked over the first semiconductor die. The second semiconductor die has a larger lateral surface area than the first semiconductor die. A dam is applied around each of the stacked die structures, thereby forming an enclosed cavity for each of the stacked die structures. The enclosed cavity for each stacked die structure surrounds the first semiconductor die of the stacked die structure.
The accompanying drawings are included to provide a further understanding of the present invention and are incorporated in and constitute a part of this specification. The drawings illustrate the embodiments of the present invention and together with the description serve to explain the principles of the invention. Other embodiments of the present invention and many of the intended advantages of the present invention will be readily appreciated as they become better understood by reference to the following detailed description. The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts.
In the following Detailed Description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
As shown in
Semiconductor die 106A includes contact pads 107A and 107B, and semiconductor die 106B includes contact pads 107C and 107D. An active surface of a die according to one embodiment is defined by a surface of the die that comprises contact pads. Thus, the active surface of each die 106A and 106B is covered by the adhesive layer 102, and a backside surface of each die 106A and 106B (which is the surface opposite to the active surface) is uncovered or exposed in
As shown in
Semiconductor die 108A includes contact pads 109A and 109B, and semiconductor die 108B includes contact pads 109C and 109D. The active surfaces of dies 108A and 108B face the backside surfaces of dies 106A and 106B, respectively, and the backside surface of each die 108A and 108B is uncovered or exposed in
In one embodiment, semiconductor dies 106A, 106B, 108A, and 108B each include four vertical side surfaces that are perpendicular to the lateral active surfaces and the lateral backside surfaces of these dies, and that define an outer perimeter of these dies. In the illustrated embodiment, dies 108A and 108B have larger lateral dimensions and a larger lateral surface area than dies 106A and 106B, so die 108A extends beyond the vertical side surfaces of die 106A and die 108B extends beyond the vertical side surfaces of die 106B. In one embodiment, dies 106A, 106B, 108A, and 108B each include one or more integrated circuits, such as logic circuits, control circuits, microprocessors, microelectro-mechanical components, and power semiconductor devices such as power transistors, power diodes, IGBTs (Insulated Gate Bipolar Transistors), as well as other types of circuits.
As shown in
As shown in
The mold material for mold layer 120 according to one embodiment may be of any appropriate thermoplastic, duroplastic or thermosetting material. In one embodiment, the mold layer 120 comprises a polymer that is applied using a compression molding process. In another embodiment, injection molding, lamination, dispensing, printing or other technique, may be used to apply mold layer 120. By way of example, in a compression molding process, a liquid mold material is dispensed over the dies 106A, 106B, 108A, and 108B. The carrier 104 with the adhesive layer 102 applied thereon forms the bottom of a lower mold of a mold tool (not illustrated). After dispensing the liquid mold material, an upper mold half is moved down and spreads out the liquid molding material. This process may be accompanied by the application of heat and pressure. After curing, the mold material is rigid and forms the mold layer 120.
The combination of the semiconductor dies 106A, 106B, 108A, and 108B, the dams 112 and 114, and the mold layer 120 according to one embodiment is referred to herein as a molded reconfigured wafer 121, but any other format (e.g., rectangular) could be performed. In one embodiment, the reconfigured wafer 121 has the same geometry and dimensions as a standard silicon wafer, such as, for example, a 200 mm silicon wafer. After curing, the molded body including the mold layer 120 provides a rigid structure accommodating a plurality (e.g., typically more than 50) stacked semiconductor die structures.
As shown in
The dams 112 and 114 according to one embodiment simplify the process for forming the openings 124 for pads 109A-109D of dies 108A and 108B. Without the dams 112 and 114, the cavities 116 and 118 would be filled with mold material from mold layer 120. The mold layer 120 may be filled with SiO2 particles, which can make it difficult to lithographically process the mold layer 120 to form the openings 124. In the case of laser ablation, it is also difficult to remove such fillers. The dams 112 and 114 form sealed enclosures that help to ensure that no mold material from layer 120 covers the pads 109A-109D of the dies 108A and 108B, which simplifies the process for forming the openings 124 for pads 109A-109D.
As shown in
In the embodiment shown in
At 408, the carrier is removed, thereby opening the enclosed cavity for each of the stacked die structures. At 410, a dielectric layer is applied in place of the removed carrier. At 412, openings are formed in the dielectric layer, thereby exposing contact pads of the first semiconductor die and second semiconductor die in each of the stacked die structures. At 414, the openings are filled with a conductive material. At 416, a redistribution layer is applied over the dielectric layer. In one embodiment, steps 414 and 416 are performed simultaneously. At 418, solder elements are applied to the redistribution layer. At 420, the stacked die structures are singulated, thereby forming a plurality of encapsulated stacked die modules.
It will be understood by persons of ordinary skill in the art that the techniques disclosed herein are also applicable to stacked die modules that include more than two stacked dies per module (e.g., three or more dies in a stack per module), as well as modules that combine multiple stacks, and modules that combine one or more die stacks with one or more non-stacked die.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4824006 | Shimizu | Apr 1989 | A |
6309911 | Hyoudo et al. | Oct 2001 | B2 |
6340846 | LoBianco et al. | Jan 2002 | B1 |
6492726 | Quek et al. | Dec 2002 | B1 |
7022549 | Hedler et al. | Apr 2006 | B2 |
7091595 | Fuergut et al. | Aug 2006 | B2 |
7208345 | Meyer et al. | Apr 2007 | B2 |
7274110 | Meyer et al. | Sep 2007 | B2 |
7326592 | Meyer et al. | Feb 2008 | B2 |
20040166238 | Nowicki et al. | Aug 2004 | A1 |
20060197187 | Lohninger et al. | Sep 2006 | A1 |
20070152345 | Wu et al. | Jul 2007 | A1 |
20080105966 | Beer et al. | May 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100062563 A1 | Mar 2010 | US |