Method of manufacturing embedded packaging with preformed vias

Information

  • Patent Grant
  • 10460958
  • Patent Number
    10,460,958
  • Date Filed
    Wednesday, September 30, 2015
    8 years ago
  • Date Issued
    Tuesday, October 29, 2019
    4 years ago
Abstract
Microelectronic assemblies and methods of making the same are disclosed. In some embodiments, a microelectronic assembly includes a microelectronic element having edge surfaces bounding a front surface and contacts at the front surface; rigid metal posts disposed between at least one edge surface and a corresponding edge of the assembly, each metal post having a sidewall separating first and second end surfaces, the sidewalls have a root mean square (rms) surface roughness of less than about 1 micron; a encapsulation contacting at least the edge surfaces and the sidewalls; an insulation layer overlying the encapsulation; connection elements extending through the insulation layer, wherein at least some connection elements have cross sections smaller than those of the metal posts; a redistribution structure deposited on the insulation layer and electrically connecting first terminals with corresponding metal posts through the first connection elements, some metal posts electrically coupled with contacts of microelectronic element.
Description
FIELD OF THE INVENTION

The present application describes structures such as that which can be incorporated into a microelectronic assembly which may include an unpackaged semiconductor die or packaged semiconductor die, as well as methods for making such structures.


BACKGROUND OF THE INVENTION

Microelectronic devices such as semiconductor chips typically require many input and output connections to other electronic components. The input and output contacts of a semiconductor chip or other comparable device are generally disposed in grid-like patterns that substantially cover a surface of the device (commonly referred to as an “area array”) or in elongated rows which may extend parallel to and adjacent each edge of the device's front surface, or in the center of the front surface. Typically, devices such as chips must be physically mounted on a substrate such as a printed circuit board, and the contacts of the device must be electrically connected to electrically conductive features of the circuit board.


Semiconductor chips are commonly provided in packages that facilitate handling of the chip during manufacture and during mounting of the chip on an external substrate such as a circuit board or other circuit panel. For example, many semiconductor chips are provided in packages suitable for surface mounting. Numerous packages of this general type have been proposed for various applications. Most commonly, such packages include a dielectric element, commonly referred to as a “chip carrier” with terminals formed as plated or etched metallic structures on the dielectric. These terminals typically are connected to the contacts of the chip itself by features such as thin traces extending along the chip carrier itself and by fine leads or wires extending between the contacts of the chip and the terminals or traces. In a surface mounting operation, the package is placed onto a circuit board so that each terminal on the package is aligned with a corresponding contact pad on the circuit board. Solder or other bonding material is provided between the terminals and the contact pads. The package can be permanently bonded in place by heating the assembly so as to melt or “reflow” the solder or otherwise activate the bonding material.


Many packages include solder masses in the form of solder balls, typically between about 0.005 mm and about 0.8 mm in diameter, attached to the terminals of the package. A package having an array of solder balls projecting from its bottom surface is commonly referred to as a ball grid array or “BGA” package. Other packages, referred to as land grid array or “LGA” packages are secured to the substrate by thin layers or lands formed from solder. Packages of this type can be quite compact. Certain packages, commonly referred to as “chip scale packages,” occupy an area of the circuit board equal to, or only slightly larger than, the area of the device incorporated in the package. This is advantageous in that it reduces the overall size of the assembly and permits the use of short interconnections between various devices on the substrate, which in turn limits signal propagation time between devices and thus facilitates operation of the assembly at high speeds.


An interposer can be provided as an interconnection element having contacts and top and bottom surfaces thereof electrically connected with one or more packaged or unpackaged semiconductor dies at one of the top or bottom surface thereof, and electrically connected with another component at the other one of the top or bottom surfaces. The other component may in some cases be a package substrate which in turn may be electrically connected with another component which may be or may include a circuit panel.


Despite all of the above-described advances in the art, still further improvements in microelectronics assemblies, the individual components thereof, such as interposers and microelectronics elements, and methods of making the same would be desirable.


BRIEF SUMMARY OF THE INVENTION

Microelectronic assemblies and methods of making the same are disclosed herein. In some embodiments, a microelectronic assembly comprises a microelectronic element having a front surface, edge surfaces bounding the front surface, and a plurality of contacts at the front surface, the microelectronic element having a first thickness extending in a first direction away from the front surface. The microelectronic assembly includes substantially rigid metal posts extending in the first direction, the posts disposed between at least one of the edge surfaces and a corresponding edge of the microelectronic assembly. Each metal post has a sidewall separating first and second end surfaces of such metal post from one another in the first direction, wherein the sidewalls of the metal posts have a root mean square (rms) surface roughness of less than about 1 micron. The microelectronic assembly includes a encapsulation having a second thickness extending in the first direction between first and second surfaces of the encapsulation, the encapsulation contacting at least the edge surfaces of the microelectronic element and the sidewalls of the metal posts, wherein the metal posts extend at least partly through the second thickness, and the encapsulation electrically insulates adjacent metal posts from one another. The microelectronic assembly has first and second sides adjacent the first and second surfaces of the encapsulation, respectively, and having terminals at the first side. The microelectronic assembly includes a insulation layer overlying the first surface of the encapsulation at the first side and having a thickness extending away from the first surface of the encapsulation. The microelectronic assembly includes connection elements extending away from the first end surfaces of the metal posts and through the thickness of the insulation layer. The first connection elements electrically connects at least some of the first end surfaces with corresponding terminals, wherein at least some connection elements have cross sections smaller than cross sections of the metal posts. The microelectronic assembly includes an electrically conductive redistribution structure deposited on the insulation layer. The redistribution structure electrically connects the terminals with corresponding first end surfaces of the metal posts through at least some of the connection elements, wherein at least some of the metal posts are electrically coupled with the contacts of the microelectronic element.


In one embodiment, the metal posts extend from the first surface of the encapsulation to the second surface of the encapsulation.


In one embodiment, the first thickness is one of smaller or equal to the second thickness.


In one embodiment, the microelectronic assembly further comprises second connection elements extend in the first direction of the second thickness of the encapsulation from the second end surfaces of the metal posts to the second surface of the encapsulation.


In one embodiment, the second connection elements have sidewalls having an rms surface roughness of greater than about 1 micron.


In one embodiment, the metal posts extending in the first direction of the second thickness of the encapsulation to at least about 50% of the second thickness.


In one embodiment, at least some of the second connection elements have a cross section smaller than that of the metal posts.


In one embodiment, the microelectronic assembly further comprises second terminals at the second side of the microelectronic assembly. The redistribution structure is deposited on the second side of the microelectronic assembly and electrically connects the second terminals with corresponding second end surfaces of the metal posts through at least one of the second connection elements.


In one embodiment, the microelectronic assembly further comprises second terminals at the second side of the microelectronic assembly. The microelectronic assembly further comprises a second insulation layer overlying the second surface of the encapsulation at the second side of the microelectronic assembly and having thickness extending away from the second surface of the encapsulation. The microelectronic assembly further comprises second connection elements extending away from the second end surfaces of the metal posts and through the thickness of the second insulation layer, the second connection elements electrically connecting at least some of the second end surfaces with corresponding second terminals, wherein at least some second connection elements have cross sections smaller than cross sections of the metal posts.


In one embodiment, the first and second thicknesses are the same.


In one embodiment, the microelectronic assembly further comprises second terminals at the second side of the microelectronic assembly. The redistribution structure includes traces extending in a second direction transverse to the first direction beyond the edge surfaces of the metal posts, wherein at least one of the first terminals are electrically coupled with the first end surfaces through the traces, or the second terminals are electrically coupled with the second end surfaces through the traces.


In one embodiment, the microelectronic assembly comprises a second microelectronic element at least partly overlying the first microelectronic element, wherein the second microelectronic element having a first surface, edge surfaces bounding the first surface, the second microelectronic element having a thickness extending in the first direction away from the first surface of the second microelectronic element, wherein the encapsulation contacts at least the edge surfaces of the second microelectronic element.


In one embodiment, a method of forming a microelectronic assembly comprises forming a structure including a microelectronic element having a front surface, edge surfaces bounding the front surface, and a plurality of contacts at the front surface, and substantially rigid metal posts extending in the first direction. The posts are disposed between at least one of the edge surfaces and a corresponding edge of the microelectronic assembly. Each metal post having a sidewall separating first and second end surfaces of such metal post from one another, the sidewalls of the metal posts having a root mean square (rms) surface roughness of less than about 1 micron. The method includes forming a encapsulation having a second thickness extending in the first direction between first and second surfaces of the encapsulation. The encapsulation contacts at least the edge surfaces of the microelectronic element and the sidewalls of the metal posts, wherein the metal posts extend at least partly through the second thickness, and the encapsulation electrically insulates adjacent metal posts from one another. The method includes depositing an insulation layer overlying the first surface of the encapsulation and having thickness extending away from the first surface of the encapsulation. The method includes forming connection elements extending away from the first end surfaces of the metal posts and through the thickness of the insulation layer, wherein at least some connection elements have cross sections smaller than cross sections of the metal posts. The method includes depositing an electrically conductive redistribution structure on the insulation layer, the redistribution layer electrically connecting at least some metal posts with the contacts of the microelectronic element. The method includes forming terminals at a first side of the microelectronic assembly adjacent to the first surface of the encapsulation, wherein the connection elements electrically connecting at least some first end surfaces with corresponding terminals.


In one embodiment, prior to forming the structure, the metal posts extend in the first direction from a first surface of a conductive layer, the posts disposed between a first portion of the first surface of the conductive layer and a corresponding edge of the conductive layer.


In one embodiment, forming the structure further comprises attaching the front surface of the microelectronic element to the first portion of the first surface of the conductive layer.


In one embodiment, prior to forming the structure, the method further comprises providing a substrate having a thickness extending in the first direction from a first surface to a second surface of the substrate, the substrate having a plurality of rigid elements extending in the first direction at the second surface of the substrate; and depositing a conductive material on the second surface of the substrate and surfaces of the rigid elements to form the metal posts and conductive layer.


In one embodiment, after forming the encapsulation, the method further comprises removing the substrate and the rigid elements to reveal openings in the metal posts, the openings in the metal posts extending in the first direction from the front side of the microelectronic assembly; and filling the openings with additional conductive material prior to depositing the insulation layer.


In one embodiment, after forming the encapsulation and prior to depositing the insulation layer, the method further comprises removing the conductive layer to expose the first end surfaces of the metal posts.


In one embodiment, the method further comprises forming a second insulation layer overlying the second surface of the encapsulation and having thickness extending away from the second surface of the encapsulation; forming second connection elements extending away from the second end surfaces of the metal posts and through the thickness of the second insulation layer, wherein at least some second connection elements have cross sections smaller than cross sections of the metal posts; depositing the redistribution structure on the second insulation layer; and forming second terminals at the second side of the microelectronic assembly adjacent to the second surface of the encapsulation, wherein the second terminals are overlying the redistribution structure, wherein the second connection elements electrically connecting at least some second end surfaces with corresponding second terminals through the redistribution structure.


In one embodiment, the method further comprises forming openings extending between at least some second end surfaces of metal posts and the second surface of the encapsulation, the openings exposing at least portions of second end surfaces of the metal posts; and forming second connection elements extending through the openings in the encapsulation and electrically connected to at least some metal posts at the second end surfaces.


In one embodiment, prior to forming the structure, the front surface of the microelectronic element is attached to a carrier.


In one embodiment, forming the structure further comprises attaching the carrier to the metal posts such that the microelectronic element is juxtaposed with the first portion of the first surface of the conductive layer.


In one embodiment, the microelectronic element and the first portion of the first surface of the conductive layer are separated therefrom.


In one embodiment, after forming the encapsulation, the method further comprises removing the carrier to expose the front surface of the microelectronic element and the second end surfaces of the metal posts; and removing the conductive layer to expose the first end surfaces of the metal posts.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1-1 depicts a side schematic view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 1-2 depicts a side schematic view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 1-3 depicts a side schematic view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 1-4 depicts a side schematic view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 1-5 depicts a top down cross sectional view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 1-6 depicts a partial top down schematic view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 1-7 depicts a side schematic view of a plurality of microelectronics assemblies in a stacked structure in accordance with some embodiments of the invention.



FIG. 1-8 depicts a partial top down schematic view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 1-9 depicts a partial top down schematic view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 1-10 depicts a partial top down schematic view of a microelectronic assembly in accordance with some embodiments of the invention.



FIG. 2 depicts a flow chart for a method of forming a microelectronic assembly in accordance with some embodiments of the invention.



FIGS. 3-1 through 3-6 depict stages in a method of fabricating a microelectronic assembly in accordance with some embodiments of the invention.



FIGS. 4-1 through 4-6 depict stages in a method of fabricating a microelectronic assembly in accordance with some embodiments of the invention.



FIGS. 5-1 through 5-6 depict stages in a method of fabricating a microelectronic assembly in accordance with some embodiments of the invention.



FIGS. 6-1 through 6-5 depict stages in a method of fabricating a microelectronic assembly in accordance with some embodiments of the invention.





DETAILED DESCRIPTION

The present invention will be described in more detail below.


All ranges recited herein include the endpoints, including those that recite a range “between” two values. Terms such as “about,” “generally,” “substantially,” and the like are to be construed as modifying a term or value such that it is not an absolute, but does not read on the prior art. Such terms will be defined by the circumstances and the terms that they modify as those terms are understood by those of skill in the art. This includes, at very least, the degree of expected experimental error, technique error and instrument error for a given technique used to measure a value.


It should be further understood that a description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible sub-ranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed sub-ranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.3, 3, 4, 5, 5.7 and 6. This applies regardless of the breadth of the range.


As used in this disclosure with reference to a component, a statement that an element, e.g., a conductive element, contact, metal post, terminal, structure, or other element, is “at” a surface of a component, e.g., microelectronic element, interposer, circuit panel, or other substrate, indicates that, when the component is not assembled with any other element, the element is available for contact with a theoretical point moving in a direction perpendicular to the surface of the component toward the surface of the component from outside the component. Thus, an element which is at a surface of a component may project from such surface; may be flush with such surface; or may be recessed relative to such surface in a hole or depression in the component.



FIGS. 1-1 through 1-3 depict microelectronic assemblies in accordance with some embodiments of the invention. The various embodiments of the microelectronic assemblies disclosed herein may be utilized alone, or combination.



FIG. 1-1 depicts a side schematic view of a microelectronic assembly 100 in accordance with some embodiments of the invention. The microelectronic assembly 100 includes a microelectronic element 102. The microelectronic element 102 may have a front surface 104 and edge surfaces 106 bounding the front surface 104. A first thickness 108 of the microelectronic element 102 can extend in a first direction 110 away from the front surface 104. The microelectronic element can include a plurality of contacts 112 at the front surface 104. Exemplary microelectronic elements 102 can include any one or more of a semiconductor die, packaged semiconductor chip, or the like.


The microelectronic assembly 100 includes a plurality of substantially rigid metal posts 114 disposed between at least one of the edge surfaces 106 and a corresponding edge of the microelectronic assembly 100. One exemplary top down schematic view of the microelectronic assembly 100 having the microelectronic element 102 and metal posts 114 is depicted in FIG. 1-5.


Each metal post 114 includes a sidewall 116 separating first and second end surfaces 118, 120 from one another in the first direction 110. The sidewalls 116 of the metal posts 114 can have a root mean square (rms) surface roughness of less than about 1 microns. Such a low surface roughness of the sidewalls 116 may be achieved using methods disclosed herein and discussed below. In one embodiment, the metal posts can be greater than about 99% cylindrical. For example, low surface roughness, shape, and other features of the metal posts can be formed by methods discussed herein. The metal posts 114 may include one or more metals selected from copper (Cu), nickel (Ni), gold (Au), or alloys thereof. The microelectronic element 100 includes a encapsulation 122 having a second thickness 124 extending in the first direction 110 between first and second surfaces 123, 125 of the encapsulation 122. The encapsulation 122 contacts at least the edge surfaces 106 of the microelectronic element 102 and the sidewalls 116 of the plurality of metal posts 114. In one embodiment, such as depicted in FIG. 1-1, the second thickness 124 of encapsulation 122 is about equal to the first thickness 108 of the microelectronic element 102. The encapsulation 122 can be formed by molding an encapsulant material, e.g., a potting compound. In a particular example, the encapsulation 122 can be particulate composite layer which includes a polymeric matrix and particulate loading within the polymeric matrix. Such composite layer can be formed, for example by depositing an uncured polymeric material which has the particulate loading material therein, the particulate loading material optionally being a dielectric material having a low coefficient of thermal expansion (“CTE”).


The metal posts 114 extend at least partially through the encapsulation 122. In one embodiment, such as depicted in FIGS. 1-1, the metal posts 114 extending entirely through the second thickness 124 of the encapsulation 122 from a first side 127 to a second side 129 of the microelectronic assembly 100. The first and second sides 127, 129 may be adjacent to the first and second surfaces 123, 125, respectively, of the encapsulation 122.


The microelectronic assembly 100 can have terminals 131 at the first side 127 of the microelectronic assembly. In some embodiments, the microelectronic assembly can have second terminals 133 at the second side 129 of the microelectronic assembly. The terminals 131, 133 can provide surfaces form electrically coupling the microelectronic assembly 100 to other components, such as another microelectronic assembly, an interposer, a printed circuit board (PCB), or other such components, the components adjacent to the first and second sides 127, 129, respectively of the microelectronic assembly. In one exemplary embodiment, the microelectronic assembly can be included in a vertically stacked structure as depicted in FIG. 1-7. For example, another microelectronic assembly can be stacked adjacent to the second side 129 and overlying the microelectronic assembly, and a the microelectronic assembly in turn can be stacked at the first side 127 thereof to overlie a circuit panel 135, or another component, such as an interposer. Many vertical stacking arrangements and components are possible, and not limited to the exemplary embodiment depicted in FIG. 1-7.


The microelectronic assembly 100 may include an insulation layer 136 at the first side 127 of the microelectronic assembly 100. In one exemplary embodiment, the insulation layer comprises a dielectric material. The insulation layer 136 overlies the front surface 104 of the microelectronic element 102 and the first end surfaces 118 of the metal posts 114. Connection elements 128 can extend away from the first end surfaces 118 and through the thickness of the insulation layer 136 to electrically connect with the first end surfaces 118 and contacts 112. The connection elements 128 can connect at least some of the first end surfaces 118 with corresponding terminals 131. As depicted in FIGS. 1-1 through 1-4, the terminals 131 may be coupled to the first connection elements through a redistribution structure 126. However, in some embodiments, the terminals 131 may overlie the insulation layer 136. In other embodiments, the terminals 131 may be formed in the insulation layer 136, or alternatively in another insulation layer overlying the insulation layer 136. The insulation layer 136 can include one or more of a polymeric material, such as polyimide, polyamide, or a photoimageable material, which in some instances can be benzocyclobutane (BCB).


The microelectronic assembly 100 may include a second insulation layer 140 at the second side 129 of the microelectronic assembly 100. The second insulation layer 140 can include any embodiments and/or permutations as described for the insulation layer 136. Second connection elements 132 can extend away from the second end surfaces 120 and through the thickness of the second insulation layer 140 to electrically connect with the second end surfaces 120. The second connection elements 132 can connect at least some of the second end surfaces 120 with corresponding second terminals 133. The second connection elements can include any embodiments and/or permutations as described for the connection elements 128.


At least some of the connection elements 128, 132 can have a cross section that is smaller than that of the metal posts 114 at the first and second ends surfaces 118, 120, respectively. In some instances, the smaller cross section of the connection elements 128, 132 can improve alignment with the metal posts 114. Improved alignment can result in improved routing. The connection elements 128, 132 can have sidewalls that have rms surface roughness that is greater than that of the sidewalls 116 of the metal posts 114. In one embodiment, the sidewalls of the connection elements 128, 132 have a rms surface roughness greater than about 1 micron. The connection elements 128, 132 can be formed from any suitable materials, such as those materials discussed above for the metal posts 114, or other materials. The compositions of a metal post 114 and corresponding connection elements 128, 132 can be the same or different.


The microelectronic assembly 100 includes an electrically conductive redistribution structure 126 deposited onto at least one of the insulation layers 136, 140. For example, in some embodiments, such as depicted a FIGS. 1-1 through 1-3 the redistribution structure can be deposited on both the insulation layers 136, 140. Alternatively, in one exemplary embodiment depicted in FIG. 1-4, the redistribution structure 126 is deposited on the insulation layer 136, but there is no redistribution structure and/or second insulation layer 140 deposited onto the second end surfaces 120. In such embodiments, the second end surfaces 120 may serve as the second terminal 133. In some embodiments, the redistribution structure 126 is integral with one and/or both insulation layers 136, 140 and corresponding one and/or both connection elements 128, 132.


The redistribution structure 126 includes at least one of a portion of at least one terminal 131 disposed beyond the edge surface of the metal post 114 with which such terminal 131 is coupled, or a portion of at least one second terminal 133 disposed beyond the edge surface of the metal post 114 with which such second terminal 133 is coupled. In exemplary embodiments, as depicted in top down view in FIG. 1-6, the redistribution structure can includes traces 137 extending in a second direction transverse to the first direction 110 beyond the edge surfaces of the metal posts 114. At least one of the terminals 131 can be electrically coupled with the first end surfaces 118 through the traces 131. Similarly, at least one of the second terminals 133 can be electrically coupled with the second end surfaces 120 through the traces 137. In other embodiments, such as depicted in FIGS. 1-1 through 1-4 at the first side 127 of the microelectronic assembly, at least some traces 137 can electrically couple contacts 112 of the microelectronic element 102 to the metal posts 114. In other embodiments, such as depicted in FIG. 1-6, one and/or both terminals 113, 133 can be an integral structure that includes aspects of traces in that it extends beyond the edge surfaces of the metal posts 114 as depicted in the right hand side of FIG. 1-6.



FIG. 1-2 depicts a side schematic view of a microelectronic assembly 150 in accordance with some embodiments of the invention. The microelectronic assembly 150 can include any embodiments and/or permutations as described for the microelectronic assembly 100, except where otherwise noted. In one embodiment of the invention, as shown in the microelectronic assembly 150, the second thickness 124 of the encapsulation 122 can exceed the first thickness 108 of the microelectronic element 102.



FIG. 1-3 depicts a side schematic view of a microelectronic assembly 160 in accordance with some embodiments of the invention. The microelectronic assembly 160 can include any embodiments and/or permutations as described for the microelectronic assembly 100, except where otherwise noted. In one embodiment of the invention, as shown in the microelectronic assembly 160, the metal posts 114 partially extend in the first direction 110 through the second thickness 124. In one embodiment, the metal posts extend in the first direction 110 of the second thickness 124 to at least about 50% of the second thickness 124. In one embodiment, the second connection elements 132 can extend in the first direction of the second thickness 124 of the encapsulation 122 from the second end surfaces 120 of the metal posts 114 as depicted in FIG. 1-3. Though depicted as having a smaller cross section than that of the metal posts 114 at the second end surfaces 120, in some embodiments, the second connection elements 132 can have a larger cross section than that of the metal posts 114. Optionally, the second dielectric layer 140 can be omitted from the microelectronic assembly 160.



FIG. 1-4 depicts a side schematic view of a microelectronic assembly 170 in accordance with some embodiments of the invention. The microelectronic assembly 170 can include any embodiments and/or permutations as described for the microelectronic assembly 100, except where otherwise noted. As depicted in FIG. 1-4, the microelectronic assembly 170 does not include the redistribution structure 126 deposited onto the second end surfaces 120.



FIG. 1-8 depicts a side schematic view of a microelectronic assembly 180 in accordance with some embodiments of the invention. The microelectronic assembly 180 can include any embodiments and/or permutations as described for the microelectronic assembly 100, except where otherwise noted. As depicted in FIG. 1-8, the microelectronic assembly 180 includes a second microelectronic element 182. In some embodiments, the second microelectronic element 182 is at least partially overlying the microelectronic element 102. In one example, as depicted in FIG. 1-8, the second microelectronic element completely overlies the microelectronic element 102. The second microelectronic element 182 can include a first surface 181, and edge surfaces 183 bounding the first surface 181. The second microelectronic element 182 can have a thickness extending in the first direction away from the first surface 181 of the second microelectronic element 182 towards a second surface 184 of the second microelectronic element 182. The microelectronic element 182 can have contacts 185 at the second surface 184. At least some of the metal posts 114 can be electrically coupled with the contacts 185 of the second microelectronic element 182. In one example, the contacts 185 can be electrically coupled with the metal posts 114 through the second connection elements 132 and traces 137.



FIG. 1-9 depicts a side schematic view of a microelectronic assembly 190 in accordance with some embodiments of the invention. The microelectronic assembly 190 can include any embodiments and/or permutations as described for the microelectronic assembly 160, except where otherwise noted. As depicted in FIG. 1-9, the microelectronic assembly 190 includes the second microelectronic element 182.



FIG. 1-10 depicts a side schematic view of a microelectronic assembly 192 in accordance with some embodiments of the invention. The microelectronic assembly 192 can include any embodiments and/or permutations as described for the microelectronic assembly 100, except where otherwise noted. As depicted in FIG. 1-10, the redistribution layer 126 can, optionally, be absent above the second insulation layer 140. A second microelectronic element 193 overlies the second insulation layer 140. The second microelectronic element 193 having a first surface 194, and edge surfaces 195 bounding the first surface 194. The second microelectronic element 193 having a thickness extending in the first direction and away from the first surface 194. The microelectronic element 193 can have contacts 196 at the first surface 194. In one example, the contacts 196 can be directly coupled to the second connection elements 132. In another example, where the redistribution layer 126 is disposed between the insulation layer 140 and the second microelectronic element 193, the contacts 196 can be electrically coupled to at least some of the second connection elements 132 through the redistribution layer 126. The encapsulation 122 can contact at least the edge surfaces 195 of the second microelectronic element 193. In one example, the encapsulation 122 can surround the second microelectronic element 193.



FIG. 2 depicts a flow chart of a method 200 for fabrication of a microelectronic assembly in accordance with some embodiments of the present invention. The method 200 is described below in accordance with stages of fabricating the microelectronic assemblies 100, 160, and 150 respectively depicted in FIGS. 3-1 through 3-6, FIGS. 4-1 through 4-6, and FIGS. 5-1 through 5-6. However, the method 200 may be applied to other embodiments of the present invention, or other microelectronic assemblies within the scope of the invention.



FIG. 3-1 depicts a structure 300 having the microelectronic element 102 and the metal posts 114. The structure 300, as depicted in FIG. 3-1, may include the microelectronic element 102 and the metal posts 114 supported at the front surface 104 and first end surfaces 118, respectively, by a conductive layer 302. At 202, the structure 300 can be formed by attaching the front surface 104 of the microelectronic element 102 to a first portion 303 of a first surface 304 of the conductive layer 302. The metal posts 114 are disposed between the first portion 303 of the first surface 304 and a corresponding edge of the conductive layer 302.


Prior to attachment of the microelectronic element 102 to the conductive layer 302, the metal posts 114 may be pre-formed on the first surface 304 of the conductive layer 302. For example, metal can be plated into openings in a patterned photoresist, the photoresist overlying the conductive layer 302, to form the metal posts 114. Other suitable methods for forming metal posts may be employed including, e.g., sputtering, sintering, other physical or chemically enhanced deposition processes.


At 204, the encapsulation 122 can be formed. The encapsulation 122 can be formed by molding. Optionally, after molding the encapsulation 122, the encapsulation 122 can be thinned to achieve the desired second thickness 124. As depicted in FIG. 3-2, the encapsulation 122 can contact at least the edge surfaces 106 of the microelectronic element 102 and the sidewalls 116 of the metal posts 114. In embodiments of the microelectronic assembly 100, the first thickness 108 of the microelectronic element 102 and the second thickness 124 of the encapsulation region 122 are the same.


After formation of the encapsulation 122, the conductive layer 302 can be removed to expose the first end surfaces 118 of the metal posts 114. The structure 300 is depicted after removed of the conductive layer 302 in FIG. 3-3. The conductive layer 302 can be removed by any suitable process, such as etching, polishing, or combinations thereof.


At 206, the insulation layer 136 and the connection elements 128 can be formed at the first side 127 of the microelectronic assembly 100 as depicted in FIGS. 3-3 through 3-4. The insulation layer 136 can be formed overlying the front surface of the microelectronic element 102 and the first end surfaces 118 of the metal posts 114. Openings 306 can be formed, the openings 306 extending in the first direction 110 of thickness of the insulation layer 136 and exposing at least portions of the first end surfaces 118 of the metal posts 114 and contacts 112 of the microelectronic element 102. The openings 306 can be formed by optical lithography followed by removal of materials of the insulation layer 136 to expose portions of the first end surfaces 118 and contacts 112. Alternatively, the openings 306 can be formed by laser or mechanical drilling. The openings 306 can have rough sidewall surfaces, which can contribute to the connection elements 128 having an rms surface roughness of greater than about 1 micron. The connection elements 128 can be formed in the openings 306 by plating, physical vapor deposition (PVD), chemical vapor deposition (CVD) or the like.


Similarly, the second insulation layer 140 can be formed overlying the microelectronic element 102 and the second end surfaces 120 of the metal posts 114. Openings 308 can be formed, the openings 308 extending in the first direction 110 of thickness of the second insulation layer 140 and exposing at least portions of the second end surfaces 120 of the metal posts 114. The openings 308 include any embodiments and/or permutations and/or methods of fabrication as described for the openings 308. The second connection elements 132 can be formed in the openings 308 by plating, physical vapor deposition (PVD), chemical vapor deposition (CVD) or the like.


At 208, the redistribution structure 126 is deposited. As depicted in FIGS. 3-6, the redistribution structure 126 is overlying the insulation layers 136, 140. The redistribution structure 126 can include one or more insulation layers 142, 144 respectively overlying the insulation layers 136, 140. The one or more insulation layers 142, 144 can be patterned to expose at least portions of surfaces of the connection elements 128, 132. The terminals 131, 133 can be electrically coupled to the surfaces of the connection elements 128, 132. The terminals 131, 133 can be formed by any suitable method, such as plating or the like.


Though described above as being sequentially fabricated on the first side 130 and second side 134 of the microelectronic assembly 100, the redistribution structure 126 can be fabricated by any suitable order of process steps. For example, the insulation layers 136, 140 may be formed, followed by the openings 306, 308, followed by the first and second connection elements 128, 132, or other desired ordering of the process steps.



FIGS. 4-1 through 4-6 depict stages in a method of fabricating the microelectronic assembly 160 in accordance with some embodiments of the invention. Some aspects of fabricating the microelectronic assembly 160 are similar to those discussed above in regards to fabrication of the microelectronic assembly 100.



FIG. 4-1 depicts a structure 400 having the microelectronic element 102 and the metal posts 114. The structure 400, as depicted in FIG. 4-1, may include the microelectronic element 102 and the metal posts 114 supported at the front surface 104 and first end surfaces 118, respectively, by a conductive layer 402. At 202, the structure 400 can be formed by attaching the front surface 104 of the microelectronic element 102 to a first portion 403 of a first surface 404 of the conductive layer 402. The metal posts 114 are disposed between the first portion 403 of the first surface 404 and a corresponding edge of the conductive layer 402.


Prior to attachment of the microelectronic element 102 to the conductive layer 402, the metal posts 114 may be pre-formed on the first surface 404 of the conductive layer 402. The pre-forming of the metal posts 114 on the conductive layer 402 can include any embodiments and/or permutations and/or methods of fabrication as described for the pre-forming of the metal posts 114 on the conductive layer 302.


At 204, the encapsulation 122 can be formed. The encapsulation 122 can be formed by molding. Optionally, after molding the encapsulation 122, the encapsulation 122 can be thinned to achieve the desired second thickness 124. As depicted in FIG. 4-2, the encapsulation 122 can contact at least the edge surfaces 106 of the microelectronic element 102 and the sidewalls 116 of the metal posts 114. In embodiments of the microelectronic assembly 160, the metal posts 114 extend in the first direction 110 of the second thickness 124 up to about 50% of the second thickness 124.


After formation of the encapsulation 122, the conductive layer 402 can be removed to expose the first end surfaces 118 of the metal posts 114. The structure 400 is depicted after removed of the conductive layer 402 in FIG. 4-3. The conductive layer 402 can be removed by any suitable process, such as etching, polishing, or combinations thereof.


At 206, the insulation layer 136 and the connection elements 128 can be formed at the first side 127 of the microelectronic assembly 160 as depicted in FIGS. 4-3 through 4-4 in some aspects of the invention. The formation of the insulation layer 136 and connection elements 128 can include any embodiments and/or permutations and/or methods of fabrication as described for the fabrication of those elements in the microelectronic assembly 100.


Optionally, the second insulation layer 140 can be formed overlying the microelectronic element 102 and the second end surfaces 120 of the metal posts 114. Openings 406 can be formed, the openings 406 extending in the first direction 110 of thickness of the encapsulation 122, and optionally the second insulation layer 140 when present. The openings 406 expose at least portions of the second end surfaces 120 of the metal posts 114. The openings 406 can be formed by optical lithography followed by removal of materials of the encapsulation 122, and optionally the second insulation layer 140 when present, to expose portions of the second end surfaces 120 of the metal posts 114. Alternatively, the openings 406 can be formed by laser or mechanical drilling. The openings 406 can have rough sidewall surfaces, which can contribute to the second connection elements 132 having an rms surface roughness of greater than about 1 micron. The second connection elements 132 can be formed in the openings 406 by plating, physical vapor deposition (PVD), chemical vapor deposition (CVD) or the like.


At 208, the redistribution structure 126 is deposited. As depicted in FIGS. 4-6, the redistribution structure 126 is overlying the insulation layers 136, 140. The redistribution structure 126 can include can include any embodiments and/or permutations and/or methods of fabrication as described for the fabrication of those elements in the microelectronic assembly 100.


Though described above as being sequentially fabricated on the first side 127 and second side 129 of the microelectronic assembly 160, the redistribution structure 126 can be fabricated by any suitable order of process steps.



FIGS. 5-1 through 5-6 depict stages in a method of fabricating the microelectronic assembly 150 in accordance with some embodiments of the invention. Some aspects of fabricating the microelectronic assembly 150 are similar to those discussed above in regards to fabrication of the microelectronic assemblies 100 and 150.



FIG. 5-1 depicts the microelectronic element 102 supported on the front surface 104 by a carrier 500. A structure 502, as depicted in FIG. 5-2, may include the microelectronic element 102 supported by the carrier 500 at the front surface 104 and the metal posts 114 supported at second end surfaces 120 by a conductive layer 504. At 202, the structure 502 can be formed by attaching the first end surfaces 118 of the metal posts 114 to the carrier 500 such that the microelectronic element 102 is juxtaposed with a first portion 506 of a first surface 508 of the conductive layer 504. The metal posts 114 may be disposed between the first portion 506 of the first surface 508 and a corresponding edge of the conductive layer 504 and extending from the first surface 508.


Prior to attachment to the carrier 500, the metal posts 114 may be pre-formed on the first surface 508 of the conductive layer 504. The pre-forming of the metal posts 114 on the conductive layer 504 can include any embodiments and/or permutations and/or methods of fabrication as described for the pre-forming of the metal posts 114 on the conductive layers 302 or 402.


At 204, the encapsulation 122 can be formed. The encapsulation 122 can be formed by molding. As depicted in FIGS. 5-2 through 5-3, the second thickness 124 of the encapsulation 122 can be defined between the conductive layer 504 and the carrier 500. Though depicted as having a first thickness 108 less than the second thickness 124 of the encapsulation 122 in FIG. 5-3, the microelectronic element 102 may have a first thickness 108 equal to the second thickness 124 of the encapsulation 122 in some aspects of the invention.


After formation of the encapsulation 122, the carrier 500 and conductive layer 504 can be removed to expose the first and second end surfaces 118, 120, respectively, of the metal posts 114. The structure 400 is depicted after removed of the conductive layer 504 and the carrier 500 in FIG. 5-4. The conductive layer 504 and the carrier 500 can be removed by any suitable process, such as etching, polishing, or combinations thereof.


At 206 and 208, the insulation layers 136, 140, the connection elements 128, 130, and the redistribution structure 126 are formed as depicted in FIGS. 5-4 through 5-6 in one aspect of the invention. Forming the insulation layers 136, 140, the connection elements 128, 130, and the redistribution structure 126 includes any embodiments and/or permutations and/or methods of fabrication as described above with regards to forming the redistribution structure of the microelectronic assembly 100.


Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.


For example, FIG. 6-1 through 6-5 depicts stages of fabrication of a microelectronic assembly in accordance with some embodiments of the invention. For example, the stages of fabrication depicted in FIGS. 6-1 through 6-5 may be used alternatively to those stages of fabrication depicted in FIGS. 3-1 through 3-2 or FIGS. 4-1 through 4-2. As depicted in FIG. 6-1, a substrate 600 can be provided. The substrate 600 can have a thickness extending in the first direction from a first surface 602 to a second surface 604. The substrate 600 can have rigid elements 606 extending in the first direction at the second surface 604 of the substrate 600. As depicted in FIG. 6-2, a conductive material can be deposited on the second surface 604 and surfaces of the rigid elements 606 to form metal posts 114 and conductive layer. The microelectronic element 102 can be attached to the conductive layer, and then the encapsulation 122 can be formed, such as depicted in FIG. 6-3. The substrate 600 may then be removed to reveal openings 608 in the metal posts 114. The openings in the metal posts 114 extending in the first direction from the front side 127 of the microelectronic assembly. The openings 608 can be filled with material, such as additional conductive material, as depicted in FIG. 6-5.

Claims
  • 1. A method of forming a microelectronic assembly, comprising: forming a structure including a microelectronic element having a front surface, edge surfaces bounding the front surface, and contacts at the front surface, and substantially rigid metal posts extending in a first direction, the posts disposed between at least one of the edge surfaces and a corresponding edge of the structure, each metal post having a sidewall separating first and second end surfaces of such metal post from one another, the sidewalls of the metal posts having a root mean square (rms) surface roughness of less than about 1 micron; and then,forming an encapsulation having a thickness extending in the first direction between first and second surfaces of the encapsulation, the encapsulation contacting at least the edge surfaces of the microelectronic element and the sidewalls of the metal posts, wherein the metal posts extend at least partly through the thickness, and the encapsulation electrically insulates adjacent metal posts from one another;depositing an insulation layer overlying the first surface of the encapsulation and having a thickness extending away from the first surface of the encapsulation;forming connection elements directly adjacent and extending away from the first end surfaces of the metal posts and through the thickness of the insulation layer, wherein at least some connection elements have cross sections smaller than respective cross sections of the metal posts from which the connection elements extend;depositing an electrically conductive redistribution structure on the insulation layer, the redistribution structure electrically connecting at least some metal posts with the contacts of the microelectronic element; andforming terminals at a first side of the microelectronic assembly adjacent to the first surface of the encapsulation, wherein at least some of the at least some connection elements electrically connect at least some of the first end surfaces with corresponding terminals.
  • 2. The method of claim 1, wherein, prior to forming the structure, the metal posts extend in the first direction from a first surface of a conductive layer, the posts disposed between a first portion of the first surface of the conductive layer and a corresponding edge of the conductive layer.
  • 3. The method of claim 2, wherein forming the structure further comprises: attaching the front surface of the microelectronic element to the first portion of the first surface of the conductive layer.
  • 4. The method of claim 3, wherein, prior to forming the structure, the method further comprises: providing a substrate having a thickness extending in the first direction from a first surface to a second surface of the substrate, the substrate having a plurality of rigid elements extending in the first direction at the second surface of the substrate; anddepositing a conductive material on the second surface of the substrate and surfaces of the rigid elements to form the metal posts and conductive layer.
  • 5. The method of claim 4, wherein after forming the encapsulation, the method further comprises: removing the substrate and the rigid elements to reveal openings in the metal posts, the openings in the metal posts extending in the first direction from the front surface of the microelectronic assembly; andfilling the openings with additional conductive material prior to depositing the insulation layer.
  • 6. The method of claim 3, wherein, after forming the encapsulation and prior to depositing the insulation layer, the method further comprises: removing the conductive layer to expose the first end surfaces of the metal posts.
  • 7. The method of claim 6, further comprising: forming a second insulation layer overlying the second surface of the encapsulation and having a thickness extending away from the second surface of the encapsulation;forming second connection elements extending away from the second end surfaces of the metal posts and through the thickness of the second insulation layer, wherein at least some second connection elements have cross sections smaller than cross sections of the metal posts;depositing an electrically conductive redistribution structure on the second insulation layer; andforming second terminals at the second side of the microelectronic assembly adjacent to the second surface of the encapsulation, wherein the second terminals are overlying the redistribution structure, wherein the second connection elements electrically connecting at least some second end surfaces with corresponding second terminals through the redistribution structure.
  • 8. The method of claim 6, further comprising: forming openings extending between at least some second end surfaces of metal posts and the second surface of the encapsulation, the openings exposing at least portions of second end surfaces of the metal posts; andforming second connection elements extending through the openings in the encapsulation and electrically connected to at least some metal posts at the second end surfaces.
  • 9. The method of claim 2, wherein, prior to forming the structure, the front surface of the microelectronic element is attached to a carrier.
  • 10. The method of claim 9, wherein forming the structure further comprises: attaching the carrier to the metal posts such that the microelectronic element is juxtaposed with the first portion of the first surface of the conductive layer.
  • 11. The method of claim 10, wherein the microelectronic element and the first portion of the first surface of the conductive layer are separated therefrom.
  • 12. The method of claim 10, wherein, after forming the encapsulation, the method further comprises: removing the carrier to expose the front surface of the microelectronic element and the second end surfaces of the metal posts; andremoving the conductive layer to expose the first end surfaces of the metal posts.
  • 13. The method of claim 1, wherein the microelectronic further comprises a rear surface opposed to the front surface and a thickness extending between the front and rear surfaces of the microelectronic element, wherein the thickness of the encapsulation and the thickness of the microelectronic element are substantially the same.
  • 14. The method of claim 1, wherein the microelectronic element further comprises a rear surface opposed to the front surface and a thickness extending between the front and rear surface, wherein the thickness of the encapsulation and the thickness of the microelectronic element are different.
  • 15. The method of claim 1, wherein the insulation layer further includes first and opposed second surfaces, and the thickness of the insulation layer extends from the first surface to the second opposed surface.
  • 16. The method of claim 1, wherein forming the connection elements further includes forming the at least some connection elements so that the at least some connection elements directly overlie and contact the metal posts.
  • 17. The method of claim 1, wherein the connection elements include sidewalls having an rms surface roughness that is greater than the rms of the sidewalls of the metal posts.
  • 18. A method of forming a microelectronic assembly, comprising: providing a conductive layer with substantially rigid metal posts extending in a first direction away from a first surface of the conductive layer, the posts disposed between a first portion of the first surface of the conductive layer and a corresponding edge of the conductive layer; attaching a front surface of the microelectronic to a carrier and attaching the carrier to the metal posts so that the microelectronic element is juxtaposed with the first portion of a first surface of the conductive layer; and thenforming a structure including a microelectronic element having edge surfaces bounding the front surface, and contacts at the front surface, the posts disposed between at least one of the edge surfaces and a corresponding edge of the structure, each metal post having a sidewall separating first and second end surfaces of such metal post from one another, the sidewalls of the metal posts having a root mean square (rms) surface roughness of less than about 1 micron;forming an encapsulation having a thickness extending in the first direction between first and second surfaces of the encapsulation, the encapsulation contacting at least the edge surfaces of the microelectronic element and the sidewalls of the metal posts, wherein the metal posts extend at least partly through the thickness, and the encapsulation electrically insulates adjacent metal posts from one another;depositing an insulation layer overlying the first surface of the encapsulation and having a thickness extending away from the first surface of the encapsulation;forming connection elements extending away from the first end surfaces of the metal posts and through the thickness of the first insulation layer, wherein at least some connection elements have cross sections smaller than cross sections of the metal posts;depositing an electrically conductive redistribution structure on the insulation layer, the redistribution structure electrically connecting at least some metal posts with the contacts of the microelectronic element; andforming terminals at a first side of the microelectronic assembly adjacent to the first surface of the encapsulation, wherein at least some of the at least some connection elements electrically connect at least some of the first end surfaces of the rigid posts with corresponding terminals.
  • 19. The method of claim 18, wherein the microelectronic element and the first portion of the first surface of the conductive layer are separated therefrom.
  • 20. The method of claim 18, wherein, after forming the encapsulation, the method further comprises: removing the carrier to expose the front surface of the microelectronic element and the second end surfaces of the metal posts; and removing the conductive layer to expose the first end surfaces of the metal posts.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 13/961,344, filed Aug. 7, 2013, the disclosure of which is incorporated herein by reference.

US Referenced Citations (859)
Number Name Date Kind
2230663 Alden Feb 1941 A
3289452 Koellner Dec 1966 A
3358897 Christensen Dec 1967 A
3430835 Grable et al. Mar 1969 A
3623649 Keisling Nov 1971 A
3795037 Luttmer Mar 1974 A
3900153 Beerwerth et al. Aug 1975 A
4067104 Tracy Jan 1978 A
4072816 Gedney et al. Feb 1978 A
4213556 Persson et al. Jul 1980 A
4327860 Kirshenboin et al. May 1982 A
4422568 Elles et al. Dec 1983 A
4437604 Razon et al. Mar 1984 A
4604644 Beckham et al. Aug 1986 A
4642889 Grabbe Feb 1987 A
4667267 Hernandez et al. May 1987 A
4695870 Patraw Sep 1987 A
4716049 Patraw Dec 1987 A
4725692 Ishii et al. Feb 1988 A
4771930 Gillotti et al. Sep 1988 A
4793814 Zifcak et al. Dec 1988 A
4804132 DiFrancesco Feb 1989 A
4845354 Gupta et al. Jul 1989 A
4902600 Tamagawa et al. Feb 1990 A
4924353 Patraw May 1990 A
4925083 Farassat et al. May 1990 A
4955523 Carlommagno et al. Sep 1990 A
4975079 Beaman et al. Dec 1990 A
4982265 Watanabe et al. Jan 1991 A
4998885 Beaman Mar 1991 A
4999472 Neinast et al. Mar 1991 A
5067007 Otsuka et al. Nov 1991 A
5067382 Zimmerman et al. Nov 1991 A
5083697 Difrancesco Jan 1992 A
5095187 Gliga Mar 1992 A
5133495 Angulas et al. Jul 1992 A
5138438 Masayuki et al. Aug 1992 A
5148265 Khandros et al. Sep 1992 A
5148266 Khandros et al. Sep 1992 A
5186381 Kim Feb 1993 A
5189505 Bartelink Feb 1993 A
5196726 Nishiguchi et al. Mar 1993 A
5203075 Angulas et al. Apr 1993 A
5214308 Nishiguchi et al. May 1993 A
5220489 Barreto et al. Jun 1993 A
5222014 Lin Jun 1993 A
5238173 Ura et al. Aug 1993 A
5241454 Ameen et al. Aug 1993 A
5241456 Marcinkiewicz et al. Aug 1993 A
5316788 Dibble et al. May 1994 A
5340771 Rostoker Aug 1994 A
5346118 Degani et al. Sep 1994 A
5371654 Beaman et al. Dec 1994 A
5397997 Tuckerman et al. Mar 1995 A
5438224 Papageorge et al. Aug 1995 A
5455390 DiStefano et al. Oct 1995 A
5468995 Higgins, III Nov 1995 A
5476211 Khandros Dec 1995 A
5494667 Uchida et al. Feb 1996 A
5495667 Farnworth et al. Mar 1996 A
5518964 DiStefano et al. May 1996 A
5531022 Beaman et al. Jul 1996 A
5536909 DiStefano et al. Jul 1996 A
5541567 Fogel et al. Jul 1996 A
5571428 Nishimura et al. Nov 1996 A
5578869 Hoffman et al. Nov 1996 A
5608265 Kitano et al. Mar 1997 A
5615824 Fjelstad et al. Apr 1997 A
5616952 Nakano et al. Apr 1997 A
5635846 Beaman et al. Jun 1997 A
5656550 Tsuji et al. Aug 1997 A
5659952 Kovac et al. Aug 1997 A
5679977 Khandros et al. Oct 1997 A
5688716 DiStefano et al. Nov 1997 A
5718361 Braun et al. Feb 1998 A
5726493 Yamashita et al. Mar 1998 A
5731709 Pastore et al. Mar 1998 A
5736780 Murayama Apr 1998 A
5736785 Chiang et al. Apr 1998 A
5766987 Mitchell et al. Jun 1998 A
5787581 DiStefano et al. Aug 1998 A
5801441 DiStefano et al. Sep 1998 A
5802699 Fjelstad et al. Sep 1998 A
5811982 Beaman et al. Sep 1998 A
5821763 Beaman et al. Oct 1998 A
5830389 Capote et al. Nov 1998 A
5831836 Long et al. Nov 1998 A
5839191 Economy et al. Nov 1998 A
5854507 Miremadi et al. Dec 1998 A
5874781 Fogal et al. Feb 1999 A
5898991 Fogel et al. May 1999 A
5908317 Heo Jun 1999 A
5912505 Itoh et al. Jun 1999 A
5948533 Gallagher et al. Sep 1999 A
5953624 Bando et al. Sep 1999 A
5971253 Gilleo et al. Oct 1999 A
5973391 Bischoff et al. Oct 1999 A
5977618 DiStefano et al. Nov 1999 A
5977640 Bertin et al. Nov 1999 A
5980270 Fjelstad et al. Nov 1999 A
5989936 Smith et al. Nov 1999 A
5994152 Khandros et al. Nov 1999 A
6000126 Pai Dec 1999 A
6002168 Bellaar et al. Dec 1999 A
6032359 Carroll Mar 2000 A
6038136 Weber Mar 2000 A
6052287 Palmer et al. Apr 2000 A
6054337 Solberg Apr 2000 A
6054756 DiStefano et al. Apr 2000 A
6077380 Hayes et al. Jun 2000 A
6117694 Smith et al. Sep 2000 A
6121676 Solberg Sep 2000 A
6124546 Hayward et al. Sep 2000 A
6133072 Fjelstad Oct 2000 A
6145733 Streckfuss et al. Nov 2000 A
6157080 Tamaki et al. Dec 2000 A
6158647 Chapman et al. Dec 2000 A
6164523 Fauty et al. Dec 2000 A
6168965 Malinovich et al. Jan 2001 B1
6177636 Fjelstad Jan 2001 B1
6180881 Isaak Jan 2001 B1
6194250 Melton et al. Feb 2001 B1
6194291 DiStefano et al. Feb 2001 B1
6202297 Farad et al. Mar 2001 B1
6206273 Beaman et al. Mar 2001 B1
6208024 DiStefano Mar 2001 B1
6211572 Fjelstad et al. Apr 2001 B1
6211574 Tao et al. Apr 2001 B1
6215670 Khandros Apr 2001 B1
6218728 Kimura Apr 2001 B1
6225688 Kim et al. May 2001 B1
6238949 Nguyen et al. May 2001 B1
6258625 Brofman et al. Jul 2001 B1
6260264 Chen et al. Jul 2001 B1
6262482 Shiraishi et al. Jul 2001 B1
6268662 Test et al. Jul 2001 B1
6295729 Beaman et al. Oct 2001 B1
6300780 Beaman et al. Oct 2001 B1
6303997 Lee et al. Oct 2001 B1
6313528 Solberg Nov 2001 B1
6316838 Ozawa et al. Nov 2001 B1
6329224 Nguyen et al. Dec 2001 B1
6332270 Beaman et al. Dec 2001 B2
6334247 Beaman et al. Jan 2002 B1
6358627 Benenati et al. Mar 2002 B2
6362520 DiStefano Mar 2002 B2
6362525 Rahim Mar 2002 B1
6376769 Chung Apr 2002 B1
6388333 Taniguchi et al. May 2002 B1
6395199 Krassowski et al. May 2002 B1
6399426 Capote et al. Jun 2002 B1
6407448 Chun Jun 2002 B2
6407456 Ball Jun 2002 B1
6410431 Bertin et al. Jun 2002 B2
6413850 Ooroku et al. Jul 2002 B1
6439450 Chapman et al. Aug 2002 B1
6458411 Goossen et al. Oct 2002 B1
6469260 Horiuchi et al. Oct 2002 B2
6476503 Imamura et al. Nov 2002 B1
6476506 O'Connor et al. Nov 2002 B1
6476583 McAndrews Nov 2002 B2
6486545 Glenn et al. Nov 2002 B1
6489182 Kwon Dec 2002 B2
6495914 Sekine et al. Dec 2002 B1
6507104 Ho et al. Jan 2003 B2
6509639 Lin Jan 2003 B1
6514847 Ohsawa et al. Feb 2003 B1
6515355 Jiang et al. Feb 2003 B1
6522018 Tay et al. Feb 2003 B1
6526655 Beaman et al. Mar 2003 B2
6531784 Shim et al. Mar 2003 B1
6538336 Secker et al. Mar 2003 B1
6545228 Hashimoto Apr 2003 B2
6550666 Chew et al. Apr 2003 B2
6555918 Masuda et al. Apr 2003 B2
6560117 Moon May 2003 B2
6563205 Fogal et al. May 2003 B1
6573458 Matsubara et al. Jun 2003 B1
6578754 Tung Jun 2003 B1
6581276 Chung Jun 2003 B2
6581283 Sugiura et al. Jun 2003 B2
6624653 Cram Sep 2003 B1
6630730 Grigg Oct 2003 B2
6639303 Siniaguine Oct 2003 B2
6647310 Yi et al. Nov 2003 B1
6650013 Yin et al. Nov 2003 B2
6653170 Lin Nov 2003 B1
6684007 Yoshimura et al. Jan 2004 B2
6686268 Farnworth Feb 2004 B2
6687988 Sugiura et al. Feb 2004 B1
6696305 Kung et al. Feb 2004 B2
6699730 Kim et al. Mar 2004 B2
6708403 Beaman et al. Mar 2004 B2
6720783 Satoh et al. Apr 2004 B2
6730544 Yang May 2004 B1
6733711 Durocher et al. May 2004 B2
6734539 Degani et al. May 2004 B2
6734542 Nakatani et al. May 2004 B2
6740980 Hirose May 2004 B2
6741085 Khandros et al. May 2004 B1
6746894 Fee et al. Jun 2004 B2
6759738 Fallon et al. Jul 2004 B1
6762078 Shin et al. Jul 2004 B2
6765287 Lin Jul 2004 B1
6774467 Horiuchi et al. Aug 2004 B2
6774473 Shen Aug 2004 B1
6774494 Arakawa Aug 2004 B2
6777787 Shibata Aug 2004 B2
6777797 Egawa Aug 2004 B2
6778406 Eldridge et al. Aug 2004 B2
6787926 Chen et al. Sep 2004 B2
6790757 Chittipeddi et al. Sep 2004 B1
6812575 Furusawa Nov 2004 B2
6815257 Yoon et al. Nov 2004 B2
6828668 Smith et al. Dec 2004 B2
6844619 Tago Jan 2005 B2
6856235 Fjelstad Feb 2005 B2
6864166 Yin et al. Mar 2005 B1
6867499 Tabrizi Mar 2005 B1
6874910 Sugimoto et al. Apr 2005 B2
6897565 Pflughaupt et al. May 2005 B2
6900530 Tsai May 2005 B1
6902869 Appelt et al. Jun 2005 B2
6902950 Ma et al. Jun 2005 B2
6906408 Cloud et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6930256 Huemoeller et al. Aug 2005 B1
6933608 Fujisawa Aug 2005 B2
6946380 Takahashi Sep 2005 B2
6962282 Manansala Nov 2005 B2
6962864 Jeng et al. Nov 2005 B1
6977440 Pflughaupt et al. Dec 2005 B2
6979599 Silverbrook Dec 2005 B2
6987032 Fan et al. Jan 2006 B1
6989122 Pham et al. Jan 2006 B1
7009297 Chiang et al. Mar 2006 B1
7045884 Standing May 2006 B2
7051915 Mutaguchi May 2006 B2
7053485 Bang et al. May 2006 B2
7061079 Weng et al. Jun 2006 B2
7061097 Yokoi Jun 2006 B2
7067911 Lin et al. Jun 2006 B1
7071547 Kang et al. Jul 2006 B2
7071573 Lin Jul 2006 B1
7119427 Kim Oct 2006 B2
7121891 Cherian Oct 2006 B2
7170185 Hogerton et al. Jan 2007 B1
7176506 Beroz et al. Feb 2007 B2
7176559 Ho et al. Feb 2007 B2
7185426 Hiner et al. Mar 2007 B1
7190061 Lee Mar 2007 B2
7198980 Jiang et al. Apr 2007 B2
7198987 Warren et al. Apr 2007 B1
7205670 Oyama Apr 2007 B2
7215033 Lee et al. May 2007 B2
7225538 Eldridge et al. Jun 2007 B2
7227095 Roberts et al. Jun 2007 B2
7229906 Babinetz et al. Jun 2007 B2
7233057 Hussa Jun 2007 B2
7242081 Lee Jul 2007 B1
7246431 Bang et al. Jul 2007 B2
7262124 Fujisawa Aug 2007 B2
7262506 Mess et al. Aug 2007 B2
7268421 Lin Sep 2007 B1
7276785 Bauer et al. Oct 2007 B2
7276799 Lee et al. Oct 2007 B2
7287322 Mathieu et al. Oct 2007 B2
7290448 Shirasaka et al. Nov 2007 B2
7294920 Chen et al. Nov 2007 B2
7294928 Bang et al. Nov 2007 B2
7301770 Campbell et al. Nov 2007 B2
7323767 James et al. Jan 2008 B2
7327038 Kwon et al. Feb 2008 B2
7344917 Gautham Mar 2008 B2
7355289 Hess et al. Apr 2008 B2
7365416 Kawabata et al. Apr 2008 B2
7371676 Hembree May 2008 B2
7372151 Fan et al. May 2008 B1
7391105 Yeom Jun 2008 B2
7391121 Otremba Jun 2008 B2
7416107 Chapman et al. Aug 2008 B2
7453157 Haba et al. Nov 2008 B2
7456091 Kuraya et al. Nov 2008 B2
7459348 Saeki Dec 2008 B2
7462936 Haba et al. Dec 2008 B2
7476608 Craig et al. Jan 2009 B2
7476962 Kim Jan 2009 B2
7485562 Chua et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7495342 Beaman et al. Feb 2009 B2
7517733 Camacho et al. Apr 2009 B2
7528474 Lee May 2009 B2
7535090 Furuyama et al. May 2009 B2
7537962 Jang et al. May 2009 B2
7538565 Beaman et al. May 2009 B1
7550836 Chou et al. Jun 2009 B2
7560360 Cheng et al. Jul 2009 B2
7576415 Cha et al. Aug 2009 B2
7576439 Craig et al. Aug 2009 B2
7578422 Lange et al. Aug 2009 B2
7582963 Gerber et al. Sep 2009 B2
7589394 Kawano Sep 2009 B2
7592638 Kim Sep 2009 B2
7595548 Shirasaka et al. Sep 2009 B2
7612638 Chung et al. Nov 2009 B2
7621436 Mii et al. Nov 2009 B2
7625781 Beer Dec 2009 B2
7633154 Dai et al. Dec 2009 B2
7633765 Scanlan et al. Dec 2009 B1
7642133 Wu et al. Jan 2010 B2
7646102 Boon Jan 2010 B2
7659617 Kang et al. Feb 2010 B2
7663226 Cho et al. Feb 2010 B2
7670940 Mizukoshi et al. Mar 2010 B2
7671457 Hiner et al. Mar 2010 B1
7671459 Corisis et al. Mar 2010 B2
7675152 Gerber et al. Mar 2010 B2
7677429 Chapman et al. Mar 2010 B2
7682960 Wen Mar 2010 B2
7682962 Hembree Mar 2010 B2
7683460 Heitzer et al. Mar 2010 B2
7692931 Chong et al. Apr 2010 B2
7696631 Beaulieu et al. Apr 2010 B2
7706144 Lynch Apr 2010 B2
7709968 Damberg et al. May 2010 B2
7719122 Tsao et al. May 2010 B2
7728443 Hembree Jun 2010 B2
7737545 Fjelstad et al. Jun 2010 B2
7750483 Lin et al. Jul 2010 B1
7757385 Hembree Jul 2010 B2
7777238 Nishida et al. Aug 2010 B2
7777328 Enomoto Aug 2010 B2
7777351 Berry et al. Aug 2010 B1
7780064 Wong et al. Aug 2010 B2
7781877 Jiang et al. Aug 2010 B2
7795717 Goller Sep 2010 B2
7800233 Kawano et al. Sep 2010 B2
7808093 Kagaya et al. Oct 2010 B2
7808439 Yang et al. Oct 2010 B2
7842541 Rusli et al. Nov 2010 B1
7850087 Hwang et al. Dec 2010 B2
7851259 Kim Dec 2010 B2
7855462 Boon et al. Dec 2010 B2
7857190 Takahashi et al. Dec 2010 B2
7872335 Khan et al. Jan 2011 B2
7876180 Uchimura Jan 2011 B2
7880290 Park Feb 2011 B2
7892889 Howard et al. Feb 2011 B2
7902644 Huang Mar 2011 B2
7910385 Kweon et al. Mar 2011 B2
7911805 Haba Mar 2011 B2
7919846 Hembree Apr 2011 B2
7928552 Cho et al. Apr 2011 B1
7932170 Huemoeller et al. Apr 2011 B1
7934313 Lin et al. May 2011 B1
7939934 Haba et al. May 2011 B2
7943436 McElvain May 2011 B2
7960843 Hedler et al. Jun 2011 B2
7964956 Bet-Shliemoun Jun 2011 B1
7967062 Campbell et al. Jun 2011 B2
7974099 Grajcar Jul 2011 B2
7977597 Roberts et al. Jul 2011 B2
7990711 Andry et al. Aug 2011 B1
8008121 Choi et al. Aug 2011 B2
8012797 Shen et al. Sep 2011 B2
8018065 Lam Sep 2011 B2
8020290 Sheats Sep 2011 B2
8035213 Lee et al. Oct 2011 B2
8039316 Chi et al. Oct 2011 B2
8039970 Yamamori et al. Oct 2011 B2
8053814 Chen et al. Nov 2011 B2
8053879 Lee et al. Nov 2011 B2
8058101 Haba et al. Nov 2011 B2
8071424 Haba et al. Dec 2011 B2
8071431 Hoang et al. Dec 2011 B2
8071470 Khor et al. Dec 2011 B2
8076770 Kagaya et al. Dec 2011 B2
8080445 Pagaila Dec 2011 B1
8084867 Tang et al. Dec 2011 B2
8092734 Jiang et al. Jan 2012 B2
8093697 Haba et al. Jan 2012 B2
8115283 Bolognia et al. Feb 2012 B1
8120054 Seo et al. Feb 2012 B2
8138584 Wang et al. Mar 2012 B2
8143141 Sugiura et al. Mar 2012 B2
8174119 Pendse May 2012 B2
8198716 Periaman et al. Jun 2012 B2
8207604 Haba et al. Jun 2012 B2
8213184 Knickerbocker Jul 2012 B2
8217502 Ko Jul 2012 B2
8232141 Choi et al. Jul 2012 B2
8264091 Cho et al. Sep 2012 B2
8278746 Ding et al. Oct 2012 B2
8288854 Weng et al. Oct 2012 B2
8299368 Endo Oct 2012 B2
8304900 Jang et al. Nov 2012 B2
8314492 Egawa Nov 2012 B2
8315060 Morikita et al. Nov 2012 B2
8319338 Berry et al. Nov 2012 B1
8324633 McKenzie et al. Dec 2012 B2
8349735 Pagaila et al. Jan 2013 B2
8354297 Pagaila et al. Jan 2013 B2
8362620 Pagani Jan 2013 B2
8372741 Co et al. Feb 2013 B1
8395259 Eun Mar 2013 B2
8399972 Hoang et al. Mar 2013 B2
8404520 Chau et al. Mar 2013 B1
8409922 Camacho et al. Apr 2013 B2
8415704 Ivanov et al. Apr 2013 B2
8419442 Horikawa et al. Apr 2013 B2
8420430 Chiu et al. Apr 2013 B2
8476770 Shao et al. Jul 2013 B2
8482111 Haba Jul 2013 B2
8507297 Pan et al. Aug 2013 B2
8508045 Khan et al. Aug 2013 B2
8520396 Schmidt et al. Aug 2013 B2
8525214 Lin et al. Sep 2013 B2
8525314 Haba et al. Sep 2013 B2
8525318 Kim et al. Sep 2013 B1
8552556 Kim et al. Oct 2013 B1
8558392 Chua et al. Oct 2013 B2
8618659 Sato et al. Dec 2013 B2
8642393 Yu et al. Feb 2014 B1
8646508 Kawada Feb 2014 B2
8653626 Lo et al. Feb 2014 B2
8653668 Uno et al. Feb 2014 B2
8659164 Haba Feb 2014 B2
8669646 Tabatabai et al. Mar 2014 B2
8670261 Crisp et al. Mar 2014 B2
8680677 Wyland Mar 2014 B2
8680684 Haba et al. Mar 2014 B2
8686570 Semmelmeyer et al. Apr 2014 B2
8728865 Haba et al. May 2014 B2
8729714 Meyer May 2014 B1
8742576 Thacker et al. Jun 2014 B2
8742597 Nickerson et al. Jun 2014 B2
8766436 DeLucca et al. Jul 2014 B2
8772152 Co et al. Jul 2014 B2
8772817 Yao Jul 2014 B2
8791575 Oganesian et al. Jul 2014 B2
8791580 Park et al. Jul 2014 B2
8796135 Oganesian et al. Aug 2014 B2
8802494 Lee et al. Aug 2014 B2
8811055 Yoon Aug 2014 B2
8816404 Kim et al. Aug 2014 B2
8816505 Mohammed et al. Aug 2014 B2
8835228 Mohammed Sep 2014 B2
8836136 Chau et al. Sep 2014 B2
8836147 Uno et al. Sep 2014 B2
8841765 Haba et al. Sep 2014 B2
8878353 Haba et al. Nov 2014 B2
8881086 McElvain Nov 2014 B2
8893380 Kim et al. Nov 2014 B2
8907466 Haba Dec 2014 B2
8907500 Haba et al. Dec 2014 B2
8916781 Haba et al. Dec 2014 B2
8922005 Hu et al. Dec 2014 B2
8923004 Low et al. Dec 2014 B2
8927337 Haba et al. Jan 2015 B2
8946757 Mohammed et al. Feb 2015 B2
8948712 Chen et al. Feb 2015 B2
8963339 He et al. Feb 2015 B2
8975726 Chen et al. Mar 2015 B2
8978247 Yang et al. Mar 2015 B2
8981559 Hsu et al. Mar 2015 B2
8987132 Gruber et al. Mar 2015 B2
8988895 Mohammed et al. Mar 2015 B2
8993376 Camacho et al. Mar 2015 B2
9012263 Mathew Apr 2015 B1
9054095 Pagaila Jun 2015 B2
9093435 Sato et al. Jul 2015 B2
9095074 Haba et al. Jul 2015 B2
9105483 Chau et al. Aug 2015 B2
9117811 Zohni Aug 2015 B2
9123664 Haba Sep 2015 B2
9136254 Zhao et al. Sep 2015 B2
9153562 Haba et al. Oct 2015 B2
9167710 Mohammed et al. Oct 2015 B2
9196586 Chen et al. Nov 2015 B2
9196588 Leal Nov 2015 B2
9209081 Lim et al. Dec 2015 B2
9214434 Kim et al. Dec 2015 B1
9224647 Koo et al. Dec 2015 B2
9224717 Sato et al. Dec 2015 B2
9263394 Uzoh et al. Feb 2016 B2
9263413 Mohammed Feb 2016 B2
9318449 Hasch et al. Apr 2016 B2
9318452 Chen et al. Apr 2016 B2
9324696 Choi et al. Apr 2016 B2
9330945 Song et al. May 2016 B2
9362161 Chi et al. Jun 2016 B2
9378982 Lin et al. Jun 2016 B2
9379074 Uzoh et al. Jun 2016 B2
9379078 Yu et al. Jun 2016 B2
9401338 Magnus et al. Jul 2016 B2
9405064 Herbsommer et al. Aug 2016 B2
9412661 Lu et al. Aug 2016 B2
9418971 Chen et al. Aug 2016 B2
9437459 Carpenter et al. Sep 2016 B2
9443797 Marimuthu et al. Sep 2016 B2
9449941 Tsai et al. Sep 2016 B2
9461025 Yu et al. Oct 2016 B2
9484331 Paek et al. Nov 2016 B2
9508622 Higgins, III Nov 2016 B2
9559088 Gonzalez et al. Jan 2017 B2
9570382 Haba Feb 2017 B2
9583456 Uzoh et al. Feb 2017 B2
9601454 Zhao et al. Mar 2017 B2
9653428 Hiner et al. May 2017 B1
9653442 Yu et al. May 2017 B2
9659877 Bakalski et al. May 2017 B2
9663353 Ofner et al. May 2017 B2
9735084 Katkar et al. Aug 2017 B2
9788466 Chen Oct 2017 B2
10115678 Awujoola et al. Oct 2018 B2
10181457 Prabhu et al. Jan 2019 B2
20010002607 Sugiura et al. Jun 2001 A1
20010006252 Kim et al. Jul 2001 A1
20010007370 Distefano Jul 2001 A1
20010021541 Akram et al. Sep 2001 A1
20010028114 Hosomi Oct 2001 A1
20010040280 Funakura et al. Nov 2001 A1
20010042925 Yamamoto et al. Nov 2001 A1
20010045012 Beaman et al. Nov 2001 A1
20010048151 Chun Dec 2001 A1
20020014004 Beaman et al. Feb 2002 A1
20020027257 Kinsman et al. Mar 2002 A1
20020066952 Taniguchi et al. Jun 2002 A1
20020096787 Fjelstad Jul 2002 A1
20020113308 Huang et al. Aug 2002 A1
20020117330 Eldridge et al. Aug 2002 A1
20020125556 Oh et al. Sep 2002 A1
20020125571 Corisis et al. Sep 2002 A1
20020153602 Tay et al. Oct 2002 A1
20020164838 Moon et al. Nov 2002 A1
20020171152 Miyazaki Nov 2002 A1
20020185735 Sakurai et al. Dec 2002 A1
20020190738 Beaman et al. Dec 2002 A1
20030002770 Chakravorty et al. Jan 2003 A1
20030006494 Lee et al. Jan 2003 A1
20030048108 Beaman et al. Mar 2003 A1
20030057544 Nathan et al. Mar 2003 A1
20030068906 Light et al. Apr 2003 A1
20030094666 Clayton et al. May 2003 A1
20030094685 Shiraishi et al. May 2003 A1
20030094700 Aiba et al. May 2003 A1
20030106213 Beaman et al. Jun 2003 A1
20030107118 Pflughaupt et al. Jun 2003 A1
20030124767 Lee et al. Jul 2003 A1
20030162378 Mikami Aug 2003 A1
20030164540 Lee et al. Sep 2003 A1
20030234277 Dias et al. Dec 2003 A1
20040014309 Nakanishi Jan 2004 A1
20040036164 Koike et al. Feb 2004 A1
20040038447 Corisis et al. Feb 2004 A1
20040041757 Yang et al. Mar 2004 A1
20040075164 Pu et al. Apr 2004 A1
20040090756 Ho et al. May 2004 A1
20040110319 Fukutomi et al. Jun 2004 A1
20040119152 Karnezos et al. Jun 2004 A1
20040124518 Karnezos Jul 2004 A1
20040148773 Beaman et al. Aug 2004 A1
20040152292 Babinetz et al. Aug 2004 A1
20040160751 Inagaki et al. Aug 2004 A1
20040164426 Pai et al. Aug 2004 A1
20040188499 Nosaka Sep 2004 A1
20040262728 Sterrett et al. Dec 2004 A1
20040262734 Yoo Dec 2004 A1
20050017369 Clayton et al. Jan 2005 A1
20050035440 Mohammed Feb 2005 A1
20050062173 Vu et al. Mar 2005 A1
20050062492 Beaman et al. Mar 2005 A1
20050082664 Funaba et al. Apr 2005 A1
20050095835 Humpston et al. May 2005 A1
20050116326 Haba et al. Jun 2005 A1
20050121764 Mallik et al. Jun 2005 A1
20050133916 Kamezos Jun 2005 A1
20050133932 Pohl et al. Jun 2005 A1
20050140265 Hirakata Jun 2005 A1
20050146008 Miyamoto et al. Jul 2005 A1
20050151235 Yokoi Jul 2005 A1
20050151238 Yamunan Jul 2005 A1
20050161814 Mizukoshi et al. Jul 2005 A1
20050173805 Damberg et al. Aug 2005 A1
20050173807 Zhu et al. Aug 2005 A1
20050176233 Joshi et al. Aug 2005 A1
20050181544 Haba et al. Aug 2005 A1
20050181655 Haba et al. Aug 2005 A1
20050212109 Cherukuri et al. Sep 2005 A1
20050253213 Jiang et al. Nov 2005 A1
20050266672 Jeng et al. Dec 2005 A1
20050285246 Haba et al. Dec 2005 A1
20060087013 Hsieh Apr 2006 A1
20060088957 Saeki Apr 2006 A1
20060118641 Hwang et al. Jun 2006 A1
20060139893 Yoshimura et al. Jun 2006 A1
20060166397 Lau et al. Jul 2006 A1
20060197220 Beer Sep 2006 A1
20060216868 Yang et al. Sep 2006 A1
20060228825 Hembree Oct 2006 A1
20060255449 Lee et al. Nov 2006 A1
20060278682 Lange et al. Dec 2006 A1
20060278970 Yano et al. Dec 2006 A1
20070010086 Hsieh Jan 2007 A1
20070013067 Nishida et al. Jan 2007 A1
20070015353 Craig et al. Jan 2007 A1
20070026662 Kawano et al. Feb 2007 A1
20070035015 Hsu Feb 2007 A1
20070045803 Ye et al. Mar 2007 A1
20070045862 Corisis et al. Mar 2007 A1
20070080360 Mirsky et al. Apr 2007 A1
20070090524 Abbott Apr 2007 A1
20070126091 Wood et al. Jun 2007 A1
20070145563 Punzalan et al. Jun 2007 A1
20070148822 Haba et al. Jun 2007 A1
20070164457 Yamaguchi et al. Jul 2007 A1
20070181989 Corisis et al. Aug 2007 A1
20070190747 Humpston et al. Aug 2007 A1
20070235850 Gerber et al. Oct 2007 A1
20070235856 Haba et al. Oct 2007 A1
20070238289 Tanaka Oct 2007 A1
20070241437 Kagaya et al. Oct 2007 A1
20070246819 Hembree et al. Oct 2007 A1
20070254406 Lee Nov 2007 A1
20070271781 Beaman et al. Nov 2007 A9
20070290325 Wu et al. Dec 2007 A1
20080006942 Park et al. Jan 2008 A1
20080017968 Choi et al. Jan 2008 A1
20080023805 Howard et al. Jan 2008 A1
20080029849 Hedler et al. Feb 2008 A1
20080032519 Murata Feb 2008 A1
20080042265 Menlo et al. Feb 2008 A1
20080047741 Beaman et al. Feb 2008 A1
20080048309 Corisis et al. Feb 2008 A1
20080048690 Beaman et al. Feb 2008 A1
20080048691 Beaman et al. Feb 2008 A1
20080048697 Beaman et al. Feb 2008 A1
20080054434 Kim Mar 2008 A1
20080073769 Wu et al. Mar 2008 A1
20080073771 Seo et al. Mar 2008 A1
20080076208 Wu et al. Mar 2008 A1
20080100316 Beaman et al. May 2008 A1
20080100317 Beaman et al. May 2008 A1
20080100318 Beaman et al. May 2008 A1
20080100324 Beaman et al. May 2008 A1
20080105984 Lee May 2008 A1
20080106281 Beaman et al. May 2008 A1
20080106282 Beaman et al. May 2008 A1
20080106283 Beaman et al. May 2008 A1
20080106284 Beaman et al. May 2008 A1
20080106285 Beaman et al. May 2008 A1
20080106291 Beaman et al. May 2008 A1
20080106872 Beaman et al. May 2008 A1
20080110667 Ahn et al. May 2008 A1
20080111568 Beaman et al. May 2008 A1
20080111569 Beaman et al. May 2008 A1
20080111570 Beaman et al. May 2008 A1
20080112144 Beaman et al. May 2008 A1
20080112145 Beaman et al. May 2008 A1
20080112146 Beaman et al. May 2008 A1
20080112147 Beaman et al. May 2008 A1
20080112148 Beaman et al. May 2008 A1
20080112149 Beaman et al. May 2008 A1
20080116912 Beaman et al. May 2008 A1
20080116913 Beaman et al. May 2008 A1
20080116914 Beaman et al. May 2008 A1
20080116915 Beaman et al. May 2008 A1
20080116916 Beaman et al. May 2008 A1
20080117611 Beaman et al. May 2008 A1
20080117612 Beaman et al. May 2008 A1
20080117613 Beaman et al. May 2008 A1
20080121879 Beaman et al. May 2008 A1
20080123310 Beaman et al. May 2008 A1
20080129319 Beaman et al. Jun 2008 A1
20080129320 Beaman et al. Jun 2008 A1
20080132094 Beaman et al. Jun 2008 A1
20080156518 Honer et al. Jul 2008 A1
20080164595 Wu et al. Jul 2008 A1
20080169544 Tanaka et al. Jul 2008 A1
20080169548 Baek Jul 2008 A1
20080211084 Chow et al. Sep 2008 A1
20080217708 Reisner et al. Sep 2008 A1
20080230887 Sun et al. Sep 2008 A1
20080246126 Bowles et al. Oct 2008 A1
20080277772 Groenhuis et al. Nov 2008 A1
20080280393 Lee et al. Nov 2008 A1
20080284001 Mori et al. Nov 2008 A1
20080284045 Gerber et al. Nov 2008 A1
20080303132 Mohammed et al. Dec 2008 A1
20080303153 Oi et al. Dec 2008 A1
20080308305 Kawabe Dec 2008 A1
20080315385 Gerber et al. Dec 2008 A1
20090008796 Eng et al. Jan 2009 A1
20090014876 Youn et al. Jan 2009 A1
20090026609 Masuda Jan 2009 A1
20090032913 Haba Feb 2009 A1
20090039523 Jiang et al. Feb 2009 A1
20090045497 Kagaya et al. Feb 2009 A1
20090050994 Ishihara et al. Feb 2009 A1
20090079094 Lin Mar 2009 A1
20090085185 Byun et al. Apr 2009 A1
20090085205 Sugizaki Apr 2009 A1
20090091009 Corisis et al. Apr 2009 A1
20090091022 Meyer et al. Apr 2009 A1
20090102063 Lee et al. Apr 2009 A1
20090104736 Haba et al. Apr 2009 A1
20090115044 Hoshino et al. May 2009 A1
20090115047 Haba et al. May 2009 A1
20090121351 Endo May 2009 A1
20090127686 Yang et al. May 2009 A1
20090128176 Beaman et al. May 2009 A1
20090140415 Furuta Jun 2009 A1
20090146301 Shimizu et al. Jun 2009 A1
20090146303 Kwon Jun 2009 A1
20090160065 Haba et al. Jun 2009 A1
20090166664 Park et al. Jul 2009 A1
20090166873 Yang et al. Jul 2009 A1
20090189288 Beaman et al. Jul 2009 A1
20090194829 Chung Aug 2009 A1
20090206461 Yoon Aug 2009 A1
20090212418 Gurrum et al. Aug 2009 A1
20090212442 Chow et al. Aug 2009 A1
20090236700 Moriya Sep 2009 A1
20090236753 Moon et al. Sep 2009 A1
20090239336 Lee et al. Sep 2009 A1
20090256229 Ishikawa et al. Oct 2009 A1
20090260228 Val Oct 2009 A1
20090261466 Pagaila et al. Oct 2009 A1
20090302445 Pagaila et al. Dec 2009 A1
20090315579 Beaman et al. Dec 2009 A1
20090316378 Haba et al. Dec 2009 A1
20100000775 Shen et al. Jan 2010 A1
20100003822 Miyata et al. Jan 2010 A1
20100006963 Brady Jan 2010 A1
20100007009 Chang et al. Jan 2010 A1
20100007026 Shikano Jan 2010 A1
20100025835 Oh et al. Feb 2010 A1
20100032822 Liao et al. Feb 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100052135 Shim et al. Mar 2010 A1
20100052187 Lee et al. Mar 2010 A1
20100072588 Yang Mar 2010 A1
20100078789 Choi et al. Apr 2010 A1
20100078795 Dekker et al. Apr 2010 A1
20100087035 Yoo et al. Apr 2010 A1
20100090330 Nakazato Apr 2010 A1
20100109138 Cho May 2010 A1
20100117212 Corisis et al. May 2010 A1
20100133675 Yu et al. Jun 2010 A1
20100148360 Lin et al. Jun 2010 A1
20100148374 Castro Jun 2010 A1
20100171205 Chen et al. Jul 2010 A1
20100193937 Nagamatsu et al. Aug 2010 A1
20100200981 Huang et al. Aug 2010 A1
20100213560 Wang et al. Aug 2010 A1
20100216281 Pagaila et al. Aug 2010 A1
20100224975 Shin et al. Sep 2010 A1
20100232119 Schmidt et al. Sep 2010 A1
20100232129 Haba et al. Sep 2010 A1
20100237471 Pagaila et al. Sep 2010 A1
20100246141 Leung et al. Sep 2010 A1
20100258955 Miyagawa et al. Oct 2010 A1
20100289142 Shim et al. Nov 2010 A1
20100314748 Hsu et al. Dec 2010 A1
20100320585 Jiang et al. Dec 2010 A1
20100327419 Muthukumar et al. Dec 2010 A1
20110042699 Park et al. Feb 2011 A1
20110057308 Choi et al. Mar 2011 A1
20110068453 Cho et al. Mar 2011 A1
20110068478 Pagaila et al. Mar 2011 A1
20110115081 Osumi May 2011 A1
20110140259 Cho et al. Jun 2011 A1
20110147911 Kohl et al. Jun 2011 A1
20110156249 Chang et al. Jun 2011 A1
20110157834 Wang Jun 2011 A1
20110175213 Mori et al. Jul 2011 A1
20110209908 Lin et al. Sep 2011 A1
20110215472 Chandrasekaran Sep 2011 A1
20110220395 Cho et al. Sep 2011 A1
20110223721 Cho et al. Sep 2011 A1
20110237027 Kim et al. Sep 2011 A1
20110241192 Ding et al. Oct 2011 A1
20110241193 Ding et al. Oct 2011 A1
20110272449 Pirkle et al. Nov 2011 A1
20110272798 Lee et al. Nov 2011 A1
20120001336 Zeng et al. Jan 2012 A1
20120007232 Haba Jan 2012 A1
20120015481 Kim Jan 2012 A1
20120018885 Lee et al. Jan 2012 A1
20120020026 Oganesian et al. Jan 2012 A1
20120025365 Haba Feb 2012 A1
20120034777 Pagaila et al. Feb 2012 A1
20120043655 Khor et al. Feb 2012 A1
20120056312 Pagaila et al. Mar 2012 A1
20120061814 Camacho et al. Mar 2012 A1
20120063090 Hsiao et al. Mar 2012 A1
20120080787 Shah et al. Apr 2012 A1
20120086111 Iwamoto et al. Apr 2012 A1
20120086130 Sasaki et al. Apr 2012 A1
20120104595 Haba et al. May 2012 A1
20120104624 Choi et al. May 2012 A1
20120119380 Haba May 2012 A1
20120126431 Kim et al. May 2012 A1
20120145442 Gupta et al. Jun 2012 A1
20120146235 Choi et al. Jun 2012 A1
20120153444 Naga et al. Jun 2012 A1
20120184116 Pawlikowski et al. Jul 2012 A1
20120280374 Choi et al. Nov 2012 A1
20120280386 Sato et al. Nov 2012 A1
20120286432 Do et al. Nov 2012 A1
20120305916 Liu et al. Dec 2012 A1
20120326337 Camacho et al. Dec 2012 A1
20130001797 Choi et al. Jan 2013 A1
20130032944 Sato et al. Feb 2013 A1
20130037802 England et al. Feb 2013 A1
20130040423 Tung et al. Feb 2013 A1
20130049218 Gong Feb 2013 A1
20130049221 Han et al. Feb 2013 A1
20130069222 Camacho Mar 2013 A1
20130082399 Kim et al. Apr 2013 A1
20130087915 Warren et al. Apr 2013 A1
20130093087 Chau et al. Apr 2013 A1
20130093088 Chau et al. Apr 2013 A1
20130093091 Ma et al. Apr 2013 A1
20130095610 Chau et al. Apr 2013 A1
20130105979 Yu et al. May 2013 A1
20130134588 Yu et al. May 2013 A1
20130153646 Ho Jun 2013 A1
20130182402 Chen et al. Jul 2013 A1
20130200524 Han et al. Aug 2013 A1
20130200533 Chau et al. Aug 2013 A1
20130234317 Chen et al. Sep 2013 A1
20130241083 Yu et al. Sep 2013 A1
20130256847 Park et al. Oct 2013 A1
20130313716 Mohammed Nov 2013 A1
20130323409 Read et al. Dec 2013 A1
20140021605 Yu et al. Jan 2014 A1
20140035892 Shenoy et al. Feb 2014 A1
20140036454 Caskey et al. Feb 2014 A1
20140103527 Marimuthu et al. Apr 2014 A1
20140124949 Paek et al. May 2014 A1
20140175657 Oka et al. Jun 2014 A1
20140220744 Damberg et al. Aug 2014 A1
20140225248 Henderson et al. Aug 2014 A1
20140239479 Start Aug 2014 A1
20140239490 Wang Aug 2014 A1
20140264945 Yap et al. Sep 2014 A1
20140312503 Seo Oct 2014 A1
20150017765 Co et al. Jan 2015 A1
20150043190 Mohammed et al. Feb 2015 A1
20150044823 Mohammed Feb 2015 A1
20150076714 Haba et al. Mar 2015 A1
20150130054 Lee et al. May 2015 A1
20150340305 Lo Nov 2015 A1
20150380376 Mathew et al. Dec 2015 A1
20160043813 Chen et al. Feb 2016 A1
20160225692 Kim et al. Aug 2016 A1
20170117231 Awujoola et al. Apr 2017 A1
20170229432 Lin et al. Aug 2017 A1
Foreign Referenced Citations (149)
Number Date Country
1352804 Jun 2002 CN
1641832 Jul 2005 CN
1877824 Dec 2006 CN
101409241 Apr 2009 CN
101449375 Jun 2009 CN
101675516 Mar 2010 CN
101819959 Sep 2010 CN
102324418 Jan 2012 CN
102009001461 Sep 2010 DE
920058 Jun 1999 EP
1449414 Aug 2004 EP
2234158 Sep 2010 EP
S51-050661 May 1976 JP
59189069 Oct 1984 JP
61125062 Jun 1986 JP
S62158338 Jul 1987 JP
62-226307 Oct 1987 JP
1012769 Jan 1989 JP
64-71162 Mar 1989 JP
H04-346436 Dec 1992 JP
06268015 Sep 1994 JP
H06268101 Sep 1994 JP
H06333931 Dec 1994 JP
07-122787 May 1995 JP
09505439 May 1997 JP
H1065054 Mar 1998 JP
H10-135221 May 1998 JP
H10135220 May 1998 JP
1118364 Jan 1999 JP
11-074295 Mar 1999 JP
11135663 May 1999 JP
H11-145323 May 1999 JP
11251350 Sep 1999 JP
H11-260856 Sep 1999 JP
11317476 Nov 1999 JP
2000156461 Jun 2000 JP
2000323516 Nov 2000 JP
3157134 Apr 2001 JP
2001196407 Jul 2001 JP
2001326236 Nov 2001 JP
2002050871 Feb 2002 JP
2002289769 Oct 2002 JP
2003122611 Apr 2003 JP
2003-174124 Jun 2003 JP
2003197668 Jul 2003 JP
2003307897 Oct 2003 JP
2003318327 Nov 2003 JP
2004031754 Jan 2004 JP
200447702 Feb 2004 JP
2004047702 Feb 2004 JP
2004048048 Feb 2004 JP
2004-172157 Jun 2004 JP
2004200316 Jul 2004 JP
2004281514 Oct 2004 JP
2004-319892 Nov 2004 JP
2004327855 Nov 2004 JP
2004327856 Nov 2004 JP
2004343030 Dec 2004 JP
2005011874 Jan 2005 JP
2005033141 Feb 2005 JP
2005093551 Apr 2005 JP
2003377641 Jun 2005 JP
2005142378 Jun 2005 JP
2005175019 Jun 2005 JP
2003426392 Jul 2005 JP
2005183880 Jul 2005 JP
2005183923 Jul 2005 JP
2005203497 Jul 2005 JP
2005302765 Oct 2005 JP
2006108588 Apr 2006 JP
2006186086 Jul 2006 JP
2006344917 Dec 2006 JP
2007123595 May 2007 JP
2007-208159 Aug 2007 JP
2007194436 Aug 2007 JP
2007234845 Sep 2007 JP
2007287922 Nov 2007 JP
2007-335464 Dec 2007 JP
2007335464 Dec 2007 JP
200834534 Feb 2008 JP
2008166439 Jul 2008 JP
2008171938 Jul 2008 JP
2008235378 Oct 2008 JP
2008251794 Oct 2008 JP
2008277362 Nov 2008 JP
2008306128 Dec 2008 JP
2009004650 Jan 2009 JP
2009-508324 Feb 2009 JP
2009044110 Feb 2009 JP
2009506553 Feb 2009 JP
2009064966 Mar 2009 JP
2009088254 Apr 2009 JP
2009111384 May 2009 JP
2009528706 Aug 2009 JP
2009260132 Nov 2009 JP
2010103129 May 2010 JP
2010135671 Jun 2010 JP
2010192928 Sep 2010 JP
2010199528 Sep 2010 JP
2010206007 Sep 2010 JP
2011514015 Apr 2011 JP
2011166051 Aug 2011 JP
100265563 Sep 2000 KR
20010061849 Jul 2001 KR
2001 0094894 Nov 2001 KR
10-0393102 Jul 2002 KR
20020058216 Jul 2002 KR
20060064291 Jun 2006 KR
20070058680 Jun 2007 KR
20080020069 Mar 2008 KR
100865125 Oct 2008 KR
20080094251 Oct 2008 KR
100886100 Feb 2009 KR
20090033605 Apr 2009 KR
20090123680 Dec 2009 KR
20100033012 Mar 2010 KR
20100062315 Jun 2010 KR
101011863 Jan 2011 KR
20120075855 Jul 2012 KR
101215271 Dec 2012 KR
20130048810 May 2013 KR
20150012285 Feb 2015 KR
200539406 Dec 2005 TW
200721327 Jun 2007 TW
200810079 Feb 2008 TW
200849551 Dec 2008 TW
200933760 Aug 2009 TW
201023277 Jun 2010 TW
201250979 Dec 2012 TW
I605558 Nov 2017 TW
9615458 May 1996 WO
0213256 Feb 2002 WO
03045123 Mar 2003 WO
2004077525 Sep 2004 WO
2006050691 May 2006 WO
2007083351 Jul 2007 WO
2007101251 Sep 2007 WO
2007116544 Oct 2007 WO
2008065896 Jun 2008 WO
2008120755 Oct 2008 WO
2009096950 Aug 2009 WO
2009158098 Dec 2009 WO
2010014103 Feb 2010 WO
2010041630 Apr 2010 WO
2010101163 Sep 2010 WO
2012067177 May 2012 WO
2013059181 Apr 2013 WO
2013065895 May 2013 WO
2014107301 Jul 2014 WO
Non-Patent Literature Citations (71)
Entry
Brochure, “High Performance BVA PoP Package for Mobile Systems,” Invensas Corporation, May 2013, 20 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: 100+ GB/s BVA PoP,” Invensas Corporation, c. 2012, 2 pages.
Brochure, “Invensas BVA PoP for Mobile Computing: Ultra High IO Without TSVs,” Invensas Corporation, Jun. 26, 2012, 4 pages.
Campos et al., “System in Package Solutions Using Fan-Out Wafer Level Packaging Technology,” SEMI Networking Day, Jun. 27, 2013, 31 pages.
Ghaffarian Ph.D., Reza et al., “Evaluation Methodology Guidance for Stack Packages,” Jet Propulsion Laboratory, Califomia Institute of Technology, Pasadena, CA, NASA, Oct. 2009, 44 pages.
IBM et al., “Method of Producing Thin-Film Wirings with Vias,” IBM Technical Disclosure Bulletin, Apr. 1, 1989, IBM Corp., (Thornwood), US-ISSN 0018-8689, vol. 31, No. 11, pp. 209-210, https://priorart.ip.com.
International Search Report for Application No. PCT/US2015/032679, dated Nov. 11, 2015, 2 pages.
International Search Report for Application No. PCT/US2016/056402, dated Jan. 31, 2017, 3 pages.
International Search Report for Application No. PCT/US2016/056526, dated Jan. 20, 2017, 3 pages.
International Search Report for Application No. PCT/US2016/068297, dated Apr. 17, 2017, 3 pages.
NTK HTCC Package General Design Guide, Communication Media Components Group, NGK Spark Plug Co., Ltd., Komaki, Aichi, Japan, Apr. 2010, 32 pages.
Partial International Search Report for Application No. PCT/US2015/032679, dated Sep. 4, 2015, 2 pages.
Taiwanese Office Action for Application No. 103103350 dated Mar. 21, 2016.
Yoon, PhD, Seung Wook, “Next Generation Wafer Level Packaging Solution for 3D integration,” May 2010, Stats ChipPAC Ltd.
U.S. Appl. No. 13/477,532, filed May 22, 2012.
International Search Report and Written Opinion for Application No. PCT/US2014/050125 dated Feb. 4, 2015.
Written Opinion for Application No. PCT/US2014/050125 dated Jul. 15, 2015.
“EE Times Asia” [online]. [Retrieved Aug. 5, 2010]. Retrieved from internet. <http://www.eetasia.com/ART_8800428222_480300_nt_dec.52276.HTM>, 4 pages.
“Wafer Level Stack—WDoD”, [online]. [Retrieved Aug. 5, 2010]. Retrieved from the Internet. <http://www.3d-plus.com/techno-wafer-level-stack-wdod.php>, 2 pages.
Bang, U.S. Appl. No. 10/656,534, filed Sep. 5, 2003.
Chinese Office Action for Application No. 201180022247.8 dated Apr. 14, 2015.
Chinese Office Action for Application No. 201180022247.8 dated Sep. 16, 2014.
Chinese Office Action for Application No. 201310264264.3 dated May 12, 2015.
Extended European Search Report for Application No. EP13162975 dated Sep. 5, 2013.
International Preliminary Report on Patentability, Chapter II, for Application No. PCT/US2014/055695 dated Dec. 15, 2015.
International Search Report and Written Opinion for Application No. PCT/US2011/024143 dated Jan. 17, 2012.
International Search Report and Written Opinion for Application No. PCT/US2011/044346 dated May 11, 2012.
International Search Report and Written Opinion for Application No. PCT/US2012/060402 dated Apr. 2, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/026126 dated Jul. 25, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/041981 dated Nov. 13, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/052883 dated Oct. 21, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/053437 dated Nov. 25, 2013.
International Search Report and Written Opinion for Application No. PCT/US2013/075672 dated Apr. 22, 2014.
International Search Report and Written Opinion for Application No. PCT/US2014/014181 dated Jun. 13, 2014.
International Search Report and Written Opinion for Application No. PCT/US2014/050148 dated Feb. 9, 2015.
International Search Report and Written Opinion for Application No. PCT/US2014/055695 dated Mar. 20, 2015.
International Search Report and Written Opinion for Application No. PCT/US2015/011715 dated Apr. 20, 2015.
International Search Report and Written Opinion for PCT/US2011/060551 dated Apr. 18, 2012.
International Search Report and Written Opinion PCT/US2011/044342 dated May 7, 2012.
International Search Report Application No. PCT/US2011/024143, dated Sep. 14, 2011.
International Search Report, PCT/US2005/039716, dated Apr. 5, 2006.
Japanese Office Action for Application No. 2013-509325 dated Oct. 18, 2013.
Japanese Office Action for Application No. 2013-520776 dated Apr. 21, 2015.
Japanese Office Action for Application No. 2013-520777 dated May 22, 2015.
Jin, Yonggang et al., “STM 3D-IC Package and 3D eWLB Development,” STMicroelectronics Singapore/STMicroelectronics France May 21, 2010.
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 6 pages (2008).
Korean Office Action for Application No. 10-2011-0041843 dated Jun. 20, 2011.
Korean Office Action for Application No. 2014-7025992 dated Feb. 5, 2015.
Korean Search Report KR10-2011-0041843 dated Feb. 24, 2011.
Meiser S, “Klein Und Komplex”, Elektronik, IRL Press Limited, DE, vol. 41, No. 1, Jan. 7, 1992 Jan. 7, 1992), pp. 72-77, XP000277326. (International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013 provides concise statement of relevance.).
Neo-Manhattan Technology, A Novel HDI Manufacturing Process, “High-Density Interconnects for Advanced Flex Substrates & 3-D Package Stacking,”IPC Flex & Chips Symposium, Tempe, AZ, Feb. 11-12, 2003.
North Corporation, “Processed Intra-layer Interconnection Material for PWBs [Etched Copper Bump with Copper Foil],” NMBITM, Version 2001.6.
Office Action for Taiwan Application No. 100125521 dated Dec. 20, 2013.
Office Action from Taiwan for Application No. 100125522 dated Jan. 27, 2014.
Office Action from U.S. Appl. No. 12/769,930 dated May 5, 2011.
Partial International Search Report for Application No. PCT/US2012/060402 dated Feb. 21, 2013.
Partial International Search Report for Application No. PCT/US2013/026126 dated Jun. 17, 2013.
Partial International Search Report for Application No. PCT/US2013/075672 dated Mar. 12, 2014.
Partial International Search Report for Application No. PCT/US2014/014181 dated May 8, 2014.
Partial International Search Report for Application No. PCT/US2015/033004 dated Sep. 9, 2015.
Partial International Search Report from Invitation to Pay Additional Fees for Application No. PCT/US2012/028738 dated Jun. 6, 2012.
Redistributed Chip Package (RCP) Technology, Freescale Semiconductor, 2005, 6 pages.
Search Report from Korean Patent Applicatin No. 10-2010-0113271 dated Jan. 12, 2011.
Taiwanese Office Action for Application No. 102106326 dated Sep. 18, 2015.
Taiwanese Office Action for Application No. 100140428 dated Jan. 26, 2015.
Taiwanese Office Action for Application No. 100141695 dated Mar. 19, 2014.
Taiwanese Office Action for Application No. 101138311 dated Jun. 27, 2014.
Taiwanese Search Report for Application No. TW105128420 dated Sep. 26, 2017.
Chinese Office Action Search Report for Application No. 2014800551784 dated Jan. 23, 2018, 3 pages.
European Search Results under Rule 164(2)(b) EPC for Application No. 12712792 dated Feb. 27, 2018, 2 pages.
International Seach Report for Application No. PCT/US2017/064437 dated Mar. 29, 2018, 5 pages.
Related Publications (1)
Number Date Country
20160020121 A1 Jan 2016 US
Divisions (1)
Number Date Country
Parent 13961344 Aug 2013 US
Child 14870823 US