The present application relates to the field of electronics, and more particularly, to methods of forming electronic component packages and related structures.
The current trend is to integrate vertically by stacking packages (3D Packaging). There are several packaging formats currently being used to accomplish this: (1) Traditional Package-on-Package (PoP) with bare die or pin gate molding; (2) Package-in-Package (PiP); and (3) Thru-Mold Via (TMV).
In each of these formats, the space needed to accommodate the vertical structures limits the space available on the bottom package for the main logic die. The challenge is to maximize the die size allowed in the bottom package while maintaining the same package-to-package I/O currently used.
Until now, the main focus has been to reduce the BGA pitch of the top package so that more I/O can fit on one or two perimeter rows which then gives more space in the middle for the die in the bottom package. One challenge to this approach is with tighter pitches on the top package, the top package BGA ball becomes smaller which affects both stand-off, and collapse.
In TMV format, there is the added challenge of “building up” the solder within the TMV package to achieve a relatively tall bump with a tight pitch.
In the following description, the same or similar elements are labeled with the same or similar reference numbers.
Although two copper stud bonds 204 are illustrated as forming narrow pillar 202 in
By using a single, long copper stud bond (narrow pillar 102), or a multiple copper stud bond (narrow pillar 202), the diameter of the bond can be reduced, for example, from 250 μm diameter to approximately 100 um diameter which would give an immediate increase of 150 um for die size.
Additionally, if the copper stud bond is done at, for example, 200° C. or below, the copper stud bonds can be formed before flip chip attach. This would allow for more flexibility for capillary underfill (CUF) bleed increasing the allowable die size.
The copper wire used to form narrow pillars 102, 202 could be pure copper or coated copper wire with a coating such as Palladium or other suitable coating.
Narrow pillars 102, 202 are formed, for example, on solder mask defined (SMD) pads of substrates 106, 206, respectively. Narrow pillars 102, 202 including the electronic components mounted to substrates 106, 206 are then enclosed within a molding compound similar to the package as shown in
In one embodiment, the molding compound is laser ablated to expose narrow pillars 102, 202. As narrow pillars 102, 202, and in particular narrow pillars 202, are relatively tall, the amount of molding compound that must be removed to expose narrow pillars 102, 202 is minimized. This allows the via apertures, sometimes called TMV, formed during the laser ablation to be relatively short, i.e., to have a shallow depth, and thus to have a minimum diameter.
Similar to the embodiment discussed above regarding
With this method, it is suitable to use a relatively thick copper wire, e.g., 6 mils, and then provide a copper ball bond 303 on the substrate pad, then extend the tail of the bond straight up to the top of the package, and using the spark to assist in breaking the wire at the correct location to give the long tail wire 304.
In this embodiment, the copper wire can consist of essentially pure copper, or a coated copper wire with a suitable coating such as Palladium.
More particularly, after flip chip mounting of electronic component 310 and formation of narrow pillars 302, electronic component 310, narrow pillars 302 and the exposed upper surface of substrate 306 are enclosed within a dielectric package body 314, e.g., molding compound. Tail wires 304 of narrow pillars 302 are exposed at a principal, or top, surface 316 of package body 314.
Package 300 can be utilized with other packages and/or interposers, e.g., in a stacked arrangement.
By using wire bonding technology to route to a space above the die, the die cavity size is effectively increased, for example, by a minimum of 0.8 mm in both X and Y directions.
The wire used could be a gold wire, a copper wire, or a coated copper wire with a suitable coating such as Palladium.
Formed wire bonding 410, sometimes called a narrow pillar, including the electronic component mounted to substrate 406 are then enclosed within a molding compound similar to the package as shown in
Although conductors 902 are illustrated in
This embodiment utilizes laser ablation or mechanical drilling and metallization techniques to form the interconnect from a pad on the substrate, along the edge 1002 of the package 1000, and along the top 1004 of the package 1000 to the BGA location 1006.
More particularly, laser ablated or drilled vias 1008 are formed in a saw street 1010 such that the edges of the vias 1008 extend slightly into the edge 1002 of the package 1000. Vias 1008 are filled with an electrically conductive material to form conductors along the edge 1002 of package 1000. Further, conductors are formed along the top 1004 of package 1000, and these conductors are connected to the conductors along the edge 1002 of package 1000. The array of packages 1000 is then singulated along saw streets 1010 to provide discrete routing (conductors) along the edge 1002 and top 1004 of package 1000.
More particularly, paying particular attention to
Thru-Silicon Vias (TSVs) 1206, e.g., electrically conductive columns, extend through electronic component 310 between active surface 1202 and inactive surface 1204. TSVs 1206 and the bond pads at active surface 1202 are electrically and physically connected to substrate 306 by flip chip bumps 312, e.g., solder bumps.
In one embodiment, a ReDistribution Layer (RDL) structure 1208 is formed on inactive surface 1204 of electronic component 310. RDL structure 1208 includes a dielectric passivation layer 1210 on inactive surface 1204 that is patterned to expose TSVs 1206 at inactive surface 1204. RDL structure 1208 further includes an electrically conductive circuit pattern 1212, sometimes called an RDL, formed on passivation layer 1210 and electrically connected to TSVs 1206 through the openings in passivation layer 1210. Illustratively, circuit pattern 1212 is formed by plating and etching an electrically conductive material such as copper although is formed using other techniques in other embodiments.
Circuit pattern 1212 redistributes the pattern of TSVs 1206 at inactive surface 1204 to the pattern of inactive surface RDL lands 1214 of circuit pattern 1212. Although a single passivation layer 1210 and circuit pattern 1212 are discussed above and illustrated, in other embodiments, RDL structure 1208 includes multiple dielectric layers and/or multiple circuit patterns that redistributes the pattern of TSVs 1206 at inactive surface 1204 to the pattern of inactive surface RDL lands 1214.
Referring now to
Referring now to
More particularly, referring to
Referring now to
Referring now to
Referring now to
Electronic component 310 is flip chip mounted to substrate 306, e.g., with flip chip bumps 312, and within removable film opening 1904. Pads 1514 of substrate 306 remain covered and protected by removable film 1902.
Referring now to
Referring now to
As set forth above, the ball pad opening that exposes pad 1514 is covered by removable film 1902. Further, removable film 1902 is peeled off after cure of underfill 2016. There is no risk of RBO, the die size is maximized, and there is no risk of contamination on the ball pad 1514.
More particularly, referring to
Referring now to
As shown in
As illustrated in
Interposer 2622 redistributes the pattern of studs 2314 to a pattern of outer interposer pads 2624. As illustrated, at least some of outer interposer pads 2624 are located directly above electronic component 310. By fanning in the pattern of studs 2314 above the area of electronic component 310, the allowable size of electronic component 310 is maximized.
RDL structure 2726 further includes an electrically conductive circuit pattern 2730, sometimes called an RDL, formed on passivation layer 2728 and electrically connected to studs 2314. Illustratively, circuit pattern 2730 is formed by plating and etching an electrically conductive material such as copper although is formed using other techniques in other embodiments.
Circuit pattern 2730 redistributes the pattern of studs 2314 to the pattern of inactive surface RDL lands 2732 of circuit pattern 2730. Although a single passivation layer 2728 and circuit pattern 2730 are discussed above and illustrated, in other embodiments, RDL structure 2726 includes multiple dielectric layers and/or multiple circuit patterns that redistribute the pattern of studs 2314 to the pattern of inactive surface RDL lands 2732.
As illustrated, at least some of inactive surface RDL lands 2732 are located directly above electronic component 310. By fanning in the pattern of studs 2314 above the area of electronic component 310, the allowable size of electronic component 310 is maximized.
More particularly, electronic component 310 is flip chip mounted to substrate 306 with flip chip bumps 312. An interposer 2814, e.g., a silicon, laminate, or other type of discrete interposer, is mounted, e.g., with solder, adhesive, or otherwise bonded, to inactive surface 1204 of electronic component 310. Interposer lands 2816 of interposer 2814, e.g., around the outer periphery of interposer 2814, are electrically coupled to pads 2316 of substrate 306 with electrically conductive bond wires 2818.
Interposer 2814 and bond wires 2818 redistributes the pattern of pads 2316 of substrate 306 to a pattern of outer interposer pads 2820 of interposer 2814. As illustrated, outer interposer pads 2820 are located directly above electronic component 310.
Electronic component 310, interposer 2814, bond wires 2818, and the exposed portion of the upper surface of substrate 306 are enclosed in a dielectric package body 2822, e.g., molding compound.
Via apertures 2824, sometimes called TMV, are formed in package body 2822 to expose outer interposer pads 2820. By forming outer interposer pads 2820 above inactive surface 1204, the allowable size of electronic component 310 is maximized.
Referring now to
In yet another embodiment, referring still to
Further, although D shaped pads 2902 are illustrated, in other embodiments, pads 2902 have other shapes, e.g., C shape.
The various packages as described herein are used in a variety of applications. For example, the packages can be stacked, e.g., can be a lower package with another package or structure stacked on top or can be the upper package stacked upon a lower package or structure. Further, additional interposers can be mounted to the packages or the packages can be mounted to interposers. Although specific applications are discussed here, in light of this disclosure, those of skill in the art will understand that the packages can be used in other applications.
Although specific embodiments were described herein, the scope of the invention is not limited to those specific embodiments. Numerous variations, whether explicitly given in the specification or not, such as differences in structure, dimension, and use of material, are possible. The scope of the invention is at least as broad as given by the following claims.
The present application is a continuation of U.S. patent application Ser. No. 16/373,357, filed Apr. 2, 2019, now U.S. Pat. No. 10,714,408, and titled “Semiconductor Devices and Methods of Making Semiconductor Devices”; which is a continuation of U.S. patent application Ser. No. 15/663,024, filed Jul. 28, 2017, now U.S. Pat. No. 10,347,562, and titled “Methods and Structures for Increasing the Allowable Die Size in TMV Packages”; which is a continuation of U.S. patent application Ser. No. 13/398,646, filed Feb. 16, 2012, now U.S. Pat. No. 9,721,872, and titled “Methods and Structures for Increasing the Allowable Die Size in TMV Packages”; which claims priority to and claims the benefit of U.S. Provisional Application No. 61/444,306, filed on Feb. 18, 2011, and titled “Methods and Structures for Increasing the Allowable Die Size in TMV Packages”; each of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3462349 | Geza | Aug 1969 | A |
3868724 | Perrino | Feb 1975 | A |
3916434 | Garboushian | Oct 1975 | A |
4322778 | Barbour et al. | Mar 1982 | A |
4532419 | Takeda | Jul 1985 | A |
4642160 | Burgess | Feb 1987 | A |
4645552 | Vitriol et al. | Feb 1987 | A |
4685033 | Inoue | Aug 1987 | A |
4706167 | Sullivan | Nov 1987 | A |
4716049 | Patraw | Dec 1987 | A |
4786952 | Maciver et al. | Nov 1988 | A |
4806188 | Rellick | Feb 1989 | A |
4811082 | Jacobs et al. | Mar 1989 | A |
4897338 | Spicciati et al. | Jan 1990 | A |
4905124 | Banjo et al. | Feb 1990 | A |
4964212 | Deroux-Dauphin et al. | Oct 1990 | A |
4974120 | Kodai et al. | Nov 1990 | A |
4996391 | Schmidt | Feb 1991 | A |
5021047 | Movern | Jun 1991 | A |
5072075 | Lee et al. | Dec 1991 | A |
5072520 | Nelson | Dec 1991 | A |
5081520 | Yoshii et al. | Jan 1992 | A |
5091769 | Eichelberger | Feb 1992 | A |
5108553 | Foster et al. | Apr 1992 | A |
5110664 | Nakanishi et al. | May 1992 | A |
5191174 | Chang et al. | Mar 1993 | A |
5229550 | Bindra et al. | Jul 1993 | A |
5239448 | Perkins et al. | Aug 1993 | A |
5247429 | Iwase et al. | Sep 1993 | A |
5250843 | Eichelberger | Oct 1993 | A |
5278726 | Bernardoni et al. | Jan 1994 | A |
5283459 | Hirano et al. | Feb 1994 | A |
5353498 | Fillion et al. | Oct 1994 | A |
5371654 | Beaman et al. | Dec 1994 | A |
5379191 | Carey et al. | Jan 1995 | A |
5404044 | Booth et al. | Apr 1995 | A |
5463253 | Waki et al. | Oct 1995 | A |
5474957 | Urushima | Dec 1995 | A |
5474958 | Ojennas et al. | Dec 1995 | A |
5497033 | Fillion et al. | Mar 1996 | A |
5508938 | Wheeler | Apr 1996 | A |
5530288 | Stone | Jun 1996 | A |
5531020 | Durand et al. | Jul 1996 | A |
5546654 | Wojnarowski et al. | Aug 1996 | A |
5574309 | Papapietro et al. | Nov 1996 | A |
5581498 | Ludwig et al. | Dec 1996 | A |
5582858 | Adamopoulos et al. | Dec 1996 | A |
5616422 | Ballard et al. | Apr 1997 | A |
5637832 | Danner | Jun 1997 | A |
5674785 | Akram et al. | Oct 1997 | A |
5719749 | Stopperan | Feb 1998 | A |
5726493 | Yamashita et al. | Mar 1998 | A |
5739581 | Chillara | Apr 1998 | A |
5739585 | Akram et al. | Apr 1998 | A |
5739588 | Ishida et al. | Apr 1998 | A |
5742479 | Asakura | Apr 1998 | A |
5774340 | Chang et al. | Jun 1998 | A |
5784259 | Asakura | Jul 1998 | A |
5798014 | Weber | Aug 1998 | A |
5822190 | Iwasaki | Oct 1998 | A |
5826330 | Isoda et al. | Oct 1998 | A |
5835355 | Dordi | Nov 1998 | A |
5841193 | Eichelberger | Nov 1998 | A |
5847453 | Uematsu et al. | Dec 1998 | A |
5883425 | Kobayashi | Mar 1999 | A |
5894108 | Mostafazadeh et al. | Apr 1999 | A |
5903052 | Chen et al. | May 1999 | A |
5907477 | Tuttle et al. | May 1999 | A |
5936843 | Ohshima et al. | Aug 1999 | A |
5952611 | Eng et al. | Sep 1999 | A |
6004619 | Dippon et al. | Dec 1999 | A |
6013948 | Akram et al. | Jan 2000 | A |
6021564 | Hanson | Feb 2000 | A |
6028364 | Ogino et al. | Feb 2000 | A |
6034427 | Lan et al. | Mar 2000 | A |
6035527 | Tamm | Mar 2000 | A |
6040622 | Wallace | Mar 2000 | A |
6051888 | Dahl | Apr 2000 | A |
6060778 | Jeong et al. | May 2000 | A |
6069407 | Hamzehdoost | May 2000 | A |
6072243 | Nakanishi | Jun 2000 | A |
6081036 | Hirano et al. | Jun 2000 | A |
6119338 | Wang et al. | Sep 2000 | A |
6122171 | Akram et al. | Sep 2000 | A |
6127833 | Wu et al. | Oct 2000 | A |
6133072 | Fjelstad | Oct 2000 | A |
6137062 | Zimmerman | Oct 2000 | A |
6157080 | Tamaki et al. | Dec 2000 | A |
6159767 | Eichelberger | Dec 2000 | A |
6160705 | Stearns et al. | Dec 2000 | A |
6172419 | Kinsman | Jan 2001 | B1 |
6175087 | Keesler et al. | Jan 2001 | B1 |
6184463 | Panchou et al. | Feb 2001 | B1 |
6194250 | Melton et al. | Feb 2001 | B1 |
6204453 | Fallon et al. | Mar 2001 | B1 |
6214641 | Akram | Apr 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6239485 | Peters et al. | May 2001 | B1 |
D445096 | Wallace | Jul 2001 | S |
D446525 | Okamoto et al. | Aug 2001 | S |
6274821 | Echigo et al. | Aug 2001 | B1 |
6280641 | Gaku et al. | Aug 2001 | B1 |
6294408 | Edwards et al. | Sep 2001 | B1 |
6307161 | Grube et al. | Oct 2001 | B1 |
6316285 | Jiang et al. | Nov 2001 | B1 |
6329609 | Kaja et al. | Dec 2001 | B1 |
6351031 | Ijima et al. | Feb 2002 | B1 |
6353999 | Cheng | Mar 2002 | B1 |
6365975 | DiStefano et al. | Apr 2002 | B1 |
6376906 | Asai et al. | Apr 2002 | B1 |
6392160 | Andry et al. | May 2002 | B1 |
6395578 | Shin et al. | May 2002 | B1 |
6405431 | Shin et al. | Jun 2002 | B1 |
6406942 | Honda | Jun 2002 | B2 |
6407341 | Anstrom et al. | Jun 2002 | B1 |
6407930 | Hsu | Jun 2002 | B1 |
6448510 | Neftin et al. | Sep 2002 | B1 |
6451509 | Keesler et al. | Sep 2002 | B2 |
6476503 | Imamura et al. | Nov 2002 | B1 |
6479762 | Kusaka | Nov 2002 | B2 |
6486005 | Kim | Nov 2002 | B1 |
6486554 | Johnson | Nov 2002 | B2 |
6497943 | Jimarez et al. | Dec 2002 | B1 |
6517995 | Jacobson et al. | Feb 2003 | B1 |
6534391 | Huemoeller et al. | Mar 2003 | B1 |
6544638 | Fischer et al. | Apr 2003 | B2 |
6573598 | Ohuchi et al. | Jun 2003 | B2 |
6586682 | Strandberg | Jul 2003 | B2 |
6608382 | Liu et al. | Aug 2003 | B2 |
6608757 | Bhatt et al. | Aug 2003 | B1 |
6660559 | Huemoeller et al. | Dec 2003 | B1 |
6715204 | Tsukada et al. | Apr 2004 | B1 |
6727576 | Hedler | Apr 2004 | B2 |
6727579 | Eldridge | Apr 2004 | B1 |
6727645 | Tsujimura et al. | Apr 2004 | B2 |
6730857 | Konrad et al. | May 2004 | B2 |
6734542 | Nakatani et al. | May 2004 | B2 |
6740964 | Sasaki | May 2004 | B2 |
6753612 | Adae-Amoakoh et al. | Jun 2004 | B2 |
6765287 | Lin | Jul 2004 | B1 |
6774748 | Ito et al. | Aug 2004 | B1 |
6787443 | Boggs et al. | Sep 2004 | B1 |
6803528 | Koyanagi | Oct 2004 | B1 |
6815709 | Clothier et al. | Nov 2004 | B2 |
6815739 | Huff et al. | Nov 2004 | B2 |
6838776 | Leale et al. | Jan 2005 | B2 |
6845554 | Frankowsky et al. | Jan 2005 | B2 |
6888240 | Towle et al. | May 2005 | B2 |
6905914 | Huemoeller et al. | Jun 2005 | B1 |
6919514 | Konrad et al. | Jul 2005 | B2 |
6921968 | Chung | Jul 2005 | B2 |
6921975 | Leal et al. | Jul 2005 | B2 |
6931726 | Boyko et al. | Aug 2005 | B2 |
6943436 | Radu et al. | Sep 2005 | B2 |
6953995 | Farnworth et al. | Oct 2005 | B2 |
6967403 | Chuang et al. | Nov 2005 | B2 |
7015075 | Fay et al. | Mar 2006 | B2 |
7030469 | Mahadevan et al. | Apr 2006 | B2 |
7081661 | Takehara et al. | Jul 2006 | B2 |
7112882 | Lee | Sep 2006 | B2 |
7119432 | Desai et al. | Oct 2006 | B2 |
7125744 | Takehara et al. | Oct 2006 | B2 |
7185426 | Hiner et al. | Mar 2007 | B1 |
7192807 | Huemoeller et al. | Mar 2007 | B1 |
7196408 | Fang et al. | Mar 2007 | B2 |
7198980 | Jiang et al. | Apr 2007 | B2 |
7202107 | Fuergut et al. | Apr 2007 | B2 |
7215026 | Park et al. | May 2007 | B2 |
7238602 | Fang | Jul 2007 | B2 |
7242081 | Lee | Jul 2007 | B1 |
7247523 | Huemoeller et al. | Jul 2007 | B1 |
7262081 | Yang et al. | Aug 2007 | B2 |
7262082 | Lin et al. | Aug 2007 | B1 |
7282394 | Cho et al. | Oct 2007 | B2 |
7285855 | Foong | Oct 2007 | B2 |
7326592 | Meyer et al. | Feb 2008 | B2 |
7339279 | Yang | Mar 2008 | B2 |
7345361 | Mallik et al. | Mar 2008 | B2 |
7361987 | Leal | Apr 2008 | B2 |
7372151 | Fan et al. | May 2008 | B1 |
7405102 | Lee et al. | Jul 2008 | B2 |
7420272 | Huemoeller et al. | Sep 2008 | B1 |
7429786 | Kamezos et al. | Sep 2008 | B2 |
7459202 | Magera et al. | Dec 2008 | B2 |
7459781 | Fang et al. | Dec 2008 | B2 |
7548430 | Huemoeller et al. | Jun 2009 | B1 |
7550857 | Longo et al. | Jun 2009 | B1 |
7623733 | Hirosawa | Nov 2009 | B2 |
7633765 | Scanlan et al. | Dec 2009 | B1 |
7642133 | Wu et al. | Jan 2010 | B2 |
7671457 | Hiner et al. | Mar 2010 | B1 |
7675131 | Derderian | Mar 2010 | B2 |
7750454 | Carson et al. | Jul 2010 | B2 |
7777351 | Berry et al. | Aug 2010 | B1 |
7781883 | Sri-Jayantha et al. | Aug 2010 | B2 |
7825520 | Longo et al. | Nov 2010 | B1 |
7902660 | Lee et al. | Mar 2011 | B1 |
7928562 | Arvelo et al. | Apr 2011 | B2 |
7960827 | Miller, Jr. et al. | Jun 2011 | B1 |
7982298 | Kang et al. | Jul 2011 | B1 |
3008770 | Lin et al. | Aug 2011 | A1 |
7993983 | Lin | Aug 2011 | B1 |
8026589 | Kim et al. | Sep 2011 | B1 |
3035123 | Van et al. | Oct 2011 | A1 |
8058726 | Jin et al. | Nov 2011 | B1 |
8067268 | Carson et al. | Nov 2011 | B2 |
8106500 | Chow | Jan 2012 | B2 |
8198717 | Schenck et al. | Jun 2012 | B1 |
8222538 | Yoshida et al. | Jul 2012 | B1 |
8258015 | Chow et al. | Sep 2012 | B2 |
8269348 | Fazelpour | Sep 2012 | B2 |
8288201 | Pagaila | Oct 2012 | B2 |
8341835 | Huemoeller et al. | Jan 2013 | B1 |
8372741 | Co et al. | Feb 2013 | B1 |
8404520 | Chau et al. | Mar 2013 | B1 |
8471154 | Yoshida et al. | Jun 2013 | B1 |
8471376 | Liou et al. | Jun 2013 | B1 |
8471394 | Jang et al. | Jun 2013 | B2 |
8508954 | Kwon et al. | Aug 2013 | B2 |
8536462 | Darveaux et al. | Sep 2013 | B1 |
8552556 | Kim et al. | Oct 2013 | B1 |
8624374 | Ding et al. | Jan 2014 | B2 |
8643163 | Shim | Feb 2014 | B2 |
8759147 | Choi et al. | Jun 2014 | B2 |
8773866 | Jin et al. | Jul 2014 | B2 |
8829678 | Lee et al. | Sep 2014 | B2 |
8940630 | Damberg et al. | Jan 2015 | B2 |
8946883 | Kim et al. | Feb 2015 | B2 |
8981550 | Park et al. | Mar 2015 | B2 |
9012789 | Yoshida et al. | Apr 2015 | B1 |
9159708 | Haba | Oct 2015 | B2 |
9704842 | Lee et al. | Jul 2017 | B2 |
9721872 | Nicholls et al. | Aug 2017 | B1 |
10347562 | Nicholls | Jul 2019 | B1 |
10714408 | Nicholls | Jul 2020 | B2 |
20020011657 | Saito | Jan 2002 | A1 |
20020017712 | Bessho et al. | Feb 2002 | A1 |
20020061642 | Haji et al. | May 2002 | A1 |
20020066952 | Taniguchi et al. | Jun 2002 | A1 |
20020135057 | Kurita | Sep 2002 | A1 |
20020195697 | Mess et al. | Dec 2002 | A1 |
20030025199 | Wu et al. | Feb 2003 | A1 |
20030128096 | Mazzochette | Jul 2003 | A1 |
20030141582 | Yang et al. | Jul 2003 | A1 |
20030197284 | Khiang et al. | Oct 2003 | A1 |
20040036183 | Im et al. | Feb 2004 | A1 |
20040063246 | Kamezos | Apr 2004 | A1 |
20040145044 | Sugaya et al. | Jul 2004 | A1 |
20040159462 | Chung | Aug 2004 | A1 |
20040165362 | Farnworth | Aug 2004 | A1 |
20040262774 | Kang et al. | Dec 2004 | A1 |
20050056928 | Kwon et al. | Mar 2005 | A1 |
20050062154 | Duchesne et al. | Mar 2005 | A1 |
20050133928 | Howard et al. | Jun 2005 | A1 |
20050133932 | Pohl et al. | Jun 2005 | A1 |
20050139985 | Takahashi | Jun 2005 | A1 |
20050242425 | Leal et al. | Nov 2005 | A1 |
20060192301 | Leal et al. | Aug 2006 | A1 |
20060208351 | Poo et al. | Sep 2006 | A1 |
20060231958 | Yang | Oct 2006 | A1 |
20060258044 | Meyer et al. | Nov 2006 | A1 |
20070059866 | Yang et al. | Mar 2007 | A1 |
20070064395 | Chen et al. | Mar 2007 | A1 |
20070080757 | Yahata et al. | Apr 2007 | A1 |
20070096334 | Kawabata et al. | May 2007 | A1 |
20070132104 | Farnworth et al. | Jun 2007 | A1 |
20070220972 | Araki et al. | Sep 2007 | A1 |
20070254406 | Lee | Nov 2007 | A1 |
20070273049 | Khan et al. | Nov 2007 | A1 |
20070281471 | Hurwitz et al. | Dec 2007 | A1 |
20070290376 | Zhao et al. | Dec 2007 | A1 |
20080105967 | Yang et al. | May 2008 | A1 |
20080128884 | Meyer et al. | Jun 2008 | A1 |
20080142960 | Leal | Jun 2008 | A1 |
20080182363 | Amrine et al. | Jul 2008 | A1 |
20080203588 | Hess et al. | Aug 2008 | A1 |
20080230887 | Sun et al. | Sep 2008 | A1 |
20080246133 | Derderian | Oct 2008 | A1 |
20080290492 | Chung et al. | Nov 2008 | A1 |
20080290496 | Park | Nov 2008 | A1 |
20090026609 | Masuda | Jan 2009 | A1 |
20090051025 | Yang et al. | Feb 2009 | A1 |
20090085205 | Sugizaki | Apr 2009 | A1 |
20090236700 | Moriya | Sep 2009 | A1 |
20090243073 | Carson et al. | Oct 2009 | A1 |
20090289343 | Chiu et al. | Nov 2009 | A1 |
20090294960 | Yoshida | Dec 2009 | A1 |
20090309206 | Kim et al. | Dec 2009 | A1 |
20100007002 | Pendse | Jan 2010 | A1 |
20100007032 | Gallegos | Jan 2010 | A1 |
20100020503 | Beaumier et al. | Jan 2010 | A1 |
20100130000 | Sutou et al. | May 2010 | A1 |
20100140779 | Lin et al. | Jun 2010 | A1 |
20100167451 | Derderian | Jul 2010 | A1 |
20100181665 | Casey et al. | Jul 2010 | A1 |
20100208432 | Bhagwagar et al. | Aug 2010 | A1 |
20100320610 | Huang et al. | Dec 2010 | A1 |
20110062602 | Ahn et al. | Mar 2011 | A1 |
20110068427 | Paek et al. | Mar 2011 | A1 |
20110068478 | Pagaila et al. | Mar 2011 | A1 |
20110084382 | Chen et al. | Apr 2011 | A1 |
20110204505 | Pagaila et al. | Aug 2011 | A1 |
20110227223 | Wu et al. | Sep 2011 | A1 |
20110233782 | Chang et al. | Sep 2011 | A1 |
20120061855 | Do et al. | Mar 2012 | A1 |
20120069683 | Kamata et al. | Mar 2012 | A1 |
20120094443 | Pratt et al. | Apr 2012 | A1 |
20120153453 | Ankireddi et al. | Jun 2012 | A1 |
20120168917 | Yim et al. | Jul 2012 | A1 |
20120178218 | Bauer et al. | Jul 2012 | A1 |
20120280386 | Sato | Nov 2012 | A1 |
20120326307 | Jeong et al. | Dec 2012 | A1 |
20120326324 | Lee et al. | Dec 2012 | A1 |
20130017643 | Lin et al. | Jan 2013 | A1 |
20130037942 | Hwang et al. | Feb 2013 | A1 |
20130040427 | Hu et al. | Feb 2013 | A1 |
20130052775 | Kim et al. | Feb 2013 | A1 |
20130062786 | Leung et al. | Mar 2013 | A1 |
20130075924 | Lin et al. | Mar 2013 | A1 |
20130078765 | Lin et al. | Mar 2013 | A1 |
20130078915 | Zhao et al. | Mar 2013 | A1 |
20130093088 | Chau | Apr 2013 | A1 |
20130134559 | Lin et al. | May 2013 | A1 |
20130214402 | Park et al. | Aug 2013 | A1 |
20130241039 | Choi et al. | Sep 2013 | A1 |
20130249042 | Shen et al. | Sep 2013 | A1 |
20130273698 | Shao | Oct 2013 | A1 |
20130309814 | Too et al. | Nov 2013 | A1 |
20130320517 | Shirley | Dec 2013 | A1 |
20130328192 | Lee et al. | Dec 2013 | A1 |
20140036454 | Caskey | Feb 2014 | A1 |
20140048906 | Shim et al. | Feb 2014 | A1 |
20140061893 | Saeidi et al. | Mar 2014 | A1 |
20140077363 | Lin | Mar 2014 | A1 |
20140077364 | Marimuthu | Mar 2014 | A1 |
20140077366 | Kim et al. | Mar 2014 | A1 |
20140124949 | Paek | May 2014 | A1 |
20140131856 | Do | May 2014 | A1 |
20140138817 | Paek et al. | May 2014 | A1 |
20140210109 | Tanaka et al. | Jul 2014 | A1 |
20140217619 | Zhao et al. | Aug 2014 | A1 |
20150021791 | Park | Jan 2015 | A1 |
20150091118 | Sato et al. | Apr 2015 | A1 |
20150348928 | Co | Dec 2015 | A1 |
20160225744 | Nam et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
05-109975 | Apr 1993 | JP |
05-136323 | Jun 1993 | JP |
07-017175 | Jan 1995 | JP |
08-190615 | Jul 1996 | JP |
10-334205 | Dec 1998 | JP |
2001-118947 | Oct 1999 | JP |
2005-333052 | Dec 2005 | JP |
2006-073622 | Mar 2006 | JP |
2007-043090 | Feb 2007 | JP |
10-1997-005712 | Apr 1997 | KR |
20-0412028 | Mar 2006 | KR |
10-2006-0050579 | May 2006 | KR |
10-0787894 | Dec 2007 | KR |
10-2009-0100895 | Sep 2009 | KR |
10-0990939 | Nov 2010 | KR |
10-1056749 | Aug 2011 | KR |
10-2012-0053332 | May 2012 | KR |
10-1151258 | Jun 2012 | KR |
10-2013-0092208 | Aug 2013 | KR |
Entry |
---|
Office Action corresponding to Korean Patent Application No. 10-2012-0061321, 5 pages, dated Jun. 13, 2013. |
Office Action corresponding to Korean Patent Application No. 10-2012-0015799, 4 pages, dated May 7, 2013.Office Action corresponding to Korean Patent Application No. 10-2012-0104330, 4 pages, dated Nov. 5, 2013. |
Office Action corresponding to Korean Patent Application No. 10-2012-0104330,4 pages, dated Nov. 5, 2013. |
Office Action corresponding to Korean Patent Application No. 10-2013-0132666, 10 pages, dated Mar. 4, 2015. |
Int'l Search Report and Written Opinion corresponding to PCT/US13/69057 dated Apr. 4, 2014 (10 pages). |
CAD_CIM Requirements Article IMAPS, Sep./Oct. 1994. |
IBM Technical Disclosure Bulletin, “Microstructure Solder Mask by Means of a Laser”, vol. 36, Issue 11, p. 589, Nov. 1, 1993. (NN9311589). |
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 58.sup.th ECTC Proceedings, May 2008, Lake Buena Vista, FL, 6 pages, IEEE. |
Scanlan, “Package-on-package (PoP) with Through-mold Vias”, Advanced Packaging, Jan. 2008, 3 pages, vol. 17, Issue 1, PennWell Corporation. |
Huemoeller et al., “Build Up Motherboard Fabrication Method and Structure”, U.S. Appl. No. 11/824,395, filed Jun. 29, 2007. |
Hiner et al., “Printed Wiring Motherboard Having Bonded Interconnect Redistribution Mesa”, U.S. Appl. No. 10/992,371, filed Nov. 18, 2004. |
Nicholls et al., “Methods and Structures for Increasing the Allowable Die Size in TMV Packages,” U.S. Appl. No. 61/444,306, filed Feb. 18, 2011. |
Number | Date | Country | |
---|---|---|---|
20210166992 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
61444306 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16373357 | Apr 2019 | US |
Child | 16927454 | US | |
Parent | 15663024 | Jul 2017 | US |
Child | 16373357 | US | |
Parent | 13398646 | Feb 2012 | US |
Child | 15663024 | US |