1. Field of the Invention
The present invention relates to a power semiconductor device, and more specifically, to a power semiconductor device that uses an IGBT and a MOSFET operated in parallel as switching devices.
2. Description of the Background Art
Regarding a switching device such as an IGBT (insulated gate bipolar transistor), introducing a structure of connecting the IGBT and a MOSFET (MOS field effect transistor) in parallel has conventionally been considered with the intention of reducing switching loss.
As an example, Japanese Patent Application Laid-Open No. 4-354156 (1992) discloses in
This structure takes advantage of a difference in threshold voltage between the IGBT and the MOSFET to reflect the turn-off characteristics of the MOSFET in transient characteristics at the time of its turn-off and accommodate the turn-off characteristics of the IGBT that generates large turn-off loss, thereby reducing switching loss.
In the aforementioned structure of Japanese Patent Application Laid-Open No. 4-354156, an ON threshold voltage for the IGBT is set higher than that of the MOSFET, so that a total current always flows in the MOSFET in a transient state at the time of switching. In response, the current rating of the MOSFET should be increased. However, this in turn makes it difficult to reduce the chip size of the MOSFET, making the size reduction of the entire device difficult.
It is an object of the present invention to reduce the size of an entire power semiconductor device that uses an IGBT and a MOSFET operated in parallel as switching devices.
A power semiconductor device of the present invention includes: an inverter composed of a first switching part and a second switching part interposed in series between a first power source line through which a first voltage is applied and a second power source line through which a second voltage is applied, the first and second switching parts operating complementarily; and a first control circuit and a second control circuit that control switching operations of the first and second switching parts respectively. The first and second switching parts and the first and second control circuits are combined into a module. The first switching part includes a first IGBT and a first MOSFET. The first IGBT and the first MOSFET each have one main electrode connected to the first power source line and an opposite main electrode connected to an output node of the inverter. The second switching part includes a second IGBT and a second MOSFET. The second IGBT and the second MOSFET each have one main electrode connected to the second power source line and an opposite main electrode connected to the output node of the inverter. In a planar layout of the power semiconductor device, the first control circuit is arranged to face the first switching part, one of the first IGBT and the first MOSFET is arranged near the first control circuit, and the other of the first IGBT and the first MOSFET is arranged in a position farther from the first control circuit than the transistor near the first control circuit. The second control circuit is arranged to face the second switching part, one of the second IGBT and the second MOSFET is arranged near the second control circuit, and the other of the second IGBT and the second MOSFET is arranged in a position farther from the second control circuit than the transistor near the second control circuit. The transistor being one of the first IGBT and the first MOSFET and arranged near the first control circuit applies a gate control signal from the first control circuit to the gate of the transistor arranged far from the first control circuit. The transistor being one of the second IGBT and the second MOSFET and arranged near the second control circuit applies a gate control signal from the second control circuit to the gate of the transistor arranged far from the second control circuit. A gate control signal is applied from the first control circuit via a resistive element to the gate of a transistor being one of the first IGBT and the first MOSFET. A gate control signal is applied from the second control circuit via a resistive element to the gate of a transistor being one of the second IGBT and the second MOSFET.
In the aforementioned power semiconductor device, an IGBT and a MOSFET are not required to be arranged in parallel to a control circuit. Thus, the size of the entire device can be reduced while the IGBT and the MOSFET functioning as switching devices are used in parallel. Further, a gate control signal is applied from the first control circuit via a resistive element to the gate of a transistor being one of the first IGBT and the first MOSFET, and a gate control signal is applied from the second control circuit via a resistive element to the gate of a transistor being one of the second IGBT and the second MOSFET. This suppresses oscillation to occur when the IGBT and the MOSFET are driven in parallel.
These and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
The three-phase inverter module 100 of
The inverter IV1 includes MOSFETs (MOS field effect transistors) 7 and 10 connected in series between a power source line P connected to a terminal T1 to receive a power source voltage and a power source line N connected to a terminal T5 to receive a reference voltage, and IGBTs (insulated gate bipolar transistors) 1 and 4 connected in parallel to the MOSFETs 7 and 10 respectively. The respective sources and the respective drains of the MOSFETs 7 and 10 are connected in common to a terminal T2. The IGBT 1 and the MOSFET 7 are high-potential side switching devices which form a high-potential side switching part. The IGBT 4 and the MOSFET 10 are low-potential side switching devices which form a low-potential side switching part.
The term “MOS” mentioned herein has formerly been used to designate a stacked structure of metal, oxide, and semiconductor, and has been considered to get its name from the initials of metal, oxide, and semiconductor. Meanwhile, referring particularly to a field effect transistor having a MOS structure (hereinafter simply called a “MOS transistor”), a material for a gate insulating film or a gate electrode has been improved in response to a higher integration level and improvement of manufacturing processes in recent years, for example.
Referring for example to a MOS transistor, polycrystalline silicon has been used instead of metal as a material for a gate electrode in terms of mainly forming a soured and a drain in a self-aligned manner. Further, a material of a high dielectric constant is used as a material for a gate insulating film in terms of improving electrical characteristics. Such a high-dielectric constant material is not necessarily limited to an oxide.
Hence, use of the term “MOS” is not limited to a stacked structure of metal, oxide, and semiconductor, and the present specification does not assume this limitation as a precondition. To be specific, the term “MOS” mentioned herein is not only the abbreviation resulting from its origin but it also widely encompasses a stacked structure of conductor, insulator, and semiconductor.
Like the inverter IV1, the inverter IV2 includes MOSFETs 8 and 11 connected in series between the power source lines P and N, and IGBTs 2 and 5 connected in parallel to the MOSFETs 8 and 11 respectively. The respective sources and the respective drains of the MOSFETs 8 and 11 are connected in common to a terminal T3. The IGBT 2 and the MOSFET 8 are high-potential side switching devices which form a high-potential side switching part. The IGBT 5 and the MOSFET 11 are low-potential side switching devices which form a low-potential side switching part.
The inverter IV3 includes MOSFETs 9 and 12 connected in series between the power source lines P and N, and IGBTs 3 and 6 connected in parallel to the MOSFETs 9 and 12 respectively. The respective sources and the respective drains of the MOSFETs 9 and 12 are connected in common to a terminal T4. The IGBT 3 and the MOSFET 9 are high-potential side switching devices which form a high-potential side switching part. The IGBT 6 and the MOSFET 12 are low-potential side switching devices which form a low-potential side switching part. A diode D is connected in antiparallel to each of the MOSFETs 7 to 9 and 10 to 12, and these diodes D are internal parasitic diodes.
The respective gates of the MOSFET 7 and the IGBT 1 are connected in common to a gate control circuit 18. The source of the MOSFET 7 and the emitter of the IGBT 1 are connected in common to the gate control circuit 18.
The respective gates of the MOSFET 8 and the IGBT 2 are connected in common to the gate control circuit 18. The source of the MOSFET 8 and the emitter of the IGBT 2 are connected in common to the gate control circuit 18.
The respective gates of the MOSFET 9 and the IGBT 3 are connected in common to the gate control circuit 18. The source of the MOSFET 9 and the emitter of the IGBT 3 are connected in common to the gate control circuit 18.
A connecting line connecting each of the gates of the IGBTs 1 to 3 and the gate control circuit 18 is called a line 13. A connecting line connecting each of the gates of the IGBTs 1 to 3 and the gate of a corresponding one of the MOSFETs 7 to 9 is called a line 15. A connecting line connecting each of the emitters of the IGBTs 1 to 3 and the source of a corresponding one of the MOSFETs 7 to 9 is called a line 16. A connecting line connecting each of the lines 16 and the gate control circuit 18 is called a line 14. A connecting line connecting each of the lines 16 and a corresponding one of the terminals T2 to T4 is called a line 17.
The respective gates of the MOSFET 10 and the IGBT 4 are connected in common to a gate control circuit 19. The respective gates of the MOSFET 11 and the IGBT 5 are connected in common to the gate control circuit 19. The respective gates of the MOSFET 12 and the IGBT 6 are connected in common to the gate control circuit 19.
The reference voltage is applied via a terminal T 10 to the gate control circuits 18 and 19.
As shown in
As shown in
A lead frame LF1 is arranged on the same side as the gate control circuits 18 and 19. A lead frame LF2 is arranged on the same side as the IGBTs 1 to 6 and the MOSFETs 7 to 12.
The lead frame LF1 includes a plurality of leads LT1, and die pads P11 and P12 on which the gate control circuits 18 and 19 are mounted respectively.
The die pads P11 and P12 are arranged parallel to a long side of the resin package RP and are connected mutually. Each of the die pads P11 and P12 is connected to some of the leads LT1. The gate control circuits 18 and 19 receive the reference voltage via the leads LT1 connected to the die pads P11 and P12, so that these leads LT1 function as the terminal T10 of
The lead frame LF2 includes seven leads LT2, die pads P1 to P4, and wire bonding regions P5 to P7 and P21 to P23.
The die pads P1 to P4 are arranged parallel to a long side of the resin package RP and are independent of each other. The die pads P2 to P4 are connected integrally to the wire bonding regions P21 to P23 respectively, and the wire bonding regions P21 to P23 are each connected integrally to a corresponding lead LT2. The die pad P1 and the wire bonding regions P5 to P7 are each connected integrally to a corresponding lead LT2. The wire bonding regions P21 to P23 and P5 to P7 are arranged parallel to a long side of the resin package RP.
The lead LT2 integral with the die pad P1 corresponds to the terminal T1 of
In
The MOSFETs 7 to 9 are arranged on the die pad P1 so as to face the IGBTs 1 to 3 respectively. The MOSFETs 10 to 12 are arranged on the die pads P2 to P4 respectively so as to face the IGBTs 4 to 6 respectively.
As shown in
More specifically, the gate pad G1 is arranged on an edge portion of one of the short sides of the rectangular shape of the emitter E, and the gate pad G2 is arranged on an edge portion of the opposite short side thereof. The gate pads G1 and G2 communicate with each other inside the IGBT 4, so that a gate control signal applied to the gate pad G1 from the gate control circuit 19 can be taken out from the gate pad G2. The IGBT 4 is mounted on the die pad P2 such that the gate pad G1 faces the gate control circuit 19.
As shown in
More specifically, the gate pad G11 is arranged on an edge portion of one of the short sides of the rectangular shape of the source S. The MOSFET 10 is mounted on the die pad P2 such that the gate pad G11 faces the IGBT 4. Regarding mounting of the IGBT 4 and the MOSFET 10 on the die pad P2, arranging the gate pad G2 of the IGBT 4 and the gate pad G11 of the MOSFET 10 so as to face each other acts advantageously in wire bonding. The IGBTs 1 to 3, 5 and 6, and the MOSFETs 7 to 9 and 11 and 12, have the same structures as those of the IGBT 4 and the MOSFET 10.
As shown in
The respective gate pads G2 (
The respective emitters E (
Gold wires or copper wires are used as the lines 13 to 15, whereas aluminum wires are used as the lines 16.
The respective sources S (
As shown in
The respective emitters E (
In the structure shown in
More specifically, two gate pads such as the gate pads G1 and G2 should be provided in each of the MOSFETs 7 to 12 if the MOSFETs 7 to 12 are arranged near the gate control circuits 18 and 19. This reduces the effective area of each of the MOSFETs 7 to 12 as a semiconductor chip.
For reduction of the ON resistance of a MOSFET, a chip size should be increased and this involves cost increase. Meanwhile, providing two gate pads in the MOSFET reduces the effective area thereof, so that the chip size should be increased more to maintain the effective area. However, increasing the chip size more involves size increase of the entire device.
In contrast, arranging the MOSFETs 7 to 12 far from the gate control circuits 18 and 19 requires only one gate pad in each of the MOSFETs 7 to 12. This avoids reduction of an effective area to make it unnecessary to increase a chip size. As a result, size increase of the entire device is avoided.
As shown in
Oscillation to occur when an IGBT and a MOSFET are driven in parallel is described by referring to
As shown in
A diode D2 is connected in antiparallel to the MOSFET 10, and the diode D2 is an internal parasitic diode. As a result of the presence of the aforementioned inductance components and the capacitive components, an oscillation circuit OC passing through the inductance components and the capacitive components is formed as indicated by dashed lines of
In this case, the LC oscillation is suppressed by connecting the resistive element R1 to the gate of the IGBT 4 as shown in
In the structure of
As shown in
In this case, the LC oscillation is suppressed by connecting the resistive element R1 to the gate of the MOSFET 10 as shown in
If the resistive element R1 is connected to the gate of the MOSFET 10, the MOSFET 10 is turned on after the IGBT 4 is turned on at the time of turn-on. This suppresses a current to flow via a MOSFET at the time of switching, so that a rating for the maximum current to flow in the MOSFET becomes unnecessary. This allows size reduction of the MOSFET and eventually, size reduction of the entire module.
Part (b) of
The resistive elements R11 and R12 are provided in space from under the gate pad G1 to a gate and cannot be seen from outside. However, for the sake of convenience, the resistive elements R11 and R12 are illustrated as those that can be seen from outside in part (b) of
Connecting the resistive elements R11 and R12 in series can increase a resistance value. Connecting the resistive elements R11 and R11 in parallel can reduce a resistance value as compared to the case where the resistive element R11 or R12 is used alone, and can adjust the resistance value of the resistive element R1.
In the structure described above, the IGBTs 1 to 6 or the MOSFETs 7 to 12 are arranged near the gate control circuits 18 and 19, and a resistive element is provided to the gate of a switching device arranged near the gate control circuit 18 or 19. Meanwhile, a resistive element may also be provided to the gate of a switching device arranged far from the gate control circuit 18 or 19.
Even in this structure, the LC oscillation explained by referring to
In
The structure where a resistive element is connected to the gate of a switching device arranged far from the gate control circuit 18 or 19 may also be one shown in
In
Thus, influence of reduction of the effective area caused by formation of the gate pads G21, G22 and the resistive element R1 can be relatively small. Further, the resistive element R1 is not required to be embedded in the IGBT 4 and the IGBT 4 is not required to have two gate pads. As a result, a wider bonding region can be maintained in the IGBT 4 of a small chip size.
Arranging the MOSFETs 7 to 12 near the gate control circuits 18 and 19 achieves different effect as follows.
If the MOSFETs 7 to 12 are arranged far from the gate control circuits 18 and 19, a path through which a main circuit current flows overlaps a gate-charge loop. This may reduce the gate-to-emitter voltages of the IGBTs 1 to 6.
A mechanism of this reduction is explained by referring to
For the sake of simplicity, only the combination of the MOSFET 10 and the IGBT 4 is shown in
As shown in
In contrast, if the MOSFET 10 is arranged near the gate control circuit 19 as shown in
To be specific, arranging the MOSFETs 7 to 12 near the gate control circuits 18 and 19 and arranging the IGBTs 1 to 6 far from the gate control circuits 18 and 19 suppresses reduction of a gate voltage.
As described above, arranging the MOSFETs 7 to 12 near the gate control circuits 18 and 19 suppresses reduction of the gate-to-emitter voltages of the IGBTs caused by the main circuit current to flow at the time of application of an overload, thereby allowing reduction of loss to be generated at the time of application of an overload.
In a structure where an IGBT and a MOSFET as switching devices are used in parallel, only the thresholds for the MOSFET and the IGBT are generally used for on-off control of both of the devices. In the present invention, on-off timing of each of the IGBT and the MOSFET is controlled by a resistive element embedded in a switching device and a balance between the thresholds for the IGBT and the MOSFET, such that the MOSFET is turned on first and the IGBT is turned on next.
In a structure where a resistive element is not connected to a gate, timing of switching is controlled only by the threshold for a device. Thus, if a threshold for a MOSFET is higher than that for an IGBT, the IGBT is turned on first and the MOSFET is turned off first. If a threshold for the MOSFET is lower than that for the IGBT, the MOSFET is turned on first and the IGBT is turned off first.
In the structure of the present invention, on-off timing of each of an IGBT and a MOSFET is controlled by a resistive element connected to a gate and by a balance between respective thresholds for the IGBT and the MOSFET. This structure allows the following cases: the IGBT is turned on and off first where a threshold for the MOSFET is higher than that for the IGBT; and the MOSFET is turned on and off first where a threshold for the MOSFET is lower than that for the IGBT. This achieves a larger number of on-off patterns, so that the range of control can be extended.
A gate current flowing in a device is reduced to reduce turn-on speed if the device has a gate connected to a resistive element. Thus, the resistive element is connected to the gate of an IGBT if a MOSFET is to be turned on first.
A slope of a rising edge and that of a falling edge of a collector-to-emitter (drain-to-source) saturation voltage (dv/dt) at the time of turn-on and turn-off are generally gentler in an IGBT than in a MOSFET. Further, a feedback capacitance is determined by a total of the feedback capacitances of the MOSFET and the IGBT. This makes dv/dt more gentler to cause increase of turn-on loss. Thus, for reduction of loss to be generated at the time of turn-on, the MOSFET achieving switching speed higher than that of the IGBT is turned on first.
Reduction of loss to be generated at the time of turn-on is explained below by referring to
In
Turn-off loss is determined as a region defined by the rising edge waveform of the collector-to-emitter voltage VCE and the falling edge waveform of the current I at the time of turn-off, and a slope SL2 of the rising edge of the collector-to-emitter voltage VCE indicates dv/dt at the time of turn-off. Thus, loss to be generated at the time of turn-off is increased if dv/dt is gentle.
As shown in
For the sake of convenience,
When application of a gate voltage is started for turn-on of the MOSFET 10, a gate current first starts to flow from the gate to the source as indicated by a gate-charge loop MGL in
When the gate voltage reaches a threshold voltage thereafter, the MOSFET 10 is turned on. In response, a main circuit current MC starts to flow from the terminal T2 into the terminal T10 via the MOSFET 10 as shown in
Thus, a larger feedback capacitance requires longer time for charging the feedback capacitance. This extends the flat period indicated by the region “C,” so that loss to be generated at the time of turn-on is increased.
If a MOSFET and an IGBT are connected in parallel, a feedback capacitance is determined by a total of the feedback capacitances of the MOSFET and the IGBT. This further extends time required for charging the feedback capacitance, increasing loss to be generated at the time of turn-on.
In response, a MOSFET achieving switching speed higher than that of an IGBT is turned on first, so that turn-on of the IGBT is started after the MOSFET is turned on. Thus, the feedback capacitance is not determined by a total of those of the MOSFET and the IGBT to avoid extension of turn-on time, thereby achieving reduction of loss to be generated at the time of turn-on.
In the three-phase inverter module 100 described above, on-off timing is controlled by a resistive element embedded in a switching device and a balance between the respective thresholds for an IGBT and a MOSFET. Meanwhile, on-off timing may also be controlled by a diode element connected in series to the resistive element.
In this structure, timing of turn-on of the MOSFET 10 can be controlled by using the Zener diode ZD without the need of adjusting the characteristics of the MOSFET 10.
More specifically, according to the characteristics of a Zener diode, a current is not caused to flow until a certain voltage (breakdown voltage) is reached, and is caused to flow when the breakdown voltage is exceeded. Thus, connecting the Zener diode ZD to the gate of the MOSFET 10 as shown in
A Zener diode is not always connected to a MOSFET, and is not limited to a device to which a resistive element is connected. Regarding a MOSFET, however, increasing a threshold for the MOSFET increases its ON-resistance to result in larger loss. Connecting a Zener diode to the MOSFET makes it unnecessary to increase a threshold for the MOSFET, so that loss increase is avoided.
Like a resistive element, the Zener diode ZD may be embedded in either an IGBT or a MOSFET.
In the three-phase inverter module 100 described above, a wire connecting the emitter of an IGBT and the source of a MOSFET and a wire connecting the respective gate pads of the IGBT and the MOSFET are made of different materials. More specifically, an aluminum wire is used as the wire connecting the emitter and the source, and a gold or copper wire is used as the wire connecting the gate pads.
The wire connecting the emitter and the source may be made of the same material as the wire connecting the gate pads.
A current flowing between the emitter and the source is larger than a gate current, so that the emitter and the source are connected via a wire group WLG as shown in
This structure does not require different wire bonding steps for connecting the emitter and the source and for connecting the gate pads, thereby allowing simplification of manufacturing steps.
In the three-phase inverter module 100 described above, as described by referring to
The die pads P1 to P4 on which the switching devices are mounted are greater in thickness than the die pads P11 and P12. Thus, during wire bonding for connecting the switching devices and the gate control circuits 18 and 19 via the lines 13 and the lines 14, a height difference is generated as a result of difference in thickness between the die pads, so that a wire loop can be formed easily.
Meanwhile, switching devices to be driven in parallel are mounted on a common die pad as shown in
In response, a die pad on which switching devices are to be mounted is given a step as shown in
This structure avoids a problem resulting from shortage in the height of a wire loop during wire bonding.
The height difference between the IGBT 4 and the MOSFET 10 is substantially the same as the thickness of a switching device.
In the three-phase inverter module 100 described above, as described by referring to
Alternatively, as described by referring to
The IGBT 4 and the MOSFET 10 of these structures including a plurality of gad pads are not arranged in a general layout, leading to increase of manufacturing cost.
The increase of manufacturing cost is avoided by a structure shown
The die pad P31 and the gate control circuit 19 are connected by bonding via a wire WL, the gate pad G1 of the IGBT 4 and the die pad P31 are connected by bonding via the wire WL, and the gate pad G11 of the MOSFET 10 and the die pad P31 are connected by bonding via the wire WL.
In this structure, a gate control signal from the gate control circuit 19 is applied to the respective gates of the IGBT 4 and the MOSFET 10 via the die pad P31, so that a plurality of gate pads becomes unnecessary in the IGBT 4 (or MOSFET 10).
As a result, the IGBT 4 and the MOSFET 10 including one gate pad can be arranged in a general layout, so that increase of manufacturing cost is avoided.
In the three-phase inverter module 100 described above, a resistive element is embedded in a switching device such as the IGBT 4 and the MOSFET 10. Regarding a structure where a resistive element is connected to the gate of a switching device arranged far from the gate control circuit 18 or 19 as described by referring to
In this case, a wire to connect the switching devices is made of an alloy of nickel and chrome, and has a diameter of from 15 to 35 μm and a length of from 4 to 5 mm. Then, the switching devices are connected by bonding via the wire. As a result, this wire is allowed to have a resistance value (from 5 to 20Ω, for example) that is about 50 times that of a gold wire, and can substantially function as the aforementioned resistive element. This eliminates the need of providing a resistive element separately.
If the wire to connect the switching devices is made of an alloy of copper and nickel, has a diameter of from 15 to 35 μm and a length of from 4 to 5 mm, and the switching devices are connected by bonding via the wire, the wire is allowed to have a resistance value (from 2.5 to 10Ω, for example) that is about 25 times that of a gold wire. As a result, the wire can substantially function as the aforementioned resistive element, thereby eliminating the need of providing a resistive element separately.
In the description above, the types of a MOSFET and an IGBT are not specifically limited. The MOSFET or the IGBT may be a silicon (Si) semiconductor device formed on a silicon substrate, a silicon carbide (SiC) semiconductor device formed on a silicon carbide substrate, or a gallium nitride (GaN) series semiconductor device formed on a substrate made of a gallium nitride material.
SiC and GaN are wide band-gap semiconductors. A semiconductor device composed of a wide band-gap semiconductor achieves a high breakdown voltage and a high allowable current density, so that it can reduce the size of the three-phase inverter module 100 further than a silicon semiconductor device.
An IGBT can certainly be a wide band-gap semiconductor device, or both an IGBT and a MOSFET can be wide band-gap semiconductor devices.
More desirably, only the MOSFET is a wide band-gap semiconductor device, whereas the IGBT is a reverse conducting IGBT or RC-IGBT shortly formed on a silicon substrate.
As shown in
If the MOSFET is a MOSFET made of SiC as a wide band-gap semiconductor, a parasitic diode of the SiC-MOSFET generates voltage drop in the forward direction larger than that of a parasitic diode of an Si-MOSFET. Hence, power loss in the free-wheeling diode to be generated during flow of the aforementioned free-wheeling current becomes larger than that in the Si-MOSFET.
In response, an RC-IGBT made of Si is used as an IGBT connected in parallel to the MOSFET. As a result, the aforementioned free-wheeling current mainly flows in an anti-parallel diode embedded in the RC-IGBT made of Si generating small voltage drop in the forward direction, so that power loss to be generated during flow of the aforementioned free-wheeling current is not increased.
An RC-IGBT is a device including an IGBT and a diode connected in antiparallel to the IGBT and integral with the IGBT, and has a well-known structure.
The preferred embodiment of the present invention can be modified or omitted where appropriate without departing from the scope of the present invention.
While the invention has been shown and described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is therefore understood that numerous modifications and variations can be devised without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2012-287634 | Dec 2012 | JP | national |