Processed stacked dies

Information

  • Patent Grant
  • 11652083
  • Patent Number
    11,652,083
  • Date Filed
    Wednesday, December 16, 2020
    3 years ago
  • Date Issued
    Tuesday, May 16, 2023
    a year ago
Abstract
Representative implementations of techniques and methods include processing singulated dies in preparation for bonding. A plurality of semiconductor die components may be singulated from a wafer component, the semiconductor die components each having a substantially planar surface. Particles and shards of material may be removed from edges of the plurality of semiconductor die component. Additionally, one or more of the plurality of semiconductor die components may be bonded to a prepared bonding surface, via the substantially planar surface.
Description
FIELD

The following description relates to processing of integrated circuits (“ICs”). More particularly, the following description relates to techniques for processing singulated dies in preparation for bonding.


BACKGROUND

Dies may be stacked in a three-dimensional arrangement as part of various microelectronic packaging schemes. This can include stacking a layer of one or more dies on a larger base die, stacking multiple dies in a vertical arrangement, and various combinations of both. Dies may also be stacked on wafers or wafers may be stacked on other wafers prior to singulation. The dies or wafers may be bonded in a stacked arrangement using various bonding techniques, including using direct dielectric bonding, non-adhesive techniques, such as a ZiBond® direct bonding technique or a DBI® hybrid bonding technique, both available from Invensas Bonding Technologies, Inc. (formerly Ziptronix, Inc.), a subsidiary of Xperi Corp (see for example, U.S. Pat. Nos. 6,864,585 and 7,485,968, which are incorporated herein in their entirety).


When bonding stacked dies using a direct bonding technique, it is desirable that the surfaces of the dies to be bonded be extremely flat and smooth. For instance, the surfaces should have a very low variance in surface topology, such that the surfaces can be closely mated to form a lasting bond. It is also desirable that the surfaces be clean and free from impurities, particles, and/or other residue. The presence of undesirable particles for instance, can cause the bond to be defective or unreliable at the location of the particles. For instance, some particles and residues remaining on bonding surfaces can result in voids at the bonding interfaces between the stacked dies. If the voids are substantially smaller than the metallic electrical interconnect size, they may be acceptable. However, particles that cause bonding defects in sizes that are close to or exceed the electrical interconnect size often cannot be tolerated, since they can negatively impact the electrical conductivity of the interconnect.


Since semiconductor wafers (e.g., silicon wafers, for example) are brittle, it is common for defects or particles to be created at the edges of dies as they are singulated. As an example, silicon can crack during cutting, forming loose particles. Mechanical cutting or sawing often leaves a rough edge and can also leave particles or shards of silicon on or near the edges of cut dies. In addition, mechanical saw dicing typically transfers materials from the dicing sheet to the side wall and edge of the singulated dies. Laser cutting can also leave particles on the surface or edge of the dies. Various processes can be used to clean the surfaces of the dies after cutting. However, the processes can often leave some particles at the periphery of the die or at an edge wall of the die. Even when die surfaces are polished, shards may still be present on the edges or sidewalls of the dies. The loose particles and shards left behind can be problematic to forming reliable bonds. Additionally, these loose or partially loose particles may re-contaminate the bonding surfaces of interest or the bonding tool, etc. in subsequent operations.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.


For this discussion, the devices and systems illustrated in the figures are shown as having a multiplicity of components. Various implementations of devices and/or systems, as described herein, may include fewer components and remain within the scope of the disclosure. Alternately, other implementations of devices and/or systems may include additional components, or various combinations of the described components, and remain within the scope of the disclosure.



FIG. 1(A) is a profile view showing defects on a top surface of a die, according to an embodiment. FIG. 1(B) is a profile view showing a section of bonded dies with defects. FIG. 1(C) is a profile view showing a section of bonded dies without defects.



FIG. 2 is a graphical flow diagram illustrating an example process of processing stacked dies, according to an embodiment.



FIG. 3 is a graphical flow diagram illustrating an example process of processing stacked dies, according to another embodiment.



FIG. 4 is a graphical flow diagram illustrating an example process of processing stacked dies, according to a further embodiment.



FIG. 5(A) is a profile view of a die with a recessed oxide region, according to an embodiment. FIG. 5(B) is a magnified view of the profile view of the die with a recessed oxide region. FIG. 5(C) is an example of a bonded die arrangement having a recessed oxide region.



FIG. 6 is a flow diagram illustrating example processes for processing stacked dies, according to an embodiment.





SUMMARY

Various embodiments and techniques can be used to process singulated dies in preparation for bonding. The embodiments comprise techniques to remedy the accumulation of defects found on dies, and includes removing, dissolving or etching particles at the edges of dies to provide a smooth bonding surface. The dies may be comprised of a semiconductor or a non-semiconductor material. Semiconductor materials may, for example, comprise direct band gap or indirect band gap semiconductors and their combinations thereof. Non-semiconductor materials may comprise, for example, a dielectric material for example, glass, ceramic, glass ceramics, silicon carbide, silicon oxycarbides, silicon nitrides or silicon oxynitrides, diamond, silicon oxide, or the like, or combinations thereof.


A microelectronic system can include at least a first microelectronic component comprising a base semiconductor layer and a dielectric layer, the dielectric layer having a substantially planar surface. Additionally, a second microelectronic component may be directly bonded without adhesive to the dielectric layer of the first microelectronic component, the dielectric layer having an undercut at a periphery of the dielectric layer, such that an area of the dielectric layer is less than an area of a footprint of the first and/or second microelectronic components. Alternatively, the second microelectronic component may comprise at least a second base semiconductor layer and a second dielectric layer, the second dielectric layer having a substantially planar surface. Additionally, the second dielectric layer may be directly bonded without adhesive to the first dielectric layer, at the first and second substantially planar surfaces, the first base semiconductor layer and the second base semiconductor layer having an undercut at a periphery of the first and second base semiconductor layers, respectively, such that an area of a footprint of the first base semiconductor layer and an area of a footprint of the second base semiconductor layer is less than an area of the first and/or second dielectric layers.


In a first embodiment, an undercut at a periphery of the base semiconductor layer of the first microelectronic component and/or the second microelectronic component may correspond to an undercut at the periphery of the dielectric layer of the first microelectronic component and/or the second microelectronic component.


In a second embodiment, the second microelectronic component may include at least a base semiconductor layer and a dielectric layer with a substantially planar surface, the dielectric layer of the first microelectronic component being directly bonded to the dielectric layer of the second microelectronic component, and the dielectric layer of the second microelectronic component having an undercut at a periphery of the dielectric layer of the second microelectronic component, such that an area of the dielectric layer of the second microelectronic component is less than the area of the footprint of the first and/or second microelectronic components.


A method for forming a microelectronic system can include singulating a plurality of semiconductor die components from a wafer component, the semiconductor die components each having a substantially planar surface. Particles and shards of material may be removed from edges of the plurality of semiconductor die components. Additionally, one or more of the plurality of semiconductor die components may be bonded to a prepared bonding surface, via the substantially planar surface.


In a third embodiment, the particles and shards of material may be removed by etching the edges of the plurality of semiconductor die components. The edges of the plurality of semiconductor die components may be etched while the plurality of semiconductor die components are on a dicing carrier (such as a dicing sheet, dicing tape, etc.). Additionally, the edges of the plurality of semiconductor die components may be etched using a chemical etchant. In an implementation, the chemical etchant can comprise hydrofluoric acid and nitric acid with Benzotriazole (BTA) or other chemicals that inhibit Cu dissolution in the etchant. Further, the edges of the plurality of semiconductor die components may be etched using a plasma etch. Additionally, the edges of the plurality of semiconductor die components may be etched to reduce a thickness of the plurality of semiconductor die components such that a space is created at one or more of the edges of each of the plurality of semiconductor die components. The semiconductor die components may include an oxide layer as the substantially planar surface, and the etching may include removing at least a portion of the oxide layer at the edges of the plurality of semiconductor die components. Still yet, the substantially planar surface of the plurality of semiconductor die components may be etched. The substantially planar surface may be etched to a preselected depth or for a preselected duration.


In a fourth embodiment, a protective coating may be applied to the substantially planar surface of the plurality of semiconductor die components prior to etching to protect the substantially planar surface from the etchant.


In a fifth embodiment, the plurality of semiconductor die components may be heated after singulating to cause the protective coating to recede from a periphery of the plurality of semiconductor die components. Additionally, the periphery of the plurality of semiconductor die components may be etched to a preselected depth. Further, the plurality of semiconductor die components may include a dielectric layer over a base semiconductor layer. Additionally, the periphery of the plurality of semiconductor die components may be etched to remove the dielectric layer and expose the base semiconductor layer at the periphery of the plurality of semiconductor die components.


In a sixth embodiment, the one or more of the plurality of semiconductor die components may be bonded by either a direct bonding technique without adhesive or a metal to metal diffusion bond.


In a seventh embodiment, particles and shards of material may be removed from a sidewall of the plurality of semiconductor die components, wherein the particles and shards are removed from the sidewall by etching the sidewall of the plurality of semiconductor die components.


In one embodiment, after a singulation step, particles and shards of material may be removed from a sidewall of a die by means of ultrasonic or megasonic radiation in one or more an alkaline fluids. Following the particle removal, the sidewall of the die may be further etched to remove portions of the sidewall and portions of a planar dielectric layer of the die.


Some of the disclosed processes may be illustrated using block flow diagrams, including graphical flow diagrams and/or textual flow diagrams. The order in which the disclosed processes are described is not intended to be construed as a limitation, and any number of the described process blocks can be combined in any order to implement the processes, or alternate processes. Additionally, individual blocks may be deleted from the processes without departing from the spirit and scope of the subject matter described herein. Furthermore, the disclosed processes can be implemented in any suitable manufacturing or processing apparatus or system, along with any hardware, software, firmware, or a combination thereof, without departing from the scope of the subject matter described herein.


Implementations are explained in more detail below using a plurality of examples. Although various implementations and examples are discussed here and below, further implementations and examples may be possible by combining the features and elements of individual implementations and examples.


DETAILED DESCRIPTION
Overview

Various embodiments and techniques can be used to process singulated dies in preparation for bonding. The embodiments comprise techniques to remedy the accumulation of particles found on dies, including particles created during the singulation of the dies, and includes removing, dissolving or etching shards at the edges of dies to provide a smooth bonding surface.



FIG. 1(A) is a profile view showing defects on a top surface of a die, according to an embodiment. As shown, a first die 102 is shown without any defects. In contrast, a second die 104 is shown with defects 106. Of course, it is to be appreciated that defects 106 may occur on any surface, sidewall, and/or edge of the first die 102 and/or second die 104.


The first die 102 and/or the second die 104 may be singulated from and/or removed from wafers, such as GaAs, diamond coated substrates, silicon carbide, silicon oxide, Silicon Nitride, silicon wafers, Lithium Niobate, Lithium Tantalate, flat panels, glasses, ceramics, circuit boards, packages, an interposer, structures with or without an embedded metallic layer, conductive interconnects 108, device or devices, etc. In one embodiment, defects 106 may include particles and/or shards and may result from die cutting, dicing, and/or singulating the first die 102 and/or the second die 104. For example, mechanical cutting (i.e. sawing) of the first die 102 and/or the second die 104 may cause defects such as particles 106, particularly at the edges and/or sidewalls. Additionally, when the first die 102 and/or the second die 104 is cut (even using a laser), the first die 102 and/or the second die 104 may crack and/or generate particles 106 (such as silicon oxide particles). Further, after polishing the first die 102 and/or the second die 104, shards of particles 106 may still be present on the edges and/or sidewalls of the first die 102 and/or the second die 104.



FIG. 1(B) is a profile view showing a section of bonded dies with defects such as particles 106. As shown, with defects 106 present at a portion of the bonding surface of the second die 104, the first die 102 cannot be fully bonded to the second die 104. This is shown by the gap 110 (or void) found between the first die 102 and the second die 104. This gap 110 may be intolerable if the integrity of the bond is compromised, or if the gap 110 is large enough to negatively impact the electrical conductivity of mating electrical interconnects 108 if present at the bonding surfaces of the dies 102 and 104. As discussed above, although the defects 106 may be found on the bonding surface of the second die 104, additional or other defects (such as particles) may be found along another surface and/or sidewall of the first die 102 and/or the second die 104.



FIG. 1(C) is a profile view showing a section of intimately bonded dies without defects. As shown, the first die 102 is fully and completely bonded to the second die 104. Any conductive interconnects 108 at the surfaces of the dies 102 and 104 are bonded as well, with reliable electrical conductivity between the interconnects 108. FIG. 1(C) shows the first die 102 and the second die 104 after each has been properly prepared for bonding. For example, the edges and sidewalls of the first die 102 and/or the second die 104 may be cleaned and etched to remove particles and shards of silicon. The edges of the first die 102 and/or the second die 104 may be etched with a dry (plasma) etch and/or wet (chemical) etch while the first die 102 and/or the second die 104 are still on a carrier (e.g., a dicing sheet or tape, grip ring, etc.) after singulation. A protective coating may be applied to the bonding surface of the first die 102 and/or the second die 104 to protect the surface during the singulation and etching. In one example, the surface and sidewalls of the first die 102 and/or the second die 104 may be etched, while, in another example, the etching may be limited to the sidewalls of the first die 102 and/or the second die 104. It is noted that the interconnects 108 are shown simplistically and not to scale. For example, the interconnects 108 may comprise one or more layers that together form the interconnect 108. Moreover, the interconnects 108 may extend partially or completely through either or both dies 102 and 104 or may even be provided only at or along the surface(s) of the dies 102 and 104 as a pattern of traces interconnecting devices within the die(s) 102 and 104.


Example Embodiments


FIG. 2 illustrates an example process 200 of processing stacked dies, according to an embodiment. At (A), a substrate 202 (which may be a silicon wafer, for example) may include an bonding layer 204, which may comprise an insulator or dielectric layer, such as an oxide, or a hybrid bonding layer, e.g., a combination of insulative material (such as oxide) and electrically conductive interconnect layers. This bonding layer 204 may be formed on one or both sides of the substrate 202. Layer(s) 204 may be protected by a first protective layer 206 and/or a second protective layer 208. Alternatively, the substrate 202 may be exposed and/or have any number of protective layers.


At (B), the substrate 202 may be singulated on a carrier 212, into a plurality of singulated dies 210. In one embodiment, the carrier 212 may include a processing sheet, a dicing sheet or tape, grip ring, etc. Additionally, the substrate 202 may be singulated using saw dicing, wet etch or dry etch or laser methods or combinations of thereof. In one embodiment, the singulated dies 210 may have a substantially planar surface.


At (C), the singulated dies 210 may be exposed to ultra-violet light (UV) (for example, to cure the adhesive layer on the tape used as a carrier 212 for the substrate 202, to reduce the adhesion between the die 210 surface contacting the tape, or the like). Additionally, in one embodiment, the carrier 212 may be stretched while the singulated dies 210 are on the carrier 212, in preparation for cleaning and further processing the singulated dies 210. Further processing can include reducing the thickness of the singulated dies 210, for example.


At (D), the singulated dies 210 may be cleaned and the sidewalls of the singulated dies 210 may be etched. For example, the cleaning may remove one or more protective layers, including the protective layer 206 and/or the protective layer 208. In an embodiment, the etching may dissolve silicon oxide, silicon nitride, and/or silicon to eliminate the particles and/or shards. Chemical etchants 211, including acids, may be used to etch the periphery of the surface of the dies 210, including the bonding layer 204, and may also be used to etch the sidewalls of the singulated dies 210. In an example where the surface and/or sidewalls of the singulated dies 210 are etched (for silicon dies 210, for instance), the etchant 211 may comprise a chemical mixture of hydrofluoric acid and a suitable oxidizing agent, for example nitric acid. In some applications, a wet etchant may be comprised of a mixture of buffered hydrofluoric acid and a suitable organic acid in combination with an oxidizing agent. In other applications, a suitable metal complexing agent may be added to the etching solution to protect the metals on the die 210 bonding surface from the etchant. In one example, a metal complexing or passivating agent may be comprised of molecules with triazole moieties, for example Benzotriazole (BTA), or the like. In one embodiment, the BTA may protect copper on the surface of the singulated dies 210 from corrosion or dissolution by the etching solution.


After etching the surface (and sidewalls) of the die 210 and stripping off the protective layer 206 and/or 208, the complexing agent is cleaned off of the bonding surface of the die 210. As an alternative to a wet etch, the sidewalls of the die 210 may also be cleaned using dry etch methods, including using plasma processing similar to processes used in etching silicon. After a dry sidewall etching step, the protective layer 206 can be stripped from the bonding surface of the sidewalls of the die 210. Cleaning the protective layer 206 may also include cleaning any organic material residues resulting from the dry etching. In one embodiment, the organic residue on the side wall of the processed die 210 may be left intact. Strongly adhering side wall organic residue may minimize subsequent particles shedding from the die 210.


Additionally, cleaning and/or further processing of the singulated dies 210 may occur on a spin fixture 214 (or the like). The chemical etchant 211 is sprayed onto the diced wafer surface and forms a thin layer over the top surface of the dies 210 and fills the gaps between the dies 210. In one embodiment, etching the sidewalls of the singulated dies 210 may cause defects on the sidewalls of the dies 210 to be removed.


Optionally, in an embodiment, the sidewalls of the dies 210 may be selectively coated to coat to the sidewalls and any particles and/or shards that may be present on the sidewalls. For example, a selective coating 218 may be applied to the sidewalls, using a spin coating process, an electrocoating process, or the like. The particles and/or shards are coated to the sidewalls with the coating 218 to adhere the particles and/or shards to the sidewalls, preventing the particles and/or shards from contaminating other areas of the dies 210, including the bonding surfaces of the dies 210. In various embodiments, the coating layer 218 comprises a material such as a glass, a boron doped glass, a phosphorus doped glass, or the like, that adheres to the silicon of the sidewalls, and won't generally adhere to any other surfaces.


In various embodiments, the coating layer 218 comprises a layer that is approximately 50 nm or less, that traps the particles and shards to the sidewalls of the dies 210, and prevents their shedding off the sidewalls. The coating layer 218 may be heat cured to the dies 210 for stabilization, for a predefined duration at a predefined temperature (e.g., approximately 80 degrees C., or the like). While the coating layer 218 can be added after cleaning the dies 210 as discussed, in various embodiments, the coating layer 218 may be deposited to the sidewalls at other steps in the process 200.


At (E), the singulated dies 210 may undergo plasma processes (such as ashing, for example) to remove any residue of the protective layer 206. At (F), the singulated dies 210 may be cleaned to remove any residues or particles of debris resulting from step (E). At (G), the singulated dies 210 (including one or both of the oxide layers 204) may be plasma-activated (surface activation) to prepare the singulated dies 210 for direct bonding. At (H), the plasma-activated singulated dies 210 may be cleaned. At (I), one or more of the singulated dies 210 may be bonded to a prepared surface of a second substrate 216. In particular, a bonding layer 204 (e.g., an oxide or dielectric layer with or without conductive layers) of the singulated dies 210 may be bonded directly to the prepared surface of the second substrate 216. In one embodiment, the singulated dies 210 (via the bonding layer 204) may be bonded to the second substrate 216 using a ZIBOND® direct bonding, or DBI® hybrid bonding, technique, or the like, wherein the singulated dies 210 are directly bonded (and, in some instances, electrically connected) to portions of the surface of the second substrate 216 without the use of adhesives.


In various implementations, the substrate 216 may comprise another prepared surface of a silicon wafer, GaAs, diamond coated substrate, silicon carbide, silicon oxide, Silicon Nitride, Lithium Niobate, Lithium Tantalate, flat panel, glass, ceramic, circuit board, package, an interposer, a structure with or without an embedded device or devices, and so forth. In one embodiment, the prepared substrate 216 comprises the surface of another die 210 or another bonded die 304, as discussed further below.



FIG. 3 illustrates an example process 300 of processing stacked dies, according to an embodiment. As described hereinabove, steps (A)-(D) of process 300 function in a manner consistent with steps (A)-(D) of process 200. This includes etching the surface and periphery of the dies 210 (in a same or separate process step) to remove particles and shards of silicon or oxide from the surface and periphery of the dies 210.


Optionally, in an embodiment, the sidewalls of the dies 210 may be selectively coated to coat to the sidewalls and any particles and/or shards that may be present on the sidewalls, as described above. For example, a selective coating 218 may be applied to the sidewalls, using a spin coating process, an electrocoating process, or the like. The particles and/or shards are coated to the sidewalls with the coating 218 to adhere the particles and/or shards to the sidewalls, preventing the particles and/or shards from contaminating other areas of the dies 210, including the bonding surfaces of the dies 210. In various embodiments, the coating layer 218 comprises a material such as a glass, a boron doped glass, a phosphorus doped glass, or the like, that adheres to the silicon of the sidewalls, and won't generally adhere to any other surfaces.


In various embodiments, the coating layer 218 comprises a layer that is approximately 50 nm or less, that traps the particles and shards to the sidewalls of the dies 210, and prevents their shedding off the sidewalls. The coating layer 218 may be heat cured to the dies 210 for stabilization, for a predefined duration at a predefined temperature (e.g., approximately 80 degrees C., or the like). While the coating layer 218 can be added after cleaning the dies 210 as discussed, in various embodiments, the coating layer 218 may be deposited to the sidewalls at other steps in the process 300.


With continuing reference to process 300, at (E), the singulated dies 210 may be transferred to a spin fixture 214 (or the like) and processed/cleaned while on a single carrier, such as the spin plate 214 or the like, for all of the described process steps (including singulation, in some embodiments). Alternately, the singulated dies 210 can be transferred between different carriers (such as spin plate 302) for one or more processes at each station. At (F), the singulated dies 210 may undergo plasma treatment to remove any residue of the protective layer 206 (in a similar manner to step (E) of process 200) while still on the spin plate 302.


At (G), the singulated dies 210 may be cleaned to remove the residue resulting from the plasma process at (F). At (H), the singulated dies 210 may be plasma-activated (surface activation) to prepare the singulated dies 210 (including the bonding layer(s) 204) for direct bonding. At (I), the plasma-activated singulated dies 210 may be cleaned.


At (J), one or more of the singulated dies 210 may be bonded to the prepared surface of a second substrate 216. In particular, a bonding layer 204 (e.g., an oxide or dielectric layer with or without conductive layers) may be bonded to the prepared surface of the second substrate 216. In one embodiment, the singulated dies 210 (via the oxide layer 204) may be directly bonded to the second substrate 216 using a ZIBOND® direct bonding, or DBI® hybrid bonding, technique, or the like (e.g., without adhesive or an intervening layer).


At (K), one or more additional singulated dies 304, prepared similarly to the singulated dies 210 (e.g., the dies 304 may also be singulated from the substrate 202), may be bonded to the exposed second surface of one or more of the singulated dies 210, forming one or more die stacks. In particular, a bonding layer 306 (e.g., an oxide or dielectric layer with or without conductive layers) of the singulated dies 304 may be directly bonded to the second surface of the singulated dies 210, which has also been prepared for bonding. Preparation for bonding can include one or more cleaning, surface planarizing, and plasma treating process steps as desired. Additionally, the second surface (including the periphery) of the dies 210 may also be etched to remove undesirable particles and shards, etc.


Additional singulated dies 304 may be added in like manner to form die stacks with a desired quantity of die layers. In some embodiments, the singulated dies 210 and the second substrate 216 may be thermally treated after bonding, with additional thermal treatment after each layer of the singulated dies 304 is added. Alternately, the singulated dies 210, the singulated dies 304, and the second substrate 216 are thermally treated once several or all layers of the stacked dies (210, 304) are in place and bonded.



FIG. 4 illustrates another example process 400 of processing stacked dies, according to an embodiment. At (A), a resist layer 402 is coated on the singulated dies 210, which include a bonding layer 204 (e.g., an insulating or dielectric layer with or without conductive layers or structures) and a substrate region 202 (e.g., silicon). In an implementation, the resist layer 402 may be patterned, for example to expose the periphery of the singulated dies 210 while protecting the rest of the surface of the singulated dies 210. In various embodiments, the singulated dies 210 may be singulated using dicing and/or scribing.


At (B), the exposed edges and sidewalls of the singulated dies 210 may be cleaned and etched, resulting in an undercut or recess at the periphery of the singulated dies 210. For example, the rough-cut edges of the singulated dies 210 may be smoothed by the etching. Additionally, the periphery of the singulated dies 210 may be recessed to have a reduced overall thickness of the singulated dies 210 at the periphery, creating a space at the edges of the singulated dies 210. For instance, the singulated dies 210 with the bonding layer 204 (e.g., dielectric, oxide, etc.) on the substrate 202 (e.g. silicon) may be etched to remove some of the oxide of the bonding layer 204 at the periphery of the singulated dies 210, and in some cases, part of the silicon of the substrate 202 as well. The etching causes the dielectric oxide of the bonding layer 204 to recess back from the edge of the singulated dies 210, exposing the silicon of the substrate 202 below in the recess. In one embodiment, the space formed by the recess may allow for some tolerance to the bonding surfaces during direct bonding, to improve the reliability of the direct bonding technique and to remove stress from the bond.


In one embodiment, the singulated dies 210 may be processed at a raised temperature (e.g., 120 degrees C.) such that the resist layer 402 disposed on the oxide layer 204 flows and pulls back from the edges of the singulated dies 210. When the edges of the singulated dies 210 are etched, the exposed portion of the oxide layer 204 may be removed. Additionally, some of the silicon of the substrate 202 may additionally be removed, depending on the duration and the formulary used for the etching. For example, the longer the duration, the greater the amount of substrate 202 may be removed. In some cases, the dielectric oxide layer 204 may have a sloped profile as a result of the etching of the singulated dies 210. This sloped profile may extend into the substrate 202 (e.g. silicon), if the etching is performed to a depth of the substrate 202.


In some embodiments, the process of etching back the dielectric layer 204 may be performed using a lithographic method in combination with dry etching wet etching or both as needed. For example, the surface of the die 210 may be patterned, and unwanted portions of the dielectric layer 204 removed by dry etching methods, and any unwanted exposed conductive features removed by wet etch methods, for instance. In other applications, it may be preferable to remove unwanted dielectric and conductive portions in one operation. In one example, a wet etchant containing halide ions, for example, buffered hydrofluoric acid and formularies containing hydrogen peroxide or nitric acid (or the like) that can oxidize the conductive features, may be applied to the surface of the dies 210 to remove the unwanted dielectric and conductive features. After the removal of the unwanted dielectric and conductive features, a protective layer may be applied for singulation operations.


At (C), the resist layer 402 may be removed from the surface of the singulated dies 210. Additionally, at (D), the singulated dies 210 may be cleaned.


At (E) and (F), the singulated dies 210 may be bonded to a second substrate 404 (such as another die 210 or 304, the second substrate 216, or the like) that has been prepared for bonding as discussed above. In one embodiment, the singulated dies 210 may be bonded to a prepared surface of the substrate 404 using a ZIBOND® or hybrid DBI® technique, or the like (e.g., without adhesive or an intervening layer). In the illustration of FIG. 4 at (E) and (F), only the die 210 is shown with an oxide layer 204. However, in some embodiments, both of the components to be bonded (e.g., the die 210, die 304, or the substrate 216) may include an oxide region (such as oxide layer 204, for example) at the bonding surface. In other words, the components are bonded at respective oxide regions. In some applications, the dielectric or oxide layer 204 of the die 210 and the prepared surface of the substrate 202 may include conductive features (not shown). The dielectric portions of the prepared surface of the die 210 and the substrate 202 can be bonded initially at lower temperatures. Any conductive features can be joined at higher temperatures between 150 to 350° C. In other applications, the dielectric portion and conductive feature bonding are formed at the same temperature.


In an implementation shown at (E), as a result of the etching of step (D), the edges of the oxide layer 204 of the singulated dies 210 may include an undercut 408. In the implementation, the singulated dies 210 may include an undercut 408 at a periphery of the singulated dies 210, such that an area of the oxide layer 204 is less than an area of a footprint of the substrate 202 and/or the substrate 404. Additionally, or alternately, in an implementation shown at (F), as a result of the etching of step (D), the edges of the substrate 202 and the substrate 404 may include an undercut 410. In this implementation, the singulated dies 210 may include an undercut 410 at a periphery of the singulated dies 210, such that an area of the oxide layer 204 is greater than an area of a footprint of the substrate 202 and/or the substrate 404. In the implementations, substrate 202 and substrate 404 may correspond with a first and second bonded microelectronic components, respectively.


According to various embodiments, edge or sidewall etching techniques described herein may provide a reduction of the complexity and cost of direct bond processes for high volume manufacturing of the singulated dies 210. Additionally, removal of dicing particles and shards from a periphery and/or edges of the singulated dies 210 may reduce process-related defects in wafer-to-wafer, die-to-wafer, die-to-die, and die-to-system packaging. Further, stress may be reduced in packaged singulated dies 210 stacked in three-dimensional arrangements by rounding the edges of the stacked singulated dies 210. The techniques described herein may also result in fewer die processing steps, higher manufacturing through-put, and improved profit margin for ZiBond® and direct bond interconnect (DBI®) manufactured devices. Other advantages of the disclosed techniques will also be apparent to those having skill in the art.



FIG. 5(A) is a profile view of a portion of an example die 210 with a recessed bonding layer 204 (e.g., insulating or dielectric layer with or without conductive layers), according to an embodiment. Additionally, FIG. 5(B) is a magnified view of the profile view of the die 210 with a recessed bonding layer 204 (e.g., oxide region). As shown, the die 210 may include the bonding layer 204 that is recessed back from the substrate 202. The profile view of FIG. 5(B) may correspond with the profile view shown in step (D) of FIG. 4, for example. Additionally, FIG. 5(B) includes a recess on one side of the bonding layer 204, however, as shown in step (D) of FIG. 4 and at FIG. 5(C), the recess may be also located on both (or other) sides of the bonding layer 204.


In particular, the sloped profile 502 of the oxide layer 204 may extend into the substrate 202 due to etching (for example, as described with reference to step (D) of FIG. 4). Additionally, the sloped profile 502 may provide clearance at the perimeter of the substrate 202 such that a close and intimate bond may be achieved between, for example, the singulated dies 210 and a prepared surface of the second substrate 216 (or the like), even in the presence of any particles at the perimeter of the substrate 202.


For instance this is illustrated in FIG. 5(C), wherein an example die 210 is shown bonded to another example die 210′, forming an example die stack or example microelectronic assembly 500 (or the like). As shown in the illustration of FIG. 5(C), the bonding layer 204, which includes an insulating or dielectric material such as oxide and may also include one or more conductive layers or structures 504, is directly bonded to the bonding layer 204′, which also includes an insulating or dielectric material such as oxide and may also include one or more conductive layers or structures 504′. Conductive features 504 and 504′ may extend only into respective bonding layers 204 and 204′ or may extend partially or entirely through dies 210 and 210′. The recess at the bonding layer 204 and the recess at the bonding layer 204′ (if present) may form a gap 506 at the periphery of the assembly 500, where the die 210 is bonded to the die 210′. In various embodiments, the gap 506 may be of such size that any particles 508 remaining in the gap 506 may not hinder the formation of a close and intimate bond between the bonding surfaces 204 and 204′, including close and electrically conductive reliable bonds between conductive structures 504 and 504′. In various embodiments, the gap 506 may be filled as desired, for instance with an encapsulant, a dielectric material, an underfill material, or the like. In other embodiments, the gap 506 may remain unfilled, or may be filled with other inert or active materials as desired. Similar profiles as shown in FIGS. 5(A) and 5(B) may be created on the backsides of dies 210 and 210′ and more than two dies may be stacked together.



FIG. 6 is a flow diagram 600 illustrating example processes for processing stacked dies, according to an embodiment. At 602, the process includes singulating a plurality of semiconductor die components (such as the singulated dies 210 or the singulated dies 304, for example) from a wafer component (such as the substrate 202, for example). In an embodiment, each of the semiconductor die components has a substantially planar surface. In another embodiment, the process includes depositing a protective coating (such as the protective coating 206, for example) over the substantially planar surface of the semiconductor die components (either before or after singulation).


In one embodiment, the process includes heating the plurality of semiconductor die components, after singulating, to cause the protective coating (such as the protective coating 206) to recede from a periphery of the plurality of semiconductor die components. Additionally, the periphery of the plurality of semiconductor die components and/or the substantially planar surface of the plurality of semiconductor die components may be etched to a preselected depth.


Alternatively, the plurality of semiconductor die components may include a dielectric layer over a base semiconductor layer. Additionally, the dielectric layer may have a substantially planar surface and as described above, the dielectric layer may include one or more conductive features. In one embodiment, the process includes etching the periphery of the plurality of semiconductor die components such that at least a portion of the dielectric layer is removed and the base semiconductor layer at the periphery of the plurality of semiconductor die components is exposed.


At 604, the process includes removing the particles and shards of material from the edges the plurality of semiconductor die components. Alternatively, the particles and shards may be removed from the sidewalls of the plurality of semiconductor die components. In one embodiment, the particles and shards may be removed by etching the edges and/or sidewalls of the plurality of semiconductor die components. Optionally, the etching of the edges and/or sidewalls occurs while the plurality of semiconductor die components are on a dicing carrier. Additionally, the etching may use plasma etch and/or a chemical etchant comprising hydrofluoric acid and nitric acid with Benzotriazole (BTA). In an alternative implementation, a protective coating (such as the protective coating 206) may be applied to the substantially planar surface of the plurality of semiconductor die components to protect the substantially planar surface from an etchant.


At 606, the process includes bonding the one or more of the plurality of semiconductor die components to a prepared bonding surface, via the substantially planar surface. For example, the bonding may occur by a direct bond using a ZIBOND® or DBI® bonding technique, or the like, without adhesive or an intervening layer. The bonding may include electrically coupling opposing conductive features at the bonding surfaces of the die(s) and the prepared bonding surface.


The disclosed processes described herein are illustrated using block flow diagrams. The order in which the disclosed processes are described is not intended to be construed as a limitation, and any number of the described process blocks can be combined in any order to implement the processes, or alternate processes. Additionally, individual blocks may be deleted from the processes without departing from the spirit and scope of the subject matter described herein. Furthermore, the disclosed processes can be implemented in any suitable manufacturing or processing apparatus or system, along with any hardware, software, firmware, or a combination thereof, without departing from the scope of the subject matter described herein.


Although various implementations and examples are discussed herein, further implementations and examples may be possible by combining the features and elements of individual implementations and examples.


CONCLUSION

Although the implementations of the disclosure have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as representative forms of implementing example devices and techniques.


Each claim of this document constitutes a separate embodiment, and embodiments that combine different claims and/or different embodiments are within the scope of the disclosure and will be apparent to those of ordinary skill in the art upon reviewing this disclosure.

Claims
  • 1. A microelectronic system, comprising: a first microelectronic component comprising a first semiconductor layer and a first dielectric layer having a first substantially planar surface; anda die comprising a second semiconductor layer and a second dielectric layer having a second substantially planar surface, wherein a portion of the second dielectric layer is recessed at a periphery of the second dielectric layer, such that an area of the second substantially planar surface of the second dielectric layer is less than an area of a cross-section of the widest portion of the die; andwherein the second dielectric layer is directly bonded to the first dielectric layer without adhesive.
  • 2. The microelectronic system of claim 1, wherein the second dielectric layer creates an undercut between the first microelectronic component and the die.
  • 3. The microelectronic system of claim 2, wherein the undercut extends into the second semiconductor layer such that the second semiconductor layer is exposed at a periphery of the die.
  • 4. The microelectronic system of claim 1, wherein the second dielectric layer includes a substantially planar oxide layer, and wherein at least a portion of the substantially planar oxide layer at one or more edges of the second dielectric layer is recessed or removed.
  • 5. The microelectronic system of claim 1, wherein the second semiconductor layer has an undercut comprising a recess at a periphery of the second semiconductor layer corresponding to the recessed portion of the second dielectric layer.
  • 6. The microelectronic system of claim 1, further comprising an undercut at a periphery of the first semiconductor layer, an undercut at a periphery of the second semiconductor layer, or an undercut at a periphery of the first semiconductor layer and an undercut at a periphery of the second semiconductor layer.
  • 7. The microelectronic system of claim 1, wherein the first microelectronic component or the die comprises a direct band gap or an indirect band gap semiconductor.
  • 8. The microelectronic system of claim 1, wherein a portion of the first dielectric layer is recessed at a periphery of the first dielectric layer, such that an area of the surface of the first dielectric layer is less than an area of a cross-section of the widest portion of the first microelectronic component.
  • 9. The microelectronic system of claim 1, wherein the first microelectronic component comprises a wafer.
  • 10. The microelectronic system of claim 1, wherein the second dielectric layer comprises a sloped profile.
  • 11. The microelectronic system of claim 10, wherein the sloped profile extends into the second semiconductor layer.
  • 12. The microelectronic system of claim 10, wherein the sloped profile extends substantially about an entire perimeter of the second dielectric layer.
  • 13. The microelectronic system of claim 1, wherein the recessed portion of the second dielectric layer is filled with a dielectric material.
  • 14. The microelectronic system of claim 13, wherein the dielectric material comprises silicon oxide.
  • 15. The microelectronic system of claim 1, wherein the recessed portion of the second dielectric layer is filled with an encapsulant.
  • 16. The microelectronic system of claim 1, wherein the die consists of the second semiconductor layer and the second dielectric layer.
  • 17. A microelectronic system, comprising: a first die component comprising a first dielectric layer over a first base semiconductor layer, the first dielectric layer having a substantially planar surface;a second microelectronic component comprising a second dielectric layer and a second base semiconductor layer,wherein the second dielectric layer is directly bonded without an adhesive to the first dielectric layer; andwherein a periphery of the first die component and a periphery of the second base semiconductor layer are recessed such that an area of the footprint of the first die component and an area of a footprint of the second base semiconductor layer are both less than at least one of an area of the first dielectric layer or an area of the second dielectric layer.
  • 18. The microelectronic system of claim 17, wherein an area of the first dielectric layer is less than an area of the first base semiconductor layer.
  • 19. The microelectronic system of claim 17, wherein at least a portion of the first dielectric layer is recessed at the periphery of the first die component.
  • 20. The microelectronic system of claim 17, wherein at least a portion of the first base semiconductor layer is recessed at the periphery of the first die component.
  • 21. The microelectronic system of claim 17, wherein a periphery of the second microelectronic component is recessed at a bond interface with the first die component.
  • 22. A microelectronic assembly comprising: a semiconductor die comprising at least a first planar dielectric layer having a recess at a periphery of the semiconductor die; anda microelectronic component comprising a second planar dielectric layer,wherein the first dielectric layer is directly bonded to the second dielectric layer, andwherein the recess comprises a sloped profile.
  • 23. The microelectronic assembly of claim 22, wherein the microelectronic component has an undercut comprising a recess at a periphery of the microelectronic component.
  • 24. The microelectronic assembly of claim 22, wherein the first dielectric layer comprises an oxide layer as a bonding surface with the microelectronic component, and wherein one or more edges of the oxide layer is recessed or removed and exposes a base layer beneath the oxide layer.
  • 25. The microelectronic assembly of claim 22, wherein at least one of the semiconductor die and the microelectronic component comprises a direct band gap or an indirect band gap semiconductor.
  • 26. The microelectronic assembly of claim 22, wherein at least one of the semiconductor die and the microelectronic component further comprises a non-semiconductor material.
  • 27. The microelectronic assembly of claim 22, wherein the semiconductor die and microelectronic component each comprise a microelectronic die.
  • 28. The microelectronic assembly of claim 22, wherein the second planar dielectric layer has a recess at a periphery of the microelectronic component.
  • 29. The microelectronic assembly of claim 22, wherein the sloped profile extends into a semiconductor layer of the semiconductor die.
PRIORITY CLAIM AND CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 15/960,179, filed Apr. 23, 2018, which claims the benefit under 35 U.S.C. § 119(e)(1) of U.S. Provisional Application No. 62/504,834, filed May 11, 2017, both of which are hereby incorporated by reference in their entirety.

US Referenced Citations (332)
Number Name Date Kind
4998665 Hayashi Mar 1991 A
5019673 Juskey et al. May 1991 A
5087585 Hayashi Feb 1992 A
5322593 Hasegawa et al. Jun 1994 A
5753536 Sugiyama et al. May 1998 A
5771555 Eda et al. Jun 1998 A
5956605 Akram et al. Sep 1999 A
5985739 Plettner et al. Nov 1999 A
5998808 Matsushita Dec 1999 A
6008126 Leedy Dec 1999 A
6080640 Gardner et al. Jun 2000 A
6121688 Akagawa Sep 2000 A
6265775 Seyyedy Jul 2001 B1
6374770 Lee Apr 2002 B1
6423640 Lee et al. Jul 2002 B1
6465892 Suga Oct 2002 B1
6582991 Maeda et al. Jun 2003 B1
6887769 Kellar et al. May 2005 B2
6908027 Tolchinsky et al. Jun 2005 B2
7045453 Canaperi et al. May 2006 B2
7078811 Suga Jul 2006 B2
7105980 Abbott et al. Sep 2006 B2
7126212 Enquist et al. Oct 2006 B2
7193423 Dalton et al. Mar 2007 B1
7262492 Pieda et al. Aug 2007 B2
7354798 Pogge et al. Apr 2008 B2
7750488 Patti et al. Jul 2010 B2
7781309 Morita et al. Aug 2010 B2
7790578 Furui Sep 2010 B2
7803693 Trezza Sep 2010 B2
7843052 Yoo et al. Nov 2010 B1
7932616 Meguro Apr 2011 B2
8026181 Arita et al. Sep 2011 B2
8178963 Yang May 2012 B2
8178964 Yang May 2012 B2
8183127 Patti et al. May 2012 B2
8241961 Kim et al. Aug 2012 B2
8314007 Vaufredaz Nov 2012 B2
8349635 Gan et al. Jan 2013 B1
8377798 Peng et al. Feb 2013 B2
8441131 Ryan May 2013 B2
8476146 Chen et al. Jul 2013 B2
8476165 Trickett et al. Jul 2013 B2
8482132 Yang et al. Jul 2013 B2
8501537 Sadaka et al. Aug 2013 B2
8513088 Yoshimura et al. Aug 2013 B2
8524533 Tong et al. Sep 2013 B2
8620164 Heck et al. Dec 2013 B2
8647987 Yang et al. Feb 2014 B2
8697493 Sadaka Apr 2014 B2
8716105 Sadaka et al. May 2014 B2
8802538 Liu Aug 2014 B1
8809123 Liu et al. Aug 2014 B2
8841002 Tong Sep 2014 B2
8988299 Kam et al. Mar 2015 B2
9059010 Yoshida et al. Jun 2015 B2
9076929 Katsuno et al. Jul 2015 B2
9093350 Endo et al. Jul 2015 B2
9142517 Liu Sep 2015 B2
9171756 Enquist et al. Oct 2015 B2
9184125 Enquist et al. Nov 2015 B2
9224704 Landru Dec 2015 B2
9230941 Chen et al. Jan 2016 B2
9257399 Kuang et al. Feb 2016 B2
9299736 Chen et al. Mar 2016 B2
9312229 Chen et al. Apr 2016 B2
9331149 Tong et al. May 2016 B2
9337235 Chen et al. May 2016 B2
9343433 Lee et al. May 2016 B2
9355997 Katkar et al. May 2016 B2
9368866 Yu Jun 2016 B2
9385024 Tong et al. Jul 2016 B2
9394161 Cheng et al. Jul 2016 B2
9437572 Chen et al. Sep 2016 B2
9443796 Chou et al. Sep 2016 B2
9461007 Chun et al. Oct 2016 B2
9466586 Choi et al. Oct 2016 B1
9496239 Edelstein et al. Nov 2016 B1
9536848 England et al. Jan 2017 B2
9559081 Lai et al. Jan 2017 B1
9570421 Wu et al. Feb 2017 B2
9620481 Edelstein et al. Apr 2017 B2
9656852 Cheng et al. May 2017 B2
9674939 Scannell Jun 2017 B2
9722098 Chung et al. Aug 2017 B1
9723716 Meinhold Aug 2017 B2
9728521 Tsai et al. Aug 2017 B2
9741620 Uzoh et al. Aug 2017 B2
9799587 Fujii et al. Oct 2017 B2
9818729 Chiu et al. Nov 2017 B1
9852988 Enquist et al. Dec 2017 B2
9865567 Chaware et al. Jan 2018 B1
9881882 Hsu et al. Jan 2018 B2
9893004 Yazdani Feb 2018 B2
9899442 Katkar Feb 2018 B2
9929050 Lin Mar 2018 B2
9941241 Edelstein et al. Apr 2018 B2
9941243 Kim et al. Apr 2018 B2
9960142 Chen et al. May 2018 B2
10008844 Wang et al. Jun 2018 B2
10026605 Doub et al. Jul 2018 B2
9953941 Enquist Aug 2018 B2
10075657 Fahim et al. Sep 2018 B2
10204893 Uzoh et al. Feb 2019 B2
10269756 Uzoh Apr 2019 B2
10276619 Kao et al. Apr 2019 B2
10276909 Huang et al. Apr 2019 B2
10333623 Liao et al. Jun 2019 B1
10410976 Asano et al. Sep 2019 B2
10418277 Cheng et al. Sep 2019 B2
10446456 Shen et al. Oct 2019 B2
10510629 Chen et al. Dec 2019 B2
10707087 Uzoh et al. Jul 2020 B2
10707145 Bultitude et al. Jul 2020 B2
10727204 Agarwal et al. Jul 2020 B2
10727219 Uzoh et al. Jul 2020 B2
10770430 Kim et al. Sep 2020 B1
10790262 Uzoh et al. Sep 2020 B2
10840135 Uzoh Nov 2020 B2
10854578 Morein Dec 2020 B2
10879212 Uzoh et al. Dec 2020 B2
10879226 Uzoh et al. Dec 2020 B2
10886177 DeLaCruz et al. Jan 2021 B2
10892246 Uzoh Jan 2021 B2
10923413 DeLaCruz Feb 2021 B2
10950547 Mohammed et al. Mar 2021 B2
10964664 Mandalapu et al. Mar 2021 B2
10985133 Uzoh Apr 2021 B2
10991804 DeLaCruz et al. Apr 2021 B2
10998292 Lee et al. May 2021 B2
11011503 Wang et al. May 2021 B2
11031285 Katkar et al. Jun 2021 B2
11056348 Theil Jul 2021 B2
11056390 Uzoh et al. Jul 2021 B2
11088099 Katkar et al. Aug 2021 B2
11127738 DeLaCruz et al. Sep 2021 B2
11158606 Gao et al. Oct 2021 B2
11171117 Gao et al. Nov 2021 B2
11176450 Teig et al. Nov 2021 B2
11256004 Haba et al. Feb 2022 B2
11264357 DeLaCruz et al. Mar 2022 B1
11276676 Enquist et al. Mar 2022 B2
11329034 Tao et al. May 2022 B2
11348898 DeLaCruz et al. May 2022 B2
11355443 Huang et al. Jun 2022 B2
20020000328 Motomura et al. Jan 2002 A1
20020003307 Suga Jan 2002 A1
20020004288 Nishiyama Jan 2002 A1
20040084414 Sakai et al. May 2004 A1
20040140546 Lee et al. Jul 2004 A1
20040188501 Tolchinsky et al. Sep 2004 A1
20040238927 Miyazawa Dec 2004 A1
20050040530 Shi Feb 2005 A1
20050153522 Hwang et al. Jul 2005 A1
20050161808 Anderson Jul 2005 A1
20060057945 Hsu et al. Mar 2006 A1
20060234473 Wong et al. Oct 2006 A1
20070007639 Fukazawa et al. Jan 2007 A1
20070096294 Ikeda et al. May 2007 A1
20070111386 Kim et al. May 2007 A1
20070123061 Evertsen et al. May 2007 A1
20070158024 Addison et al. Jul 2007 A1
20070222048 Huang Sep 2007 A1
20070295456 Gudeman et al. Dec 2007 A1
20080036082 Eun Feb 2008 A1
20080165521 Bernstein et al. Jul 2008 A1
20080265421 Brunnbauer et al. Oct 2008 A1
20090029274 Olson et al. Jan 2009 A1
20090068831 Enquist et al. Mar 2009 A1
20090095399 Zussy Apr 2009 A1
20090149023 Koyanagi Jun 2009 A1
20090227089 Plaut et al. Sep 2009 A1
20090252939 Park et al. Oct 2009 A1
20090283898 Janzen et al. Nov 2009 A1
20100123268 Menard May 2010 A1
20110042814 Okuyama Feb 2011 A1
20110074033 Kaltalioglu et al. Mar 2011 A1
20110186977 Chi et al. Aug 2011 A1
20110290552 Palmateer et al. Dec 2011 A1
20120025396 Liao et al. Feb 2012 A1
20120049344 Pagaila et al. Mar 2012 A1
20120077314 Park et al. Mar 2012 A1
20120190187 Yang et al. Jul 2012 A1
20120212384 Kam et al. Aug 2012 A1
20120217644 Pagaila Aug 2012 A1
20120238070 Libbert Sep 2012 A1
20130037962 Xue Feb 2013 A1
20130082399 Kim et al. Apr 2013 A1
20130122655 Yu et al. May 2013 A1
20130169355 Chen et al. Jul 2013 A1
20130299997 Sadaka Nov 2013 A1
20130334697 Shin et al. Dec 2013 A1
20140013606 Nah et al. Jan 2014 A1
20140154839 Ahn et al. Jun 2014 A1
20140175655 Chen et al. Jun 2014 A1
20140187040 Enquist et al. Jul 2014 A1
20140225795 Yu Aug 2014 A1
20140299981 Goh et al. Oct 2014 A1
20140312511 Nakamura Oct 2014 A1
20140327150 Jung et al. Nov 2014 A1
20140370658 Tong et al. Dec 2014 A1
20140377909 Chung et al. Dec 2014 A1
20150021754 Lin et al. Jan 2015 A1
20150048500 Yu et al. Feb 2015 A1
20150064498 Tong Mar 2015 A1
20150102468 Kang et al. Apr 2015 A1
20150130082 Lu et al. May 2015 A1
20150179481 Lin Jun 2015 A1
20150206865 Yu et al. Jul 2015 A1
20150235949 Yu et al. Aug 2015 A1
20150270209 Woychik et al. Sep 2015 A1
20150303174 Yu et al. Oct 2015 A1
20150340285 Enquest et al. Nov 2015 A1
20160035687 Lin et al. Feb 2016 A1
20160071770 Albermann et al. Mar 2016 A1
20160141267 Hagimoto et al. May 2016 A1
20160190103 Kabe et al. Jun 2016 A1
20160233175 Dubey et al. Aug 2016 A1
20160300817 Do et al. Oct 2016 A1
20160343682 Kawasaki Nov 2016 A1
20160372323 Doub et al. Dec 2016 A1
20170023405 Fahim et al. Jan 2017 A1
20170062366 Enquist Mar 2017 A1
20170148764 Wang et al. May 2017 A1
20170179029 Enquist et al. Jun 2017 A1
20170194271 Hsu et al. Jul 2017 A1
20170200659 Gaynes et al. Jul 2017 A1
20170200711 Uzoh et al. Jul 2017 A1
20170200756 Kao Jul 2017 A1
20170250161 Haba Aug 2017 A1
20170338214 Uzoh et al. Nov 2017 A1
20170358533 Briggs et al. Dec 2017 A1
20170358553 Kim et al. Dec 2017 A1
20170365591 Chang et al. Dec 2017 A1
20180005992 Yu et al. Jan 2018 A1
20180006006 Kim et al. Jan 2018 A1
20180012787 Oka et al. Jan 2018 A1
20180012863 Yu et al. Jan 2018 A1
20180053746 Yu et al. Feb 2018 A1
20180068958 Cho et al. Mar 2018 A1
20180096931 Huang et al. Apr 2018 A1
20180122774 Huang et al. May 2018 A1
20180130769 Tan et al. May 2018 A1
20180158749 Yu et al. Jun 2018 A1
20180174995 Wang et al. Jun 2018 A1
20180175012 Wu et al. Jun 2018 A1
20180182639 Uzoh et al. Jun 2018 A1
20180182666 Uzoh et al. Jun 2018 A1
20180190580 Haba et al. Jul 2018 A1
20180190583 DeLaCruz et al. Jul 2018 A1
20180191047 Huang et al. Jul 2018 A1
20180219038 Gambino et al. Aug 2018 A1
20180226375 Enquist et al. Aug 2018 A1
20180273377 Katkar et al. Sep 2018 A1
20180286805 Huang et al. Oct 2018 A1
20180323177 Yu et al. Nov 2018 A1
20180323227 Zhang et al. Nov 2018 A1
20180331066 Uzoh et al. Nov 2018 A1
20180366442 Gu et al. Dec 2018 A1
20180366446 Haba et al. Dec 2018 A1
20190096741 Uzoh et al. Mar 2019 A1
20190096842 Fountain, Jr. et al. Mar 2019 A1
20190103409 Xu et al. Apr 2019 A1
20190115277 Yu et al. Apr 2019 A1
20190131277 Yang et al. May 2019 A1
20190157333 Tsai May 2019 A1
20190198407 Huang et al. Jun 2019 A1
20190198409 Katkar et al. Jun 2019 A1
20190265411 Huang et al. Aug 2019 A1
20190319007 Uzoh et al. Oct 2019 A1
20190333550 Fisch Oct 2019 A1
20190333871 Chen et al. Oct 2019 A1
20190341306 Yu et al. Nov 2019 A1
20190348336 Katkar et al. Nov 2019 A1
20190355706 Enquist et al. Nov 2019 A1
20190371763 Agarwal et al. Dec 2019 A1
20190385935 Gao et al. Dec 2019 A1
20190385966 Gao et al. Dec 2019 A1
20200013637 Haba Jan 2020 A1
20200013765 Fountain, Jr. et al. Jan 2020 A1
20200035641 Fountain, Jr. et al. Jan 2020 A1
20200075520 Gao et al. Mar 2020 A1
20200075534 Gao et al. Mar 2020 A1
20200075553 DeLaCruz et al. Mar 2020 A1
20200106156 Lu et al. Apr 2020 A1
20200118973 Wang et al. Apr 2020 A1
20200126906 Uzoh et al. Apr 2020 A1
20200176419 Dabral et al. Jun 2020 A1
20200194396 Uzoh Jun 2020 A1
20200227367 Haba et al. Jul 2020 A1
20200243380 Uzoh et al. Jul 2020 A1
20200279821 Haba et al. Sep 2020 A1
20200294908 Haba et al. Sep 2020 A1
20200328162 Haba et al. Oct 2020 A1
20200328164 DeLaCruz et al. Oct 2020 A1
20200328165 DeLaCruz et al. Oct 2020 A1
20200335408 Gao et al. Oct 2020 A1
20200371154 DeLaCruz et al. Nov 2020 A1
20200395321 Katkar et al. Dec 2020 A1
20200411483 Uzoh et al. Dec 2020 A1
20210057309 Hu et al. Feb 2021 A1
20210098412 Haba et al. Apr 2021 A1
20210118864 DeLaCruz et al. Apr 2021 A1
20210143125 DeLaCruz et al. May 2021 A1
20210181510 Katkar et al. Jun 2021 A1
20210183847 Uzoh et al. Jun 2021 A1
20210193603 Katkar et al. Jun 2021 A1
20210193624 DeLaCruz et al. Jun 2021 A1
20210193625 DeLaCruz et al. Jun 2021 A1
20210242152 Fountain, Jr. et al. Aug 2021 A1
20210296282 Gao et al. Sep 2021 A1
20210305202 Uzoh et al. Sep 2021 A1
20210366820 Uzoh Nov 2021 A1
20210407941 Haba Dec 2021 A1
20220020729 Gao et al. Jan 2022 A1
20220077063 Haba Mar 2022 A1
20220077087 Haba Mar 2022 A1
20220139867 Uzoh May 2022 A1
20220139869 Gao et al. May 2022 A1
20220189941 Enquist et al. Jun 2022 A1
20220199560 Haba et al. Jun 2022 A1
20220208650 Gao et al. Jun 2022 A1
20220208702 Uzoh Jun 2022 A1
20220208723 Katkar et al. Jun 2022 A1
20220246497 Fountain, Jr. et al. Aug 2022 A1
20220285303 Mirkarimi et al. Sep 2022 A1
20220293567 Uzoh et al. Sep 2022 A1
20220319901 Suwito et al. Oct 2022 A1
20220320035 Uzoh et al. Oct 2022 A1
20220320036 Gao et al. Oct 2022 A1
20230005850 Fountain, Jr. Jan 2023 A1
20230019869 Mirkarimi et al. Jan 2023 A1
Foreign Referenced Citations (26)
Number Date Country
103681646 Mar 2014 CN
107527885 Dec 2017 CN
2 685 491 Jan 2014 EP
04-337694 Nov 1992 JP
2000-100679 Apr 2000 JP
2001-102479 Apr 2001 JP
2002-353416 Dec 2002 JP
2004-193493 Jul 2004 JP
2009-135348 Jun 2009 JP
2010-073964 Apr 2010 JP
2011-171614 Sep 2011 JP
2013-33786 Feb 2013 JP
2018-160519 Oct 2018 JP
10-2001-0104643 Nov 2001 KR
1020040020827 Mar 2004 KR
10-2010-0123755 Nov 2010 KR
10-2015-0097798 Aug 2015 KR
2005-043584 May 2005 WO
2015134227 Sep 2005 WO
WO 2006100444 Sep 2006 WO
WO 2009005898 Jan 2009 WO
WO 2010024678 Mar 2010 WO
2014052445 Apr 2014 WO
WO 2017034654 Mar 2017 WO
WO 2017052652 Mar 2017 WO
WO 2017151442 Sep 2017 WO
Non-Patent Literature Citations (75)
Entry
European Patent Office, Supplementary European Search Report, dated Apr. 28, 2021, 11 pgs.
Ker, Ming-Dou et al., “Fully Process-Compatible Layout Design on Bond Pad to Improve Wire Bond Reliability in CMOS ICs,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316.
Moriceau, H. et al., “Overview of Recent Direct Wafer Bonding Advances and Applications”, Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 12 pages.
Nakanishi, H. et al., “Studies on SiO2—SiO2 Bonding with Hydrofluoric Acid. Room Temperature and Low Stress Bonding Technique for MEMS,” Tech. Research Lab., 200, Elsevier Science S.A., 8 pages.
Oberhammer et al., “Sealing of Adhesive Bonded Devices on Wafer Level,” in Sensors and Actuators A, vol. 110, No. 1-3, pp. 407-412, Feb. 29, 2004, see pp. 407-412; and figures 1(a)-1(l), 6 pages.
Plobi et al., “Wafer Direct Bonding: Tailoring Adhesion Between Biillle Materials,” Materials Science and Engineering Review Journal, 1999, 88 pages.
International Search Report and Written Opinion, dated Aug. 8, 2018, for PCT Application No. PCT/US2018/029094, filed Apr. 24, 2018, 15 pages.
Suga et al., “Bump-less Interconnect for Next Generation System Packaging”, IEEE, 2001 and ECTC, 2001, 6 pages.
Suga et al., “Feasibility of surface activated bonding for ultra-fine pitch interconnection-a new concept of bump-less direct bonding for system level packaging”, IEEE, 2000, 1 page.
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of The Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698.
Chung et al., “Room temperature GaAseu + Si and InPeu + Si wafer direct bonding by the surface activate bonding method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Jan. 2, 1997, vol. 121, Issues 1-4, pp. 203-206.
Chung et al., “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method,” Applied Surface Science, Jun. 2, 1997, vols. 117-118, pp. 808-812.
Extended European Search Report dated Apr. 28, 2021, European Application No. 18799043.7, 11 pages.
Farrens et al., “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., The Electrochemical Society, Inc., Nov. 1995, vol. 142, No. 11. pp. 3949-3955.
Farrens et al., “Chemical free wafer bonding of silicon to glass and sapphire,” Electrochemical Society Proceedings vol. 95-7, 1995, pp. 72-77.
Frumusanu, Andrei, “TSMC's version of EMIB is ‘LSI’: Currently in pre-qualification,” AnaandTech, https://www.anandtech.com/show/16031/tsmcs-version-of-emib-lsi-3dfabric, Aug. 25, 2020, 6 pages.
Fukushima, T. et al., “New three-dimensional integration technology using self-assembly technique,” International Electron Devices Meeting Dec. 5-7, 2005, IEEE, Dec. 5, 2005, pp. 348-351.
Gösele et al., “Semiconductor Wafer Bonding: A flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics,” IEEE, 1997, pp. 23-32.
Hooper, A. et al. “Review of wafer dicing techniques for via-middle process 3DI/TSV ultrathin silicon device wafers,” 2015 IEEE 65th Electronic Components and Technology Conference (ECTC).
Hosoda et al., “Effect of the surface treatment on the room-temperature bonding of Al to Si and SiO2,” Journal of Materials Science, Jan. 1, 1998, vol. 33, Issue 1, pp. 253-258.
Hosoda et al., “Room temperature GaAs—Si and InP—Si wafer direct bonding by the surface activated bonding method,” Nuclear Inst. And Methods in Physics Research B, 1997, vol. 121, Nos. 1-4, pp. 203-206.
Howlader et al., “A novel method for bonding of ionic wafers,” Electronics Components and Technology Conference, 2006, IEEE, p. 7-pp.
Howlader et al., “Bonding of p. Si/n-InP wafers through surface activated bonding method at room temperature,” Indium Phosphide and Related Materials, 2001, IEEE International Conference On, pp. 272-275.
Howlader et al., “Characterization of the bonding strength and interface current of p. Si/ n-InP wafers bonded by surface activated bonding method at room temperature,” Journal of Applied Physics, Mar. 1, 2002, vol. 91, No. 5, pp. 3062-3066.
Howlader et al., “Investigation of the bonding strength and interface current of p-SionGaAs wafers bonded by surface activated bonding at room temperature,” J. Vac. Sci. Technol. B 19, Nov./Dec. 2001, pp. 2114-2118.
International Search Report and Written Opinion dated Sep. 22, 2017, issued in International Application No. PCT/US2017/029187, 20 pages.
International Search Report and Written Opinion dated Apr. 22, 2019 in International Application No. PCT/US2018/064982, 13 pages.
International Search Report and Written Opinion dated May 7, 2020, issued in International Application No. PCT/US2020/013377, 16 pages.
Itoh et al., “Characteristics of fritting contacts utilized for micromachined wafer probe cards,” 2000 American Institute of Physics, AIP Review of Scientific Instruments, vol. 71, 2000, pp. 2224.
Itoh et al., “Characteristics of low force contact process for MEMS probe cards,” Sensors and Actuators A: Physical, Apr. 1, 2002, vols. 97-98, pp. 462-467.
Itoh et al., “Development of MEMS IC probe card utilizing fritting contact,” Initiatives of Precision Engineering at the Beginning of a Millennium: 10th International Conference on Precision Engineering (ICPE) Jul. 18-20, 2001, Yokohama, Japan, 2002, Book Part 1, pp. 314-318.
Itoh et al., “Room temperature vacuum sealing using surface activated bonding method,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003, 2003 IEEE, pp. 1828-1831.
Kim et al., “Low temperature direct Cu—Cu bonding with low energy ion activation method,” Electronic Materials and Packaging, 2001, IEEE, pp. 193-195.
Kim et al., “Room temperature Cu—Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol., 2003 American Vacuum Society, Mar./Apr. 2003, vol. 21, No. 2, pp. 449-453.
Kim et al., “Wafer-scale activated bonding of Cu-CU, Cu—Si, and Cu—SiO2 at low temperature,” Proceedings—Electrochemical Society, 2003, vol. 19, pp. 239-247.
Marinov, Val et al., “Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Apr. 2012, vol. 2, No. 4, pp. 569-577.
Matsuzawa et al., “Room-temperature interconnection of electroplated Au microbump by means of surface activated bonding method,” Electornic Components and Technology Confererence, 2001, 51st Proceedings, IEEE, pp. 384-387.
Office Action for U.S. Appl. No. 15/159,649, dated Sep. 14, 2017, 9 pages.
Onodera et al., “The effect of prebonding heat treatment on the separability of Au wire from Ag-plated Cu alloy substrate,” Electronics Packaging Manufacturing, IEEE Transactions, Jan. 2002, vol. 25, Issue 1, pp. 5-12.
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444.
Roberds et al., “Low temperature , in situ, plasma activated wafer bonding,” Electrochecmical Society Proceedings, 1997, vol. 97-36, pp. 598-606.
Shigetou et al., “Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” 2003 Electronic Components and Technology Conference, pp. 848-852.
Shigetou et al., “Room-temperature direct bonding of CMP-Cu film for bumpless interconnection,” Electronic Components and Technology Confererence, 51st Proceedings, 2001, IEEE, pp. 755-760.
Shingo et al., “Design and fabrication of an electrostatically actuated MEMS probe card,” Tranducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Jun. 8-12, 2003, vol. 2, pp. 1522-1525.
Suga et al., “A new approach to Cu—Cu direct bump bonding,” IEMT/IMC Symposium, 1997, Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference, Apr. 16-18, 1997, IEEE, pp. 146-151.
Suga et al., “A new bumping process using lead-free solder paste,” Electronics Packaging Manufacturing, IEEE Transactions on (vol. 25, Issue 4), IEEE, Oct. 2002, pp. 253-256.
Suga et al., “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1013-1018.
Suga, T., “Room-temperature bonding on metals and ceramics,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, The Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 71-80.
Suga et al., “Surface activated bonding—an approach to joining at room temperature,” Ceramic Transactions: Structural Ceramics Joining II, The American Ceramic Society, 1993, pp. 323-331.
Suga et al., “Surface activated bonding for new flip chip and bumpless interconnect systems,” Electronic Components and Technology Conference, 2002, IEEE, pp. 105-111.
Suga, “UHV room temperature joining by the surface activated bonding method,” Advances in science and technology, Techna, Faenza, Italie, 1999, pp. C1079-C1089.
Supplemental European Search Report dated Jun. 19, 2019 in European Application No. 17799846.5, 16 pages.
Takagi et al., “Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation,” Japanese Journal of Applied Physics, 1998, vol. 37, Part 1, No. 1, pp. 4197.
Takagi et al., “Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,” Solid State Sensors and Actuators, 1997, Transducers '97 Chicago, 1997 International Conference, vol. 1, pp. 657-660.
Takagi et al., “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett., 1999. vol. 74, pp. 2387.
Takagi et al., “Room temperature silicon wafer direct bonding in vacuum by Ar beam irradiation,” Micro Electro Mehcanical Systems, MEMS '97 Proceedings, 1997, IEEE, pp. 191-196.
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” Journal of Micromechanics and Microengineering, 2001, vol. 11, No. 4, pp. 348.
Takagi et al., “Room-temperature wafer bonding of silicon and lithium niobate by means of arbon-beam surface activation,” Integrated Ferroelectrics: An International Journal, 2002, vol. 50, Issue 1, pp. 53-59.
Takagi et al., “Surface activated bonding silicon wafers at room temperature,” Appl. Phys. Lett. 68, 2222 (1996).
Takagi et al., “Wafer-scale room-temperature bonding between silicon and ceramic wafers by means of argon-beam surface activation,” Micro Electro Mechanical Systems, 2001, MEMS 2001, The 14th IEEE International Conference, Jan. 25, 2001, IEEE, pp. 60-63.
Takagi et al., “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature,” Sensors and Actuators A: Physical, Jun. 15, 2003, vol. 105, Issue 1, pp. 98-102.
“The effects of edge trimming - Engineering R&D Division, Operation V,” DISCO Technical Review Mar. 2016, 3 pages.
Tong et al., “Low temperature wafer direct bonding,” Journal of Microelectomechanical systems, Mar. 1994, vol. 3, No. 1, pp. 29-35.
Topol et al., “Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures,” 2004 Electronics Components and Technology Conference, 2004 IEEE, pp. 931-938.
Uhrmann, T. et al., “Heterogeneous integration by collective die-to-wafer bonding,” Chip Scale Review, Nov./Dec. 2018, vol. 22, No. 6, pp. 10-12.
Wang et al., “Reliability and microstructure of Au—AI and Au—Cu direct bonding fabricated by the Surface Activated Bonding,” Electronic Components and Technology Conference, 2002, IEEE, pp. 915-919.
Wang et al., “Reliability of Au bump—Cu direct interconnections fabricated by means of surface activated bonding method,” Microelectronics Reliability, May 2003, vol. 43, Issue 5, pp. 751-756.
Weldon et al., “Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy,” Journal of Vacuum Science & Technology B, Jul./Aug. 1996, vol. 14, No. 4, pp. 3095-3106.
Xu et al., “New Au—AI interconnect technology and its reliability by surface activated bonding,” Electronic Packaging Technology Proceedings, Oct. 28-30, 2003, Shanghai, China, pp. 479-483.
Ceramic Microstructures: Control at the Atomic Level, Recent Progress in Surface Activated Bonding, 1998, pp. 385-389.
Chang, T.C. et al., “A method for fabricating a superior oxide/nitride/oxide gate stack,” Electrochemical and Solid-State Letters, 2004, vol. 7, No. 7, pp. G138-G140.
“Die-to-Wafer Fusion and Hybrid Bonding,” EV Group, https://www.evgroup.com/technologies/die-to-wafer-fusion-and-hybrid-bonding/, printed Sep. 21, 2022, 8 pages.
Gao, G. et al., “Low temperature hybrid bonding for die to wafer stacking applications,” 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), IEEE, Jun. 1, 2021-Jul. 4, 2021.
Jin, H. et al., “Silicon / Silicon Oxide / LPCVD Silicon Nitride Stacks: The Effect of Oxide Thickness on Bulk Damage and Surface Passivation,” Centre for Sustainable Energy Systems, Faculty of Engineering and Information Technology, The Australian National University, Canberra ACT 0200, Australia, 3 pages.
“Lecture 29: Productivity and process yield,” National Programme on Technology Enhanced Learning (NPTEL), MM5017: Electronic materials, devices, and fabrication, 16 pages.
Related Publications (1)
Number Date Country
20210104487 A1 Apr 2021 US
Provisional Applications (1)
Number Date Country
62504834 May 2017 US
Divisions (1)
Number Date Country
Parent 15960179 Apr 2018 US
Child 17124306 US