This application claims priority to German Patent Application 10 2005 041 452.4, which was filed Aug. 31, 2005 and is incorporated herein by reference.
The invention relates to a three-dimensionally integrated electronic assembly.
With advancing miniaturization, electronic assemblies are performing increasingly more complex functions. Typical areas of application are mobile radio devices, PDAs, cameras, clock computer and mobile data storage devices. In these devices it is typically necessary to integrate a plurality of chips, SMD (surface mount device) components and further elements in a small space.
Chips and components are mounted, for example, on a PCB (printed circuit board), ceramic substrate or silicon substrate. Chips having a small area requirement for mounting can be fabricated as WLP (wafer level package). Multichip arrangements are produced as MCM (multi-chip module) in IC (integrated circuit) packages (e.g., SOP (small outline package) or DIP (dual in-line package)), as BGA (ball grid array) package or as COB (chip-on-board) with globe top passivation. One possibility for the vertical arrangement of a plurality of chips consists in mounting as stacked chips or as second level assembly on WLP.
By way of example, German Patent Application 101 53 609 C2, and corresponding U.S. Pat. No. 6,714,418 B2, both of which applications are incorporated herein by reference, describe a method for producing an electronic component with a plurality of chips that are stacked one above another and are contact-connected to one another.
U.S. Pat. No. 6,185,124 B1, which is incorporated herein by reference, presents a memory assembly with an arrangement comprising a chip and a passive component in a common circuit housing.
A multichip arrangement is revealed in German Patent Application 199 05 220 A1, which is incorporated herein by reference. This document describes, for example, a triple chip stack on a chip carrier, in which smaller chips, in each case are fixed on the relevant chip situated underneath by means of adhesive bonding. Here electrical contact is made between the chips and the chip carrier by means of wire bridges, the entire chip arrangement on the chip carrier being encapsulated with an encapsulant.
It has been shown that considerable mounting and packaging costs arise in the case of integrated electronic assemblies, that is to say in the case of assemblies in which a plurality of different component and packaging types are combined with one another. Moreover, there are stringent requirements with regard to reducing the area and space requirement. A specific problem on account of the continually increasing clock frequencies arises as a result of, in part, considerable signal paths or signal paths of different lengths with the associated signal propagation time differences or else the interference radiation.
One possibility that has become known in the meantime for shortening the signal paths consists in the use of pillar-type interconnect elements at the wafer level.
In one aspect, the invention specifies an arrangement for an integrated electronic assembly that results in a significant reduction of the mounting and packaging costs and of the area and space requirement in conjunction with a simultaneous reduction of the signal paths, flexible package pinout and 3-D integration.
This is achieved by virtue of the fact that the substrate is an integrated active electronic circuit structure including a semiconductor chip at least partly singulated or in the wafer assemblage, a semiconductor wafer, a part of a semiconductor wafer or a plurality of semiconductor wafers mounted one on top of another as second level assembly, a circuit structure on a film or fabric basis and/or on a basis of other inorganic, organic or combined materials with integrated active electronic circuit structures embedded, printed on or applied and/or introduced by other methods. A plane 1 is formed. Redistribution lines, a redistribution layer and/or further interconnects and areas are arranged on plane 1 for wiring (hereinafter RDL) by means of which one or a plurality of additional chips, active and/or passive components, assemblies or parts thereof are connected and/or contact-connected, forming at least one further plane (plane 2) or a plurality of planes 2 . . . n.
In another aspect of the invention, one or a plurality of additional planes are provided with RDL, these being contact-connected among one another and/or to the RDL/RDLs of plane 1, to the substrate, chips, active and/or passive components or assemblies.
The chip or chips, active and/or passive components or assemblies may be mounted and/or electrically contact-connected on the respective RDL/RDLs by bonding, adhesive bonding, welding and/or soldering, the electrical contact-connection being realized, inter alia, by means of bumps (e.g., elastomer bumps), electrically conductive adhesive-bonding, welding and solder connections and also wire bridges.
In one preferred refinement of the invention, the RDL/RDLs is/are formed in multilayer fashion in at least one of the planes and is/are provided with plated-through holes between at least one of the layers with other layers and/or planes, to the substrate and/or one or a plurality of chips, active and/or passive components or assemblies, it being possible for the RDL to have planes for ground, shield, supply voltage and/or interconnects. The RDL may be formed as a waveguide (microstrip and stripline) in radio frequency applications.
A simplification of the electrical contact-connection and a shortening of interconnects are achieved if the RDL is led around the edges of substrate and/or chips, active and/or passive components or assemblies and/or over the surface of additional chips, active and/or passive components or assemblies and/or, if appropriate, is embodied bilaterally or multilaterally on the front side and rear side of the substrate and/or chips, active and/or passive components or assemblies. Furthermore, plated-through holes in the substrate, chips and/or other components may produce a connection of front side and rear side. Chips, active and/or passive components or assemblies may be arranged on the substrate top side, substrate rear side or on both sides of the substrate.
A further development according to the invention is characterized by the fact that at least one partial region of at least one or a plurality of planes is planarized with a polymer or the like and/or by material removal. Height differences caused by chips, components and interconnects, for example, are thereby compensated for, one or a plurality of additional planes with RDL, chips, active and/or passive components or assemblies being able to be applied on the polymer or the planarized area, if appropriate with application of further planarization steps.
In continuation it is provided that the active and/or passive components or assemblies are, or contain packaged and/or mounted chips, SMD components, other resistance elements, capacitors, inductances, diodes, transistors, electrical, electronic, magnetic, electromagnetic, optical or micromechanical components, optocouplers or RF couplers or antenna elements, sensors, actuators, operating and indication elements, elements for energy storage and/or conversion, heat distributors or cooling elements, contact pins, contact sockets and/or contact areas or other connections, force-locking and/or positively locking fixing or connecting elements, etc.
In one refinement of the invention, one or a plurality of active and/or passive components or elements and/or circuit structures using thin film or thick film technology are applied and/or fabricated under, on and/or within at least one RDL, the substrate, chips, active or passive components or assemblies or at least one planarization layer and/or are connected to at least one RDL, the substrate, chips, active or passive components or assemblies.
In further continuation of the invention, the three-dimensionally integrated electronic assembly may be completely or partially provided with an independent housing and/or be provided or enveloped with an encapsulant, coating, covering, passivation, a lacquer, label and/or an inscription, thereby realizing, at least in part, the function of a housing such as, for example, protection of the assembly from mechanical and electrical effects and also identification. The three-dimensionally integrated electronic assembly may be embodied as an independent device with integrated operating and indication elements and/or be provided with contact pins, contact sockets, contact areas and/or contact bumps, electrical, electronic, magnetic, electromagnetic, optical, thermal or mechanical couplers for external connection, which are mounted in or on the assembly.
In other aspects, the invention provides a method for producing a three-dimensionally integrated electronic assembly, by virtue of the fact that the fabrication of the substrate with integrated electronic circuit structures, the mounting of additional chips, active and/or passive components or assemblies, RDL and thin-film and/or thick-film process steps for fabricating additional active and/or passive components or elements and/or circuit structures, the planarization, the encapsulation, the coating or other packaging, the testing and/or the identification are effected partly or completely in the wafer assemblage. Singulation of the three-dimensionally integrated electronic assemblies contained in the wafer assemblage can be subsequently carried out by sawing as required.
In one refinement of the method, all or at least a plurality of the above-mentioned method steps are performed.
The invention will be explained in more detail below using an exemplary embodiment. In the associated drawings:
The following list of reference symbols can be used in conjunction with the figures:
The abbreviation RDL used here stands for redistribution lines, redistribution layer and/or other interconnects and areas for wiring, in each case comprising an insulator and interconnects. Furthermore, the term wafer is used for chips situated in the wafer assemblage.
Each electronic assembly on the wafer 1 is encapsulated with a molding composition 5, with the result that individual assemblies arise after the singulation of the wafer by sawing along the separating trenches 16.
Another embodiment is illustrated in
A further chip 2 is mounted on the RDL 8 of the second chip by means of an electrical connection 3 (e.g., solder connection or adhesive-bonding connection). As in
Another embodiment of an integrated electronic assembly is illustrated in
As discussed above, in one embodiment, a three-dimensionally integrated electronic assembly contains one or a plurality of chips and/or one or a plurality of active and/or passive components or assemblies that are mounted on a substrate and are connected to one another and/or to the substrate. The substrate is an integrated active electronic circuit structure comprising a semiconductor chip at least partly singulated or in the wafer assemblage, a semiconductor wafer, a part of a semiconductor wafer or a plurality of semiconductor wafers mounted one on top of another as second level assembly, a circuit structure on a film or fabric basis and/or on a basis of other inorganic, organic or combined materials with integrated electronic circuit structures embedded, printed on or applied and/or introduced by other methods, forming a plane 1. There are arranged at least on said plane 1 redistribution lines, a redistribution layer and/or further interconnects and areas for wiring (RDL) by means of which one or a plurality of additional chips, active and/or passive components, assemblies or parts thereof are connected and/or contact-connected, forming at least one further plane (plane 2) or a plurality of additional planes 2 . . . n.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 041 452.4 | Aug 2005 | DE | national |