Some circuits for use at communication frequencies, such as are used for telecommunication and other signal processing applications, involve mounting one component onto another component. An example is mounting an integrated circuit chip to a base substrate. Various mounting techniques may be used. One technique involves using an adhesive to attach or “bond” a chip to a substrate. During this process, adhesive may be squeezed from between the chip and substrate and flow to regions beyond the chip footprint. If the bonding involves two chips or a chip being bonded near another above-the-substrate structure, a likely result is an overflow of adhesive onto contact pads required to interconnect the chip and another circuit component.
A circuit structure may be formed that includes a substrate having a face and an open trench, adjacent to where one or more chips are to be mounted. One or more bridges may extend across an intermediate portion of the trench, and optionally, bifurcates or otherwise divides the trench into sections. An adhesive layer, that may or may not be conductive, may be applied to the substrate face. One or more circuit chips may be mounted on the adhesive layer, with at least one edge of one circuit chip adjacent to the trench. Optionally, an adhesive layer may be applied to the chip base and then mounted to the substrate face, in like fashion. The trench may accommodate excess adhesive. A bridge across the trench may retain the adhesive across the width of the trench. This may extend the adhesive surface area, and when the adhesive is conductive, the bridge may provide continuity of the conductive layer across the face of the substrate. In one example, pairs of circuit chips may be effectively mounted in adjacent relationship for interconnection without interference from excess adhesive by positioning adjacent edges of the chips adjacent the trench.
Referring to the drawings,
As particularly shown in
One or more bridges, such as bridge 28, may extend across trench 22. In some examples of the circuit structure, there is no bridge 28. In other examples a plurality of bridges 28 may be used, as represented by additional or alternative bridges 28 shown in dashed lines. Any bridge or bridges may be formed during the formation of trench 22. For example, the trenches may be formed by etching, such as with a laser, substrate 12. By etching discontinuous trench sections, a stretch of substrate remaining may form the bridge. In such a case, the bridge may be a wall between trench sections or the substrate between the ends of two trenches. The bridge may also extend over or through an intermediate portion of a continuous trench, leaving a passageway along the trench and under the bridge. Further, a bridge 28 could be grown or inserted into a previously formed trench, as an alternative to leaving a portion non-etched. Thus, the term bridge refers to any suitable structure spanning a width of the trench sufficient to support adhesive layer 20. In some examples, such as circuit structure 10 as shown, the adhesive layer is conductive, and the bridge supports a continuous adhesive layer 20, providing electrical continuity between opposite sides of the trench. The layer support may preferably be provided, by a bridge with an upper surface 28a near substrate surface 12a.
In this example, circuit chips 16 and 18 have respective connection or lead pads, also referred to as terminals 30 and 32 that may be connected to resident circuit structure formed on or in the chips. This resident circuit structure may be connected to external circuit structure via terminals, such as terminals 30 and 32. In this example, an interconnect 34 interconnects terminals 30 and 32. Any device suitable for providing an electrical connection between the terminals, such as a wire, ribbon or bar, may be used. In this example, interconnect 34 is in the form of a bond wire 36 attached, such as by solder, to the terminals.
One or more circuit units may be positioned adjacent to a trench. The area near a portion of a circuit unit that is adjacent to a trench is referred to as an area 38 of adjacency. The figures show an example in which two circuit units 14 are positioned adjacent to a trench 22. The space between two circuit units may also be referred to as a gap 40. All or a portion of gap 40 may extend over trench 22. Gap 40 may be positioned completely or partially over trench 22 so that excess adhesive flows directly into the trench. Centering the gap over trench 22, as shown in
Adhesive layer 20 may be conductive to provide a circuit ground circuit structure 10, including circuit chips 16 and 18. Adhesive 20 may be flowable, and may squeeze out from under one or both of the chips during mounting. Such excess adhesive may flow into the trench, rather than further out onto the substrate surface 12a. In this example, gap 40 between the chips may be small. The adhesive may thereby flow into the trench rather than up between the chips, and possibly on top of the chips, where it might flow onto terminal 30 or 32. In this way, the terminals may remain clear of adhesive, and interconnection may occur unimpeded by uncontrolled flow of adhesive.
Further, with a conductive adhesive, ground or circuit continuity is maintained, regardless of how much adhesive flows in trench 22. If bridge 28 is wide enough, adhesive may still accumulate on top of it, even to the point of overflowing onto the top of one or both of the chips.
More than one bridge 28 may be used to create a greater assurance of circuit continuity between chips 16 and 18, especially where conductive adhesive 20 may be less viscous. Also, trench 22 need not extend deeper into substrate 12 than is needed to accommodate enough adhesive to avoid build-up on top of a circuit chip. However, a trench 22 may be formed that is sufficiently deep to accommodate a range of amounts of excess adhesive.
Now referring to
In another configuration (not shown), trench 22 may extended well beyond the sides of a circuit chip so as to accommodate the placement of additional circuit chips along the same trench. Thus, forming a mask for etching the trench may be simplified and a higher density of circuit units may be realized.
Accordingly, while embodiments have been particularly shown and described with reference to the foregoing disclosure, many variations may be made therein. The foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be used in a particular application. Where the claims recite “a” or “a first” element or the equivalent thereof, such claims include one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate or imply a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically stated.
It is believed that the following claims particularly point out certain combinations and subcombinations that correspond to disclosed examples and are novel and non-obvious. Other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to different combinations or directed to the same combinations, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the present disclosure.
The methods and apparatus described herein are applicable to the semiconductor, the telecommunication, and the communication-frequency signal processing industries, and are applicable to circuit technologies where circuit units may be mounted on a substrate.
Number | Name | Date | Kind |
---|---|---|---|
3613230 | Griff | Oct 1971 | A |
4460880 | Turner | Jul 1984 | A |
4673904 | Landis | Jun 1987 | A |
4776087 | Cronin et al. | Oct 1988 | A |
4845311 | Schreiber et al. | Jul 1989 | A |
5426399 | Matsubayashi et al. | Jun 1995 | A |
5461353 | Eberhardt | Oct 1995 | A |
5574415 | Peterson | Nov 1996 | A |
5796165 | Yoshikawa et al. | Aug 1998 | A |
5830797 | Cleeves | Nov 1998 | A |
5854867 | Lee et al. | Dec 1998 | A |
6268283 | Huang | Jul 2001 | B1 |
6268637 | Gardner et al. | Jul 2001 | B1 |
6274920 | Park et al. | Aug 2001 | B1 |
6356173 | Nagata et al. | Mar 2002 | B1 |
6483406 | Sawa et al. | Nov 2002 | B1 |
6495903 | Xu et al. | Dec 2002 | B2 |
6515222 | Underwood et al. | Feb 2003 | B2 |
6617686 | Davies | Sep 2003 | B2 |
6731009 | Jones et al. | May 2004 | B1 |
6787893 | Nakajima et al. | Sep 2004 | B2 |
20020056888 | Depetro | May 2002 | A1 |
20030001252 | Ku et al. | Jan 2003 | A1 |
20030064547 | Akram et al. | Apr 2003 | A1 |
20030071325 | Xu et al. | Apr 2003 | A1 |
20030224553 | Manansala | Dec 2003 | A1 |
20040155723 | Koriyama | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
4-139783 | May 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20060001154 A1 | Jan 2006 | US |