This invention relates to methods of forming conductive connections, methods of reducing oxidation, oxidation protection methods, methods of forming integrated circuit structures, such as conductive interconnects and wire bonds, and integrated circuits formed thereby.
Several advantages exist for using copper metalization in integrated circuits, such as semiconductor devices. However, copper metalization may be more susceptible to oxidation under certain process conditions as compared to other metals, such as aluminum. Semiconductor devices often include at least two primary metal layers with interconnections between such layers. The first metal layer can be a so-called “metal 1” layer and the second can be a so-called “metal 2” layer.
The first metal layer may be formed on a substrate and covered by a dielectric material, such as silicon dioxide. An opening for an interconnect may then be formed through the dielectric material to expose the first metal layer. The opening may be formed by patterning a layer of photoresist deposited over the dielectric and etching portions of the dielectric material exposed through the photoresist. A common process for removing photoresist comprises ashing. Such removal of a photoresist exposes the first metal layer to the ashing conditions, potentially oxidizing the first metal layer. Copper is particularly susceptible to oxidation at high temperature processing, such as processing at 200° C. or higher.
One method for reducing oxidation of the first metal layer includes forming a layer of silicon nitride over the first metal layer prior to forming dielectric material over the, first metal layer. The dielectric material is then processed as indicated above with formation of a photoresist, patterning of the photoresist, etching, and photoresist removal by ashing. However, after etching an opening for a conductive interconnect, a separate etch of the silicon nitride may be used to expose the first metal layer preparatory to forming a conductive interconnect to such layer. A high level of selectivity may often be provided for etching the silicon nitride compared to etching the dielectric material, such as silicon dioxide. The two-step etch process and highly selective etch of silicon nitride add a level of complexity to such processing that is undesirable.
Accordingly, new methods are desired for forming conductive connections between first and second metal layers in semiconductor devices that reduce oxidation of copper without introducing undue complexity to processing.
In one aspect of the invention, a conductive connection forming method includes forming a first layer comprising a first metal on a substrate and transforming at least a part of the first layer to a transformed material comprising the first metal and a second substance different from the first metal. A conductive connection may be formed to the first layer by way of the transformed material. The method may further include forming a second layer comprising a second metal different from the first metal on the first layer. The transformed material may be an alloy material comprising the first and second metals. The alloy material may be less susceptible to formation of metal oxide compared to the first metal. By way of example, transforming the first layer may comprise annealing the first and second layer. An exemplary alloy includes an intermetallic. An exemplary first metal comprises copper, and an exemplary second metal comprises aluminum, titanium, palladium, magnesium, or two or more such metals.
Further, another aspect of the invention includes a conductive connection forming method wherein a first layer comprising copper is formed over a substrate. A second layer of a second metal different from the copper may be formed over the first layer. At least some of the second metal may be incorporated into an intermetal layer comprising the second metal and copper. The method further includes removing at least a portion of any second metal not incorporated into the intermetal layer and exposing the intermetal layer. A conductive connection may be formed to the intermetal layer.
Such methods may be used as oxidation reducing methods or methods for protecting metal containing material from oxidation during semiconductor processing. Such methods are also conducive to use in methods of forming integrated circuit interconnects or integrated circuit wire bonds.
In another aspect of the invention, an integrated circuit includes a semiconductive substrate, a layer, comprising a first metal over the substrate, and a layer of alloy material within the first metal comprising layer. The alloy material layer may comprise the first metal and a second metal different from the first metal. A conductive connection may be formed on the alloy layer.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
In one aspect of the present invention, a conductive connection forming method includes forming a first layer comprising a first metal on a substrate. In the context of this document, layers or materials “comprising metal” or “metal-comprising” layers or materials are defined to mean any layer or material containing at least one metallic element, regardless of whether the layer or material exhibits metallic properties. For example, a metal-comprising layer or material may be a metal oxide, nitride, sulfide, or other substance even though such substance might not exhibit metallic properties.
Turning to
In the context of this document; the term “semiconductor substrate” or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.
Accordingly, metal-comprising layer 14 may be formed over a semiconductive substrate. After formation of metal-comprising layer 14, a second layer comprising a second metal different from the first metal in metal-comprising layer 14 may be formed on metal-comprising layer 14.
The present aspect of the invention further includes transforming at least a part of the first layer to an alloy material comprising the first and second metals. Alternatively, the present aspect of the invention may include incorporating at least some of the second metal into an alloy layer comprising the second metal and the first metal. The indicated transforming may comprise annealing the first and second layer. Similarly, the indicated incorporating may also comprise annealing the first and second layer. Annealing may occur at a temperature of about 400° C. to about 500° C. The alloy material may consist essentially of the first and second metals. Also, the alloy material may comprise an intermetallic material. In the context of this document, an “intermetallic” material is a type of metal alloy wherein the constituents are held together by metallic bonding. Alloys also include other materials that are not held together by metallic bonding. An intermetallic material may exhibit properties as described below that are advantageous in the present invention. However, it is also conceivable that alloys may exist that exhibit similar properties, but are not intermetals. Although the aspects of the invention are discussed herein primarily with reference to intermetals, one of ordinary skill will appreciate that alloys that are not intermetals may also be suitable.
Turning to
It is preferred that intermetallic material 18 consist essentially of the first metal of layer 14 and the second metal of layer 16. It is also preferred that intermetallic material 18, or another alloy material, exhibit the property of being less susceptible to the formation of metal oxide in comparison to the first metal of layer 14. Such a property, as well as other properties, may allow intermetallic material 18 to reduce oxidation of metal-comprising layer 14 during subsequent processing. Oxidation of metal-comprising layer 14 can potentially reduce the conductivity of conductive connections formed to metal-comprising layer 14. Accordingly, the present aspect of the invention further includes forming a conductive connection to the intermetallic material, or another alloy material. Examples of a conductive connection include an integrated circuit interconnect, an integrated circuit wire bond, and other structures.
Intermetallic material 18, or another alloy material, may also advantageously exhibit the property of having approximately the same resistivity as metal-comprising layer 14. Examples of particularly advantageous intermetallic materials include intermetals of titanium or aluminum with copper, specifically, TiCu3. Such intermetals exhibit approximately the same resistivity as copper. Such intermetals are also much less susceptible to formation of metal oxide compared to copper. Accordingly, providing such intermetals as intermetallic material 18 may reduce the oxidation of copper in processing subsequent to formation of such intermetal.
Depending on the particular application of the invention, it may be desirable to remove some portion of metal-comprising layer 16, intermetallic material 18, and/or metal-comprising layer 14. A variety of processing scenarios are conceivable, For example, substantially all of metal-comprising layer 16 not comprised by intermetallic material 18 may be removed.
A non-selective etch or chemical mechanical polishing are two examples of potential processes. As shown in
In alternative to the above-described methods, the objective of avoiding electrical shorts, as well as other objectives, may be met by instead removing at least some of metal-comprising layer 16 not comprised by intermetallic material 18. A sufficient thickness of intermetallic material 18 may be left behind to reduce oxidation of metal-comprising layer 14. The potential additional objective of exposing intermetallic material 18 may be met by such an alternative process as well as by the other previously mentioned processes for removing metal-comprising layer 16.
Turning to
Another aspect of the invention includes an oxidation reducing method wherein a layer comprising a first metal may be contacted with a second metal different from the first metal while treating the layer in contact with the second metal. The method includes forming an intermetallic material at least partially within the layer, the intermetallic material comprising the first and second metals. Further, substantially all of any residual second metal not comprised by the intermetallic material may be removed from over the intermetallic material. A conductive connection to the intermetallic material may be formed without forming a substantial amount of metal oxide on the first metal. Treating the layer in contact with the second metal may comprise annealing the layer. From the text associated with
In an oxidation protection method, also exemplified by
Turning to
In the present aspect of the invention, forming intermetallic material 68 may comprise forming a layer comprising the second metal on the first wiring level. One example is shown in
Another aspect of the present invention includes an integrated circuit wire bond forming method. Such method involves forming integrated circuit wiring and defining a bond pad in the wiring comprising a first metal. An intermetallic material may be formed at least partially within the bond pad, the intermetallic material comprising the first metal and a second metal different from the first metal. A wire bond may be formed in electrical contact with the intermetallic material.
Turning to
As shown in
In
Turning to
As also seen in
In the aspects of the invention described above, a transformed material, such as an alloy material or another material, may be formed by still other methods. A conductive connection forming method can include transforming at least a part of metal-comprising layer 14 to a transformed material by ion implanting. Implanting a second substance different from the metal in metal-comprising layer 14 may impart a decreased susceptibility in the transformed material to oxidation compared to the metal. For example, nitrogen or another substance may be implanted into metal-comprising layer 14 to an extent sufficient to decrease oxidation. The nitrogen implant may be sufficiently limited in amount and depth such that a conductive connection may still be formed to the metal-comprising layer 14 by way of the transformed material. Limiting the implant energy may produce a shallow implant of metal-comprising layer 14, thus also limiting any impact on conductivity of metal-comprising layer 14.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
This patent resulted from a divisional application of U.S. patent application Ser. No. 09/881,299, filed on Jun. 13, 2001, U.S. Pat. No. 6,756,678, which is a divisional application of U.S. patent application Ser. No. 09/518,511, filed on Mar. 3, 2000, now U.S. Pat. No. 6,613,671.
Number | Name | Date | Kind |
---|---|---|---|
3826886 | Hara et al. | Jul 1974 | A |
3839727 | Herdzik et al. | Oct 1974 | A |
3839780 | Freedman et al. | Oct 1974 | A |
3887994 | Ku et al. | Jun 1975 | A |
3921200 | Pille | Nov 1975 | A |
4319967 | Vratny et al. | Mar 1982 | A |
4393096 | Gajda | Jul 1983 | A |
4565586 | Church et al. | Jan 1986 | A |
4698233 | Ohira et al. | Oct 1987 | A |
5071714 | Rodboll et al. | Dec 1991 | A |
5096508 | Breedis et al. | Mar 1992 | A |
5258329 | Shibata | Nov 1993 | A |
5272015 | Hamdi et al. | Dec 1993 | A |
5296653 | Kiyota et al. | Mar 1994 | A |
5360995 | Graas | Nov 1994 | A |
5378660 | Ngan et al. | Jan 1995 | A |
5390141 | Cohen et al. | Feb 1995 | A |
5455195 | Ramsey et al. | Oct 1995 | A |
5518936 | Yamamoto et al. | May 1996 | A |
5547881 | Wang et al. | Aug 1996 | A |
5565378 | Harada et al. | Oct 1996 | A |
5592024 | Aoyama et al. | Jan 1997 | A |
5656546 | Chen | Aug 1997 | A |
5656860 | Lee | Aug 1997 | A |
5700735 | Shiue et al. | Dec 1997 | A |
5788830 | Sakamoto et al. | Aug 1998 | A |
5851922 | Bevk et al. | Dec 1998 | A |
5885896 | Thakur et al. | Mar 1999 | A |
5891513 | Dubin et al. | Apr 1999 | A |
5898222 | Farooq et al. | Apr 1999 | A |
6030895 | Joshi et al. | Feb 2000 | A |
6069075 | McTeer | May 2000 | A |
6100195 | Chan et al. | Aug 2000 | A |
6107179 | Zomorrodi et al. | Aug 2000 | A |
6107687 | Fukada et al. | Aug 2000 | A |
6110819 | Colgan et al. | Aug 2000 | A |
6110829 | Besser et al. | Aug 2000 | A |
6140236 | Restaino et al. | Oct 2000 | A |
6146988 | Ngo et al. | Nov 2000 | A |
6147000 | You et al. | Nov 2000 | A |
6171949 | You et al. | Jan 2001 | B1 |
6171960 | Lee | Jan 2001 | B1 |
6172421 | Besser et al. | Jan 2001 | B1 |
6174810 | Islam et al. | Jan 2001 | B1 |
6174812 | Hsiung et al. | Jan 2001 | B1 |
6214731 | Nogami et al. | Apr 2001 | B1 |
6261939 | Skalal et al. | Jul 2001 | B1 |
6261950 | Tobben et al. | Jul 2001 | B1 |
6306750 | Huang et al. | Oct 2001 | B1 |
6323131 | Obeng et al. | Nov 2001 | B1 |
6329722 | Shih et al. | Dec 2001 | B1 |
6358849 | Havemann et al. | Mar 2002 | B1 |
6417575 | Harada et al. | Jul 2002 | B2 |
6444567 | Besser | Sep 2002 | B1 |
6468906 | Chan et al. | Oct 2002 | B1 |
6495200 | Chan et al. | Dec 2002 | B1 |
Number | Date | Country |
---|---|---|
0288776 | Feb 1988 | EP |
2184288 | May 1986 | GB |
2184288 | Jun 1986 | GB |
362120037 | Jun 1987 | JP |
404280979 | Oct 1992 | JP |
6-69270 | Jun 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20040212093 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09881299 | Jun 2001 | US |
Child | 10850168 | US | |
Parent | 09518511 | Mar 2000 | US |
Child | 09881299 | US |