Conical-shaped or tier-shaped pillar connections

Information

  • Patent Grant
  • 11315896
  • Patent Number
    11,315,896
  • Date Filed
    Monday, August 20, 2018
    5 years ago
  • Date Issued
    Tuesday, April 26, 2022
    2 years ago
Abstract
A pillar structure, and a method of forming, for a substrate is provided. The pillar structure may have one or more tiers, where each tier may have a conical shape or a spherical shape. In an embodiment, the pillar structure is used in a bump-on-trace (BOT) configuration. The pillar structures may have circular shape or an elongated shape in a plan view. The substrate may be coupled to another substrate. In an embodiment, the another substrate may have raised conductive traces onto which the pillar structure may be coupled.
Description
BACKGROUND

Generally, semiconductor dies comprise active devices, metallization layers forming connections to the active devices, and I/O contacts to provide the metallization layers (and active devices) signals and power. The metallization layers generally comprise a series of dielectric layers and metal layers in order to provide all of the required connections between the active devices and the I/O contacts (and between individual active devices). These dielectric layers may be formed from low-k dielectric materials with dielectric constants (k value) between about 2.9 and 3.8, ultra low-k (ULK) dielectric materials, with k values less than about 2.5, or even extra low-k (ELK) dielectric materials with k values between about 2.5 and about 2.9, or some combination of low-k dielectric materials.


However, while these low-k, ULK, and ELK materials may be used to improve the electrical characteristics of the metallization layers and thereby increase the overall speed or efficiency of the semiconductor device, these materials may also exhibit structural deficiencies. For example, some of these materials may have greater trouble than other dielectric materials handling the stresses applied to them in the semiconductor device. As such, the low-k, ULK, and ELK materials tend to delaminate or crack when too much pressure is applied to the low-K, ELK, and ULK materials, thereby damaging or destroying the semiconductor device and reducing yields and increasing costs.


These delamination issues related to stress can be particularly troublesome when using packaging techniques such as surface-mount technology (SMT) and flip-chip packaging. As opposed to more conventional packaged integrated circuits (ICs) that have a structure basically interconnected by fine gold wire between metal pads on the die and electrodes spreading out of molded resin packages, these packaging techniques rely on bumps of solder to provide an electrical connection between contacts on the die and contacts on a substrate, such as a packaging substrate, a printed circuit board (PCB), another die/wafer, or the like. The different layers making up the interconnection typically have different coefficients of thermal expansion (CTEs). As a result, additional stress derived from this difference is exhibited on the joint area, which also may cause cracks to form and/or delamination.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIGS. 1-7 illustrate intermediate stages in forming a semiconductor device having a conical shaped pillar structure in accordance with an embodiment;



FIGS. 8A and 8B illustrate a first substrate connected to a second substrate using a conical shaped pillar in accordance with an embodiment;



FIGS. 9-12 illustrate intermediate stages in forming a semiconductor device having a tiered pillar structure in accordance with an embodiment;



FIGS. 13-15 illustrate various shapes of tiered pillar structures in accordance with embodiments; and



FIGS. 16A-16E illustrate various shapes in a plan view of pillar structures in accordance with various embodiments.





DETAILED DESCRIPTION

The making and using of embodiments are discussed in detail below. It should be appreciated, however, that this disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the embodiments, and do not limit the scope of the disclosure.


Embodiments described herein relate to the use of bumps or balls (collectively referred to herein as bumps) for use with interconnecting one substrate with another substrate, wherein each substrate may be an integrated circuit die, an interposer, packaging substrate, printed circuit board, organic substrate, ceramic substrate, high-density interconnect, and/or the like. As will be discussed below, embodiments are disclosed that utilize a pillar and/or a bump having a smaller tip section relative to a base section, such as a conical or tiered shape. It has been found that embodiments such as those discussed herein may reduce delamination issues as well as reducing bridging between adjacent connections, thereby increasing throughput and reliability. The intermediate stages of a method for forming a conical or tiered shape pillar and/or bump are disclosed herein. Embodiments such as these may be suitable for use in flip-chip configuration, three-dimensional (3D) IC or stacked die configurations, and/or the like. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.



FIGS. 1-7 illustrate various intermediate stages of a method of forming a semiconductor device having a pillar and/or bump having a conical cross-sectional shape in accordance with an embodiment. Referring first to FIG. 1, a portion of a substrate 100 is shown in accordance with an embodiment. The substrate 100 may comprise, for example, bulk silicon, doped or undoped, or an active layer of a semiconductor-on-insulator (SOI) substrate. Generally, an SOI substrate comprises a layer of a semiconductor material, such as silicon, formed on an insulator layer. The insulator layer may be, for example, a buried oxide (BOX) layer or a silicon oxide layer. The insulator layer is provided on a substrate, typically a silicon or glass substrate. Other substrates, such as multi-layered or gradient substrates may also be used. In another embodiment, the substrate 100 may comprise a substrate to which an integrated circuit die may be attached. For example, the substrate 100 may be an interposer, a packaging substrate, a high-density interconnect, a printed circuit board, another integrated circuit die, or the like.


It should be noted that in some embodiments, particularly in embodiments in which the substrate 100 is an integrated circuit die, the substrate 100 may include electrical circuitry (not shown). In an embodiment, the electrical circuitry includes electrical devices formed on the substrate 100 with one or more dielectric layers overlying the electrical devices. Metal layers may be formed between dielectric layers to route electrical signals between the electrical devices. Electrical devices may also be formed in one or more dielectric layers. In an embodiment, the substrate 100 includes one or more low-k and/or ELK dielectric layers.


For example, the electrical circuitry may include various N-type metal-oxide semiconductor (NMOS) and/or P-type metal-oxide semiconductor (PMOS) devices, such as transistors, capacitors, resistors, diodes, photo-diodes, fuses, and the like, interconnected to perform one or more functions. The functions may include memory structures, processing structures, sensors, amplifiers, power distribution circuitry, input/output circuitry, or the like. One of ordinary skill in the art will appreciate that the above examples are provided for illustrative purposes only to further explain applications of some illustrative embodiments and are not meant to limit the disclosure in any manner. Other circuitry may be used as appropriate for a given application.


Conductive traces 102 are provided in an upper surface of the substrate 100 to provide external electrical connections. It should be noted that the conductive traces 102 represent an electrical connection to electrical circuitry formed on the substrate 100, an electrical connection to a through-substrate via, a redistribution line, and/or the like. The conductive traces 102 may comprise a conductive material such as copper, although other conductive materials, such as tungsten, aluminum, copper alloy, or the like, may alternatively be used. The conductive traces 102 may be formed using a damascene or dual damascene process which may include a copper overfill into an opening followed by the removal of the excess copper through a process such as chemical mechanical polishing (CMP). However, any suitable material (such as, e.g., aluminum) and any suitable process (such as deposition and etching) may alternatively be used to form the conductive traces 102.


Embodiments such as those disclosed herein may be particularly beneficial in a system using bump-on-trace (BOT) technology. Generally, these techniques provide for a bump to be coupled directly to the conductive traces (such as conductive traces 852 of the second substrate 850 illustrated in FIG. 8). A solder resist may be used to protect other portions of the trace and/or other traces.


One or more passivation layers, such as passivation layer 104, are formed and patterned over the substrate 100 to provide an opening over the conductive traces 102 and to protect the underlying layers from various environmental contaminants. The passivation layer 104 may be formed of a dielectric material, such as PE-USG, PE-SiN, combinations thereof, and/or the like, by any suitable method, such as CVD, PVD, or the like. In an embodiment, the passivation layer 104 has a thickness of about 10,000 Å to about 15,000 Å. In an embodiment, the passivation layer 104 comprises a multi-layer structure of 750 Å of SiN, 6,500 Å of PE-USG, and 6,000 Å of PE-SiN.


A protective layer 106 formed and patterned over the passivation layer 104. The protective layer 106 may be, for example, a polyimide material formed by any suitable process, such as spin coating of a photo resister, or the like. In an embodiment, the protective layer 106 has a thickness between about 2.5 μm and about 10 μm.


One of ordinary skill in the art will appreciate that a single layer of conductive/bond pads and a passivation layer are shown for illustrative purposes only. As such, other embodiments may include any number of conductive layers and/or passivation layers. Furthermore, it should be appreciated that one or more of the conductive layers may act as a RDL to provide the desired pin or ball layout.


Any suitable process may be used to form the structures discussed above and will not be discussed in greater detail herein. As one of ordinary skill in the art will realize, the above description provides a general description of the features of the embodiment and that numerous other features may be present. For example, other circuitry, liners, barrier layers, under-bump metallization configurations, and the like, may be present. The above description is meant only to provide a context for embodiments discussed herein and is not meant to limit the disclosure or the scope of any claims to those specific embodiments.


Referring now to FIG. 2, a conformal seed layer 210 is deposited over the surface of the protective layer 106 and the exposed portions of the conductive traces 102. The seed layer 210 is a thin layer of a conductive material that aids in the formation of a thicker layer during subsequent processing steps. In an embodiment, the seed layer 210 may be formed by depositing a thin conductive layer, such as a thin layer of Cu, Ti, Ta, TiN, TaN, or the like, using chemical vapor deposition (CVD) or plasma vapor deposition (PVD) techniques. For example, in an embodiment, the seed layer 210 is a composite layer including a layer of Ti deposited by a PVD process to a thickness of about 500 Å and a layer of Cu deposited by a PVD process to a thickness of about 3,000 Å. Other materials, processes, and thicknesses may be used.


The embodiment illustrated in FIG. 2 illustrates an intermediate step in forming a BOT configuration in which a pillar structure, e.g., including a seed layer (if any) and a pillar, is formed directly on the trace. In such an embodiment, an under-bump metallization (UBM) layer may be omitted. In other embodiments, however, additional layers and/or UBM structures may be utilized.



FIG. 3 illustrates a first patterned mask 312 formed over the seed layer 210 in accordance with an embodiment. The first patterned mask 312 will act as a mold for forming conductive pillars in subsequent processing steps. The first patterned mask 312 may be a patterned photoresist mask, hard mask, and/or the like. In an embodiment, a photoresist material is deposited and patterned to form openings 314.


It should be noted that the embodiment illustrated in FIG. 3 utilizes sloped sidewalls such that the openings 314 are wider along the bottom of the openings along the seed layer 210 than the top portion of the openings 314, thereby resulting in a conical shape. The tapered profile may be created by any suitable technique, such as the use of multiple photoresist layers with different patterning properties and one or more exposures, diffusion techniques, an image reversal process, multiple exposures using different masks, and/or the like.


Thereafter, conductive pillar 416 is formed in the openings 314 (see FIG. 3) as illustrated in FIG. 4. The conductive pillar 416 comprises one or more conductive materials, such as copper, tungsten, other conductive metals, or the like, and may be formed, for example, by electroplating, electroless plating, or the like. In an embodiment, an electroplating process is used wherein the wafer is submerged or immersed in the electroplating solution. The wafer surface is electrically connected to the negative side of an external DC power supply such that the wafer functions as the cathode in the electroplating process. A solid conductive anode, such as a copper anode, is also immersed in the solution and is attached to the positive side of the power supply. The atoms from the anode are dissolved into the solution, from which the cathode, e.g., the wafer, acquires, thereby plating the exposed conductive areas of the wafer, e.g., exposed portions of the seed layer 210 within the openings 314.



FIG. 5 illustrates formation of an optional conductive cap layer 518 formed over the conductive pillar 416. As described in greater detail below, solder material will be formed over the conductive pillar 416. During the soldering process, an inter-metallic compound (IMC) layer is naturally formed at the joint between the solder material and the underlying surface. It has been found that some materials may create a stronger, more durable IMC layer than others. As such, it may be desirable to form a cap layer, such as the conductive cap layer 518, to provide an IMC layer having more desirable characteristics. For example, in an embodiment in which the conductive pillar 416 is formed of copper, a conductive cap layer 518 formed of nickel may be desirable. Other materials, such as Pt, Au, Ag, combinations thereof, or the like, may also be used. The conductive cap layer 518 may be formed through any number of suitable techniques, including PVD, CVD, ECD, MBE, ALD, electroplating, and the like.



FIG. 6 illustrates formation of solder material 620 and an IMC layer 622. In an embodiment, the solder material 620 comprises SnPb, a high-Pb material, a Sn-based solder, a lead-free solder, a SnAg solder, a SnAgCu solder, or other suitable conductive material. FIG. 6 illustrates an embodiment in which the solder material 620 is formed while the first patterned mask 312 is present and exhibits a conical shape similar to the underlying conductive pillar 416. In other embodiments, the solder material 620 (or other suitable material) may be placed on the conductive pillars after removal of the first patterned mask 312.



FIG. 7 illustrates the removal of the first patterned mask 312 (see FIG. 3) in accordance with an embodiment. In an embodiment in which the first patterned mask 312 is a photoresist mask, a plasma ashing or wet strip process may be used to remove the first patterned mask 312. The exposed portions of the seed layer 210 may be removed by, for example, a wet etching process. Optionally, a wet dip in a sulfuric acid (H2SO4) solution may be used to clean the wafer and remove remaining photoresist material. A reflow process may be performed, which may cause the solder material 620 to have a rounded shape.


The conductive pillar 416 and, optionally, the conductive cap layer 518 form a conductive bump 724 having a conical shape such that sidewalls of the conductive bump 724 are tapered. In this situation, a width of the base portion WB is greater than a width of the tip portion WT. The relatively wide base dimension may reduce current density and the narrower top portion may reduce the probability of misalignment when coupling the first substrate 100 to another substrate.


A ratio of the width of the tip portion WT to the width of the base portion WB may be adjusted for a particular purpose or application. For example, in an embodiment, the ratio of WT to WB may be from about 0.5 to about 0.99. In another embodiment, the ratio of WT to WB may be from about 0.6 to about 0.98. In another embodiment, the ratio of WT to WB may be from about 0.7 to about 0.93. In another embodiment, the ratio of WT to WB may be from about 0.75 to about 0.92. In another embodiment, the ratio of WT to WB may be from about 0.75 to about 0.97.



FIGS. 8A and 8B illustrate joining two substrates in accordance with an embodiment, wherein FIG. 8A is a side view and FIG. 8B is a perspective view. The first substrate 800, represents a substrate such as the substrate 100 discussed above with reference to FIGS. 1-7, wherein like reference numerals refer to like elements. The second substrate 850 represents a substrate to be attached to the first substrate 800 and may be an organic substrate, a PCB, a ceramic substrate, integrated circuit die, an interposer, a packaging substrate, a high-density interconnect, or the like.


The second substrate 850 includes conductive traces 852 formed thereon. The conductive traces may be formed of any suitable conductive material, such as copper, tungsten, aluminum, silver, combinations thereof, or the like. It should be noted that the conductive traces 852 may be a portion of redistribution layer. As illustrated in FIGS. 8A and 8B, the solder material 620 of the first substrate 100 is brought into contact with the conductive trace 852 and a reflow process is performed. Due to the conical shape of the pillar 416 and/or solder material 620, the solder material may be brought into direct contact with the raised conductive traces 852 while reducing the risk of bridging between adjacent ones of the conductive traces 852.



FIGS. 9-12 illustrate another embodiment in which a tiered pillar is utilized. FIGS. 9-12 illustrate another embodiment in which a multi-tiered pillar structure is formed, rather than a single-tiered pillar structure illustrated in FIGS. 8A and 8B. The multi-tiered pillar structure of FIGS. 9-12 may be connected to the second substrate (see FIGS. 8A and 8B) by replacing the single-tiered pillar structure of FIGS. 8A and 8B. Referring first to FIG. 9, there is shown a structure similar to that discussed above with reference to FIG. 3, wherein like reference numerals refer to like elements, except that the first patterned mask 312 is replaced with a first tier patterned mask 912 that is formed and patterned to form a first tier of a pillar structure in openings 914 as explained in greater detail below.


Referring now to FIG. 10, there is shown a first tier pillar structure 1010 formed in the openings 914. In this embodiment, the first tier pillar structure 1010 is formed to an upper surface of the first tier patterned mask 912. The first tier patterned mask 912 and the first tier pillar structure 1010 of FIG. 10 may be formed in a similar manner using similar processes and similar materials as those used to form the first patterned mask 312 and the conductive pillar 416 of FIG. 3. A planarization process, such as a CMP process may be used to remove excess material.



FIG. 11 illustrates a second tier patterned mask 1112 formed over the first tier patterned mask 912. The second tier patterned mask 1112 may be formed in a similar manner using similar processes and similar materials as those used to form the first tier patterned mask 912. FIG. 11 further illustrates a second tier pillar structure 1114 formed overlying the first tier pillar structure 1010.


It should be noted, however, that two tiers are illustrated in this embodiment for illustrative purposes only and that other embodiments may utilize more tiers. After forming the uppermost tier pillar structure, such as the second tier pillar structure 1114, the first tier patterned mask 912 and the second tier patterned mask 1112 may be removed, thereby resulting in the pillar structure as illustrated in FIG. 12.


As illustrated in FIG. 12, the first tier pillar structure 1010 and the second tier pillar structure 1114 form a step pattern such that a lower level tier pillar structure (e.g., the first tier pillar structure 1010) has a larger width than an upper level tier pillar structure (e.g., the second tier pillar structure 1114). In an embodiment, the first tier pillar structure 1010 has a height H1 of about 100,000 Å to about 600,000 Å, and the second tier pillar structure 1114 has a height H2 of about 50,000 Å to about 600,000 Å.



FIG. 12 illustrates an embodiment in which both tiers of the pillar structure exhibit tapered edges of a portion of a generally conical shape. Other embodiments may utilize one or more cylindrical sections rather than conical-shaped sections. For example, FIG. 13 illustrates an example embodiment in which the lower tier and the upper tier exhibit a cylindrical shape. The embodiment illustrated in FIG. 13 may be formed using similar materials and processes as those discussed above, except that the photoresist mask is exposed and developed such that vertical sidewalls are obtained rather than the tapered sidewalls.


In yet other embodiments, a combination of cylindrical shaped tiers and conical shaped tiers may be used. For example, FIG. 14 illustrates an embodiment in which the lower tier exhibits a cylindrical shape and the upper tier exhibits a conical shape. Another embodiment may utilize a lower tier having a conical shape and an upper tier having a cylindrical shape as illustrated in FIG. 15.


As discussed above, embodiments may utilize various shapes in a plan view, such as those illustrated in FIGS. 16A-16E. These embodiments include elongated shapes, such as those illustrated in FIGS. 16C-16E. Each of these shapes may be used in embodiments having a continuous shape (e.g., FIGS. 1-7) or tiered shape (e.g., FIGS. 8-14).


Embodiments using an oblong or irregular shape may exhibit similar ratios as those discussed above along the other axis, e.g., the major and minor axis.


In accordance with an embodiment, a device comprising a first substrate and a second substrate is provided. The first substrate includes a conductive trace formed thereon with a conductive pillar formed directly on the conductive trace. The conductive trace exhibits a planar upper surface and at least a portion of the conductive pillar has a conical shape. The second substrate includes conductive traces formed thereon, such that an upper surface of the conductive traces is raised above an upper surface of the second substrate. The conductive pillar of the first substrate is coupled to the conductive traces on the second substrate.


In accordance with another embodiment, a device is provided. A substrate having a conductive trace formed thereon is provided. A conductive pillar is coupled to the conductive trace, wherein the conductive pillar has a plurality of tiers such that an upper tier has a smaller area in a plan view than a lower tier.


In accordance with yet another embodiment, another device is provided. A substrate having a conductive trace formed thereon is provided such that at least a portion of the conductive trace is exposed. A conductive pillar is positioned over the conductive trace, wherein the conductive pillar has one or more tiers, at least one of the one or more tiers having an elongated shape.


In accordance with yet another embodiment, a method is provided. The method includes forming a first mask, the first mask having a first opening over a conductive trace on a first substrate, forming a first tier in the first opening, forming a second mask over the first mask, the second mask having a second opening over the first tier, and forming a second tier in the second opening. The method further includes removing the first mask and the second mask, each of the first tier and the second tier having a conical shape and a surface of an overlying tier has a smaller area in a plan view than an adjacent surface of a lower tier.


In accordance with yet another embodiment, a method is provided. The method includes forming a plurality of tiers, the plurality of tiers forming the connector. Forming each tier of the plurality of tiers includes forming a mask and forming a tier in the mask. The method further includes removing each mask.


In accordance with yet another embodiment, a method is provided. The method includes forming a first mask, the first mask having a first opening over a conductive trace on a first substrate, forming a first tier in the first opening, and forming a second tier in the first opening, the first tier being interposed between the second tier and the conductive trace, wherein the first tier and the second tier are formed of different materials. The method further includes removing the first mask.


Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A device comprising: a first substrate;a conductive pillar structure on the first substrate, the conductive pillar structure comprising a conductive pillar, the conductive pillar having a first tier and a second tier, the first tier being interposed between the second tier and the first substrate, the first tier having a first surface and a second surface opposite the first surface, the first surface being interposed between the second surface and the first substrate, the second tier having a third surface and a fourth surface opposite the third surface, the third surface contacting the second surface, wherein an exposed portion of the second surface is free of the third surface;a second substrate;a conductive trace on a first surface of the second substrate, an outer surface of the conductive trace being non-planar with the first surface of the second substrate, wherein the conductive trace of the second substrate is elongated in a direction of elongation along the first surface of the second substrate; anda bump-on-trace bonding the conductive pillar structure on the first substrate to the conductive trace on the second substrate, wherein at least the conductive trace extends beyond the bump-on-trace on opposing sides of the bump-on-trace in the direction of elongation, the bump-on-trace being a different material than the conductive pillar, the bump-on-trace not extending along sidewalls of the conductive pillar.
  • 2. The device of claim 1, wherein the first tier has tapered sidewalls.
  • 3. The device of claim 2, wherein the second tier has tapered sidewalls.
  • 4. The device of claim 1, wherein the second tier has tapered sidewalls.
  • 5. The device of claim 1, wherein a thickness of the first tier is greater than a thickness of the second tier.
  • 6. The device of claim 1, wherein the exposed portion surrounds the second tier in a plan view.
  • 7. The device of claim 1, wherein the first tier or the second tier has a cylindrical shape.
  • 8. A device comprising: a first substrate having a conductive trace formed thereon;a conductive pillar structure coupled to the conductive trace, the conductive pillar structure comprising a conductive layer and a conductive pillar over the conductive layer, the conductive layer comprises a different material than the conductive pillar, sidewalls of the conductive layer not extending beyond sidewalls of the conductive pillar in a plan view, the conductive pillar having a first tier and a second tier, wherein a first surface of the first tier physically contacts a second surface of the second tier, wherein the first tier and the second tier has a conical shape, wherein a surface area of the first surface of the first tier is greater than a surface area of the second surface of the second tier;a second substrate having a raised trace formed thereon, wherein the raised trace of the second substrate is elongated in a direction of elongation along a major surface of the second substrate; anda bump electrically connecting the conductive pillar on the first substrate to the raised trace on the second substrate, the bump not extending along sidewalls of the conductive pillar, wherein the raised trace extends beyond the bump on both sides of the bump in the direction of elongation.
  • 9. The device of claim 8, wherein the conductive layer is a composite layer.
  • 10. The device of claim 9, wherein the composite layer comprises a sub-layer of Ti and a sub-layer of Cu over the sub-layer of Ti.
  • 11. The device of claim 8, wherein the first tier has a height of 100,000 Å to 600,000 Å.
  • 12. The device of claim 8, wherein the second tier has a height of 50,000 Å to 600,000 Å.
  • 13. The device of claim 8, further comprising an insulating layer over the conductive trace, wherein the conductive pillar extends closer to the conductive trace than an uppermost surface of the insulating layer.
  • 14. The device of claim 13, wherein the insulating layer is interposed between the conductive pillar and the conductive trace.
  • 15. The device of claim 8, wherein a height of a first tier is greater than a height of the second tier.
  • 16. The device of claim 8, wherein the conductive pillar has an elongated shape.
  • 17. A device comprising: a first substrate;a conductive trace on the first substrate, wherein at least a portion of the conductive trace being is exposed; anda conductive pillar formed over the conductive trace, the conductive pillar having a first tier and a second tier, the first tier or the second tier having an elongated shape, a cap layer on the second tier such that the second tier is interposed between the cap layer and the first tier, wherein a smallest width of the first tier is greater than a largest width of the second tier;a second substrate having a raised trace thereon, wherein the raised trace of the second substrate is elongated in a direction of elongation along a major surface of the second substrate, wherein the raised trace has first opposing sidewalls and second opposing sidewalls different than the first opposing sidewalls, the first opposing sidewalls and the second opposing sidewalls extending away from the second substrate; anda bump on the cap layer electrically connecting the conductive pillar on the first substrate to the raised trace on the second substrate, wherein the bump extends along the first opposing sidewalls of the raised trace, wherein the second opposing sidewalls of the raised trace intersecting intersect the direction of elongation and being are free of the bump.
  • 18. The device of claim 17, wherein the conductive pillar comprises a conductive seed layer, wherein a width of the conductive seed layer is no greater than a width of the conductive pillar closest to the first substrate.
  • 19. The device of claim 17, wherein a slope of a sidewall of the first tier is different than a slope of a sidewall of the second tier.
  • 20. The device of claim 17, wherein a ratio of a width of the conductive pillar furthest from the first substrate to a width of the conductive pillar closest to the first substrate is between about 0.75 and 0.92.
Parent Case Info

This application is a continuation application of U.S. patent application Ser. No. 15/243,523, filed on Aug. 22, 2016, now U.S. Pat. No. 10,056,345, entitled “Conical-Shaped or Tier-Shaped Pillar Connections,” which is a continuation application of U.S. Patent Application No. 13/449,078, filed on Apr. 17, 2012, now U.S. Pat. No. 9,425,136, entitled “Conical-Shaped or Tier-Shaped Pillar Connections,” each application is incorporated herein in its entirety

US Referenced Citations (295)
Number Name Date Kind
4258382 Harris Mar 1981 A
4536421 Matsuzawa et al. Aug 1985 A
4811082 Jacobs et al. Mar 1989 A
4830723 Galvagni et al. May 1989 A
4990462 Sliwa, Jr. Feb 1991 A
5075253 Sliwa, Jr. Dec 1991 A
5075965 Carey et al. Dec 1991 A
5130779 Agarwala et al. Jul 1992 A
5134460 Brady et al. Jul 1992 A
5277756 Dion Jan 1994 A
5334804 Love et al. Aug 1994 A
5380681 Hsu Jan 1995 A
5431328 Chang et al. Jul 1995 A
5440239 Zappella et al. Aug 1995 A
5470787 Greer Nov 1995 A
5481133 Hsu Jan 1996 A
5492266 Hoebener et al. Feb 1996 A
5508561 Tago et al. Apr 1996 A
5542601 Fallon et al. Aug 1996 A
5565379 Baba Oct 1996 A
5587337 Idaka et al. Dec 1996 A
5680187 Nagayama et al. Oct 1997 A
5743006 Beratan Apr 1998 A
5790377 Schreiber et al. Aug 1998 A
5796591 Dalal et al. Aug 1998 A
5816478 Kaskoun et al. Oct 1998 A
5889326 Tanaka Mar 1999 A
5922496 Dalal et al. Jul 1999 A
5977599 Adrian Nov 1999 A
6002172 Desai et al. Dec 1999 A
6002177 Gaynes et al. Dec 1999 A
6025650 Tsuji et al. Feb 2000 A
6051273 Dalal et al. Apr 2000 A
6082610 Shangguan et al. Jul 2000 A
6091141 Heo Jul 2000 A
6099935 Brearley et al. Aug 2000 A
6130476 LaFontaine, Jr. et al. Oct 2000 A
6137184 Ikegami Oct 2000 A
6181010 Nozawa Jan 2001 B1
6187678 Gaynes et al. Feb 2001 B1
6229216 Ma et al. May 2001 B1
6229220 Saitoh et al. May 2001 B1
6236115 Gaynes et al. May 2001 B1
6249051 Chang et al. Jun 2001 B1
6250541 Shangguan et al. Jun 2001 B1
6259159 Dalal et al. Jul 2001 B1
6271059 Bertin et al. Aug 2001 B1
6279815 Correia et al. Aug 2001 B1
6291891 Higashi et al. Sep 2001 B1
6336262 Dalal et al. Jan 2002 B1
6344234 Dalal et al. Feb 2002 B1
6346469 Greer Feb 2002 B1
6355501 Fung et al. Mar 2002 B1
6358847 Li et al. Mar 2002 B1
6388322 Goossen et al. May 2002 B1
6424037 Ho et al. Jul 2002 B1
6426556 Lin Jul 2002 B1
6434016 Zeng et al. Aug 2002 B2
6448661 Kim et al. Sep 2002 B1
6461895 Liang et al. Oct 2002 B1
6469394 Wong et al. Oct 2002 B1
6475897 Hosaka Nov 2002 B1
6476503 Imamura et al. Nov 2002 B1
6492197 Rinne Dec 2002 B1
6498308 Sakamoto Dec 2002 B2
6562653 Ma et al. May 2003 B1
6562657 Lin May 2003 B1
6570248 Ahn et al. May 2003 B1
6573598 Ohuchi et al. Jun 2003 B2
6578754 Tung Jun 2003 B1
6583846 Yanagawa et al. Jun 2003 B1
6592019 Tung Jul 2003 B2
6592657 Lee et al. Jul 2003 B2
6600222 Levardo Jul 2003 B1
6607938 Kwon et al. Aug 2003 B2
6661085 Kellar et al. Dec 2003 B2
6713844 Tatsuta et al. Mar 2004 B2
6731003 Joshi et al. May 2004 B2
6762076 Kim et al. Jul 2004 B2
6790748 Kim et al. Sep 2004 B2
6887769 Kellar et al. May 2005 B2
6908565 Kim et al. Jun 2005 B2
6908785 Kim Jun 2005 B2
6924551 Rumer et al. Aug 2005 B2
6940169 Jin et al. Sep 2005 B2
6940178 Kweon et al. Sep 2005 B2
6943067 Greenlaw Sep 2005 B2
6946384 Kloster et al. Sep 2005 B2
6972490 Chang et al. Dec 2005 B2
6975016 Kellar et al. Dec 2005 B2
6998216 He et al. Feb 2006 B2
7037804 Kellar et al. May 2006 B2
7056807 Kellar et al. Jun 2006 B2
7087538 Staines et al. Aug 2006 B2
7135766 Costa et al. Nov 2006 B1
7151009 Kim et al. Dec 2006 B2
7157787 Kim et al. Jan 2007 B2
7192803 Lin et al. Mar 2007 B1
7215033 Lee et al. May 2007 B2
7245023 Lin Jul 2007 B1
7251484 Aslanian Jul 2007 B2
7271483 Lin et al. Sep 2007 B2
7271484 Reiss et al. Sep 2007 B2
7276799 Lee et al. Oct 2007 B2
7279795 Periaman et al. Oct 2007 B2
7307005 Kobrinsky et al. Dec 2007 B2
7317256 William et al. Jan 2008 B2
7320928 Kloster et al. Jan 2008 B2
7345350 Sinha Mar 2008 B2
7382049 Ho et al. Jun 2008 B2
7402442 Condorelli et al. Jul 2008 B2
7402508 Kaneko Jul 2008 B2
7402515 Arana et al. Jul 2008 B2
7410884 Ramanathan et al. Aug 2008 B2
7432592 Shi et al. Oct 2008 B2
7459785 Daubenspeck et al. Dec 2008 B2
7470996 Yoneyama et al. Dec 2008 B2
7494845 Hwang et al. Feb 2009 B2
7495179 Kubota et al. Feb 2009 B2
7528494 Furukawa et al. May 2009 B2
7531890 Kim May 2009 B2
7554201 Kang et al. Jun 2009 B2
7557597 Anderson et al. Jul 2009 B2
7569935 Fan Aug 2009 B1
7576435 Chao Aug 2009 B2
7659631 Kamins et al. Feb 2010 B2
7714235 Pedersen et al. May 2010 B1
7804177 Lu Sep 2010 B2
7834450 Kang Nov 2010 B2
7939939 Zeng et al. May 2011 B1
7946331 Trezza et al. May 2011 B2
8026128 Pendse Sep 2011 B2
8076232 Pendse Dec 2011 B2
8093729 Trezza Jan 2012 B2
8120175 Farooq et al. Feb 2012 B2
8130475 Kawamori et al. Mar 2012 B2
8158489 Huang et al. Apr 2012 B2
8207604 Haba et al. Jun 2012 B2
8232640 Tomoda et al. Jul 2012 B2
8258055 Hwang et al. Sep 2012 B2
8313213 Lin et al. Nov 2012 B2
8367939 Ishido Feb 2013 B2
8435881 Choi et al. May 2013 B2
8536458 Darveaux et al. Sep 2013 B1
8576368 Kim et al. Nov 2013 B2
8823166 Lin et al. Sep 2014 B2
9105530 Lin et al. Aug 2015 B2
9355980 Chen et al. May 2016 B2
9425136 Kuo Aug 2016 B2
9583687 Hwang Feb 2017 B2
20010013423 Dalal et al. Aug 2001 A1
20010038147 Higashi et al. Nov 2001 A1
20020033412 Tung Mar 2002 A1
20020084528 Kim et al. Jul 2002 A1
20020100974 Uchiyama Aug 2002 A1
20020106832 Hotchkiss et al. Aug 2002 A1
20020197811 Sato Dec 2002 A1
20030049886 Salmon Mar 2003 A1
20030092219 Ohuchi et al. May 2003 A1
20030094963 Fang May 2003 A1
20030166331 Tong et al. Sep 2003 A1
20030216025 Lu et al. Nov 2003 A1
20030218250 Kung et al. Nov 2003 A1
20030233133 Greenberg et al. Dec 2003 A1
20040004284 Lee et al. Jan 2004 A1
20040007779 Arbuthnot et al. Jan 2004 A1
20040140538 Harvey Jul 2004 A1
20040159944 Datta et al. Aug 2004 A1
20040166661 Lei Aug 2004 A1
20040212098 Pendse Oct 2004 A1
20040251546 Lee et al. Dec 2004 A1
20050017376 Tsai Jan 2005 A1
20050062153 Saito et al. Mar 2005 A1
20050158900 Lee Jul 2005 A1
20050212114 Kawano et al. Sep 2005 A1
20050224991 Yeo Oct 2005 A1
20050253264 Aiba et al. Nov 2005 A1
20050277283 Lin et al. Dec 2005 A1
20060012024 Lin et al. Jan 2006 A1
20060017160 Huang Jan 2006 A1
20060038303 Sterrett et al. Feb 2006 A1
20060051954 Lin et al. Mar 2006 A1
20060055032 Chang et al. Mar 2006 A1
20060076677 Daubenspeck et al. Apr 2006 A1
20060209245 Mun et al. Sep 2006 A1
20060223313 Yoon et al. Oct 2006 A1
20060279881 Sato Dec 2006 A1
20060292824 Beyne et al. Dec 2006 A1
20070001280 Hua Jan 2007 A1
20070012337 Hillman et al. Jan 2007 A1
20070018294 Sutardja Jan 2007 A1
20070020906 Chiu et al. Jan 2007 A1
20070023483 Yoneyama et al. Feb 2007 A1
20070045840 Varnau Mar 2007 A1
20070057022 Mogami et al. Mar 2007 A1
20070114663 Brown et al. May 2007 A1
20070200234 Gerber et al. Aug 2007 A1
20080003402 Haba et al. Jan 2008 A1
20080003715 Lee Jan 2008 A1
20080023850 Lu et al. Jan 2008 A1
20080087998 Kamins Apr 2008 A1
20080128911 Koyama Jun 2008 A1
20080150135 Oyama et al. Jun 2008 A1
20080169544 Tanaka et al. Jul 2008 A1
20080180376 Kim et al. Jul 2008 A1
20080194095 Daubenspeck et al. Aug 2008 A1
20080217047 Hu Sep 2008 A1
20080218061 Chao et al. Sep 2008 A1
20080277785 Hwan et al. Nov 2008 A1
20090025215 Murakami et al. Jan 2009 A1
20090042144 Kitada et al. Feb 2009 A1
20090045499 Kim et al. Feb 2009 A1
20090075469 Furman et al. Mar 2009 A1
20090087143 Jeon Apr 2009 A1
20090091024 Zeng et al. Apr 2009 A1
20090096092 Patel Apr 2009 A1
20090108443 Jiang Apr 2009 A1
20090146316 Jadhav et al. Jun 2009 A1
20090149016 Park et al. Jun 2009 A1
20090166861 Lehr et al. Jul 2009 A1
20090174067 Lin Jul 2009 A1
20090218702 Beyne et al. Sep 2009 A1
20090233436 Kim et al. Sep 2009 A1
20090250814 Pendse et al. Oct 2009 A1
20100007019 Pendse Jan 2010 A1
20100044860 Haba et al. Feb 2010 A1
20100052473 Kimura Mar 2010 A1
20100084763 Yu Apr 2010 A1
20100141880 Koito et al. Jun 2010 A1
20100193944 Castro et al. Aug 2010 A1
20100200279 Kariya et al. Aug 2010 A1
20100252926 Kato et al. Oct 2010 A1
20100258950 Li et al. Oct 2010 A1
20100270458 Lake et al. Oct 2010 A1
20100276787 Yu et al. Nov 2010 A1
20100314745 Masumoto et al. Dec 2010 A1
20100327422 Lee et al. Dec 2010 A1
20110001250 Lin et al. Jan 2011 A1
20110024902 Lin et al. Feb 2011 A1
20110038147 Lin et al. Feb 2011 A1
20110074022 Pendse Mar 2011 A1
20110084386 Pendse Apr 2011 A1
20110101519 Hsiao et al. May 2011 A1
20110101526 Hsiao et al. May 2011 A1
20110169158 Varanasi Jul 2011 A1
20110177686 Zeng Jul 2011 A1
20110186986 Chuang et al. Aug 2011 A1
20110193220 Kuo et al. Aug 2011 A1
20110227219 Alvarado et al. Sep 2011 A1
20110244675 Huang et al. Oct 2011 A1
20110248399 Pendse Oct 2011 A1
20110260317 Lu et al. Oct 2011 A1
20110285011 Hwang et al. Nov 2011 A1
20110285023 Shen et al. Nov 2011 A1
20120007230 Hwang et al. Jan 2012 A1
20120007231 Chang Jan 2012 A1
20120012997 Shen et al. Jan 2012 A1
20120025365 Haba Feb 2012 A1
20120040524 Kuo et al. Feb 2012 A1
20120049346 Lin et al. Mar 2012 A1
20120091577 Hwang et al. Apr 2012 A1
20120098120 Yu et al. Apr 2012 A1
20120098124 Wu et al. Apr 2012 A1
20120146168 Hsieh et al. Jun 2012 A1
20120223428 Pendse Sep 2012 A1
20120306080 Yu et al. Dec 2012 A1
20130026622 Chuang et al. Jan 2013 A1
20130026629 Nakano Jan 2013 A1
20130087920 Jeng et al. Apr 2013 A1
20130093079 Tu et al. Apr 2013 A1
20130181340 Uehling et al. Jul 2013 A1
20130252418 Arvin et al. Sep 2013 A1
20130270699 Kuo et al. Oct 2013 A1
20130277830 Yu et al. Oct 2013 A1
20130288473 Chuang et al. Oct 2013 A1
20130341785 Fu et al. Dec 2013 A1
20140048929 Cha et al. Feb 2014 A1
20140054764 Lu et al. Feb 2014 A1
20140054769 Yoshida et al. Feb 2014 A1
20140054770 Yoshida et al. Feb 2014 A1
20140061897 Lin et al. Mar 2014 A1
20140061924 Chen et al. Mar 2014 A1
20140077358 Chen et al. Mar 2014 A1
20140077359 Tsai et al. Mar 2014 A1
20140077360 Lin et al. Mar 2014 A1
20140077365 Lin et al. Mar 2014 A1
20140117533 Lei et al. May 2014 A1
20140264890 Breuer et al. Sep 2014 A1
20140346669 Wang Nov 2014 A1
20140353820 Yu et al. Dec 2014 A1
20150091160 Reber Apr 2015 A1
20150325542 Lin et al. Nov 2015 A1
20160190090 Yu Jun 2016 A1
20160254240 Chen Sep 2016 A1
20160329293 Cha et al. Nov 2016 A1
Foreign Referenced Citations (13)
Number Date Country
101080138 Nov 2007 CN
101188219 May 2008 CN
102254871 Nov 2011 CN
102386158 Mar 2012 CN
102468197 May 2012 CN
1387402 Feb 2004 EP
1020110002816 Jan 2011 KR
1020110128532 Nov 2011 KR
200826265 Jun 2008 TW
200915452 Apr 2009 TW
201133662 Oct 2011 TW
201143007 Dec 2011 TW
2009140238 Nov 2009 WO
Non-Patent Literature Citations (1)
Entry
Garrou, Phil, “IFTLE 58 Fine Pitch Microjoints, Cu Pillar Bump-on-Lead, Xillinx Interposer Reliability,” Solid State Technology, Insights for Electronic Manufacturing, Jul. 18, 2011, 3 pages.
Related Publications (1)
Number Date Country
20180358316 A1 Dec 2018 US
Continuations (2)
Number Date Country
Parent 15243523 Aug 2016 US
Child 16105014 US
Parent 13449078 Apr 2012 US
Child 15243523 US