This invention relates generally to integrated circuits, and in particular, to an integrated circuit package including a three-dimensional fan-out/fan-in signal routing.
Integrated circuit (IC) packages typically include a semiconductor die (e.g., a silicon semiconductor chip) that is suitably protected. Generally, the semiconductor die includes a plurality of electrically-conductive (e.g., metal) pads for transmitting and receiving signals, supply voltages, and electrical, optical or other input parameters to and from one or more external devices. Typically, these die pads are electrically or otherwise coupled to respective pins attached to the external portion of the IC package. Usually, a complex interconnection is employed to route (e.g., fan-out and/or fan-in) the electrical connection from the semiconductor die pads to the respective pins, as exemplified below.
The semiconductor die 110 includes on its upper surface a plurality of contact pads 112. The substrate 102 includes on its lower and external surface a plurality of contact pins 106. In this example, the plurality of pins is configured as a ball grid array (BGA). However, other types of pin configurations are used, such as land grid array (LGA), pin-grid array, etc. The substrate 102 also typically includes metalized traces and via-holes to route the interconnection from within the enclosure to the external pins 106.
Because the pitch P1 (lateral distance between adjacent pads) of the contact pads 112 is typically different than the pitch P2 (lateral distance between adjacent pins) of the external pins 106, the substrate 102 further serves as a multi-layer interconnect for fanning out the electrical connections from the contact pads 112 to the external pins 106. The contact pads 112 of the semiconductor die 110 are electrically, optically or otherwise coupled to the multi-layer interconnect of the substrate 102 via a plurality of wirebonds 116. The multi-layer interconnect of the substrate 102 is electrically coupled to the external pins 106 by means of metalized via-holes and metal traces as illustrated.
There are several drawbacks with this IC package configuration. First, although the substrate 102 helps with fan-out and fan-in, the size, complexity and hence cost of the package is limited by the line/space capabilities of the substrate fabrication process, pitch and the number of interconnects on the die 110 and on the IC package 100. Typically, many routing layers are required to connect all the pins 112 on the die 110 to the corresponding pins 106 of the package 100, while simultaneously keeping the package size relatively small. Complex routing schemes on the substrate 102 increases its cost and generally increases the reliability risk of the IC package 100. Current carrying capacity of the IC package 100 could also be limited, and due to parasitic capacitance and inductance thereof, the frequency of the signals processed by the IC package may likewise be limited.
An aspect of the invention relates to an integrated circuit (IC) package comprising a substrate including a plurality of substrate contacts; a semiconductor die including a plurality of die contacts; and a plurality of conductors for directly (i.e., via a substantially single medium) routing connections between substrate contacts and die contacts, respectively. By having the conductors directly route the connections between the die contacts and substrate contacts, many improvements may be realized including, but not limited to, improved package routing capabilities, reduced die and/or package size, improved package reliability, improved current handling capacity, improved speed, improved thermal performance, and lower costs.
In another aspect, each of the conductors may comprise a wire-like conductor made out of a suitable electrical-conductive material, such as gold (Au), copper (Cu), aluminum (Al), or other suitable material. In another aspect, some or all of the conductors may comprise a carbon nano-tube, or other similar conductive material. In yet another aspect, each of the conductors may be adapted to route optical signals, like in the case where each conductor is a light-guide, such as a fiber optic cable. In still another aspect, the IC package may include a support structure for protecting and providing mechanical support for the conductors. The support structure may comprise an epoxy, semiconductor or insulating material.
In another aspect, each of the substrate contacts may comprise an external contact situated on an external surface of the substrate, and an electrically-conductive via hole electrically coupled to the external contact. The external contacts may be configured as a ball grid array (BGA), land grid array (LGA), pin-grid array, or other such configuration. In yet another aspect, the semiconductor die may be oriented in a flip-chip manner, where the die contacts are on the side of the semiconductor die facing the substrate. In still another aspect, the semiconductor die may be oriented in a manner where the die contacts are on the side of the semiconductor die oppositely facing the substrate.
In another aspect, the semiconductor die may comprise silicon (Si), silicon-germanium (SiGe), gallium arsenide (GaAs), silicon carbide (SiC), silicon nitride (Si3N4), or other semiconductor materials. In yet another aspect, the substrate may comprise a ceramic, glass, silicon, Flame Retardant 4 (FR4), Flame Retardant 5 (FR5), polyimide (PI), or other materials. In still another aspect, the IC package may comprise a cover or protective material mechanically coupled or adhesively attached to the substrate in a manner to form an enclosure, wherein the semiconductor die and conductors are situated within the enclosure. In still another aspect, the IC package may comprise one or more electronic, photonic, or optoelectronic devices adapted to transmit or receive electrical or optical signals to or from the semiconductor die via the die contacts and substrate contacts. In another aspect, the semiconductor may be connected directly without the use of any conventional substrate materials.
Other aspects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
In particular, the IC package 300 comprises a substrate 302 and a cover or protective material 308 mechanically coupled or adhesively attached to the substrate 302 in a manner that forms an enclosure. In this example, the cover 308 may be formed of a molded material or other materials. The substrate 302 may be made of any suitable material, such as ceramic, glass, silicon, Flame Retardant 4 (FR4), Flame Retardant 5 (FR5), polyimide (PI), and others. The substrate 302 includes a plurality of external contacts 306, which may be configured as a ball grid array (BGA), disposed on its external surface to provide a means for electrically interfacing the IC package 300 with other devices. Often, the IC package 300 is attached to a printed circuit board (PCB) by soldering the external contacts 306 to corresponding contacts of the PCB. The substrate 302 further comprises a plurality of electrically-conductive (e.g., metalized) via holes 304 electrically coupled to the external contacts 306, respectively. The electrically-conductive via holes 304 route electrical connection between the interior and exterior of the IC package 300. Although, in this example, the cover 308 is made of a molded material, it shall be understood that the cover may have many distinct constructions.
The IC package 300 further comprises a semiconductor die 310 situated within the package enclosure, and including a plurality of contact pads 312 disposed on one side of the die. In this example, the IC package 300 is configured in a flip-chip manner by having the die contacts 312 on the side of the semiconductor die 310 that substantially faces the substrate 302. It shall be understood that the IC package 300 may be configured in other manners, some of which are discussed further herein. The semiconductor die 310 may be made of any suitable material, such as silicon (Si), silicon-germanium (SiGe), gallium-arsenide (GaAs), silicon carbide (SiC), silicon nitride (Si3N4), and others. The integrated circuit package 300 may be configured with a single semiconductor die 310 as shown in
To provide the direct electrical connection routing from the semiconductor die contacts 312 to the contacts of the substrate 302, the IC package 300 further comprises a plurality of substantially flexible interconnects 354 (e.g., wire-like electrical conductors) situated within the package enclosure. Each flexible interconnect 354 includes a first end that electrically connects to a corresponding contact 312 of the semiconductor die 310, and a second end that electrically connects to the electrically-conductive via hole 304 of the substrate 302. The flexible interconnects 354 may be each made out of a suitable electrical conductor, such as gold (Au), copper (Cu), carbon nano-tubes, and others. As discussed with respect to another exemplary embodiment, the flexible interconnects 354 may be configured as light-guides, such as fiber optic cables. The IC package 300 may further comprise a support structure 352, such as an epoxy, semiconductor or insulating material for protecting and providing mechanical support for the interconnects 354 in order to prevent short circuits and wire detachment.
As previously discussed, the IC package 300 provides a much more efficient use of the space within the package by providing a direct electrical connection routing (i.e., a substantially single conductive medium) between the semiconductor die contacts 312 and the contacts of the substrate 302. As discussed, the substrate 302 need not have a complex, multi-layer routing to provide the electrical connection between the die contacts and the substrate contacts. This makes the package less complex, hence cheaper and also improves the reliability performance of the package. The thickness of the conductors 354 may be configured in order to handle the necessary current flow to and from the semiconductor die 310. Additionally, the thickness of the wires 354 may also be configured to provide thermal management of the IC package during operation.
The IC package 700 further includes a plurality of optical and/or electrical signal conductors 754 for directly routing a connection between the conductors 712 of the die 712 and the conductors 704 of the substrate 702. Each optical/electrical conductor 754 includes a first end coupled to a corresponding contact 712 of the semiconductor die 710, and a second end coupled to a corresponding optical/electrical contact 704. For example, the conductor 754 may be configured as a fiber optic cable for routing optical signals between the semiconductor die 710 and one or more external devices. Or, the conductor 754 may be an electrical conductor for routing electrical signals between the semiconductor die 710 and one or more external devices. Or, the conductor 754 may be configured to route both optical and electrical signals. The optical/electrical conductor 754 along with the semiconductor die 710 may be supported and protected by a support structure 752 (e.g., an epoxy, semiconductor or insulating material).
The IC package 700 further includes one or more electronic, photonic or optoelectronic devices 706 attached to the external side of the substrate 702, and optically and/or electrically coupled to the conductors 704, respectively. The devices 706 may be configured to generate and/or process optical and/or electrical signals for transmission to and from the semiconductor die 710 via the conductors 704 and 754. Although the IC package 700 is configured in a flip-chip manner, it shall be understood that the IC package 700 may be configured in a similar fashion as that of the previous embodiments. As previously discussed, because the signal conductors 754 directly route the connection between the semiconductor die contacts 712 and the contacts 704 of the substrate 702, many benefits are realized in reliability, manufacturing, costs, size reduction, and performance of the IC package 700.
While the invention has been described in connection with various embodiments, it will be understood that the invention is capable of further modifications. This application is intended to cover any variations, uses or adaptation of the invention following, in general, the principles of the invention, and including such departures from the present disclosure as come within the known and customary practice within the art to which the invention pertains.
The present application is a divisional of U.S. patent application Ser. No. 12/254,535, filed Oct. 20, 2008, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3795037 | Luttmer | Mar 1974 | A |
4373778 | Adham | Feb 1983 | A |
5216278 | Lin et al. | Jun 1993 | A |
5355283 | Marrs et al. | Oct 1994 | A |
5455390 | DiStefano et al. | Oct 1995 | A |
5484964 | Dawson et al. | Jan 1996 | A |
5531022 | Beaman et al. | Jul 1996 | A |
5625222 | Yoneda et al. | Apr 1997 | A |
5627405 | Chillara | May 1997 | A |
5714803 | Queyssac | Feb 1998 | A |
5723369 | Barber | Mar 1998 | A |
5785538 | Beaman et al. | Jul 1998 | A |
5796589 | Barrow | Aug 1998 | A |
5805426 | Merritt et al. | Sep 1998 | A |
6016254 | Pfaff | Jan 2000 | A |
6031292 | Murakami et al. | Feb 2000 | A |
6078500 | Beaman et al. | Jun 2000 | A |
6084295 | Horiuchi et al. | Jul 2000 | A |
6174172 | Kazama | Jan 2001 | B1 |
6232152 | DiStefano et al. | May 2001 | B1 |
6242803 | Khandros et al. | Jun 2001 | B1 |
6255727 | Khoury | Jul 2001 | B1 |
6274823 | Khandros et al. | Aug 2001 | B1 |
6438831 | Hagihara | Aug 2002 | B1 |
6449169 | Ho et al. | Sep 2002 | B1 |
6459039 | Bezama et al. | Oct 2002 | B1 |
6561819 | Huang et al. | May 2003 | B1 |
6784656 | Breinlinger | Aug 2004 | B2 |
6831359 | Heilbronner | Dec 2004 | B2 |
6919645 | Tian et al. | Jul 2005 | B2 |
7012325 | Ahn et al. | Mar 2006 | B2 |
7442641 | Beatson et al. | Oct 2008 | B2 |
7714598 | Eldridge et al. | May 2010 | B2 |
8125064 | Lee et al. | Feb 2012 | B1 |
20060262822 | Tatum | Nov 2006 | A1 |
20070204901 | Dutta | Sep 2007 | A1 |
Entry |
---|
Wei Lin, Yonghao Xiu, Lingbo Zhu, Kyoung-Sik Moon, C. P. Wong; Assembling of Carbon Nanotube Structures by Chemical Anchoring for Packaging Applications; IEEE; 2008; pp. 421-426. |
Franz Kreupl, Andrew P. Graham, Maik Liebau, Georg S. Duesberg, Robert Seidel, Eugen Unger; Carbon Nanotubes for Interconnect Applications; IEEE International Electron Devices Meeting; 2004; pp. 683-686. |
Hongjie Dai, Jing Kong, Chongwu Zhou, Nathan Franklin, Thomas Tombler, Alan Cassell, Shoushan Fan, Michael Chapline; Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices; American Chemical Society; 1999; pp. 11246-11255. |
Number | Date | Country | |
---|---|---|---|
Parent | 12254535 | Oct 2008 | US |
Child | 13183691 | US |