Field
Embodiments of the present disclosure generally relate to integrated circuit fabrication methods, and in particular, to correcting seam defects in semiconductor devices.
Description of the Related Art
The miniaturization of semiconductor devices continues to require increasing complexity of geometry and arrangement of material layers which form the device. Among these, properly filling features formed on the semiconductor device, such as trenches and vias, with a material is increasingly difficult due to the shrinking size of the features.
Features are typically filled by a deposition process, such chemical vapor deposition (CVD), physical vapor deposition (PVD), or plating processes, which can result in less than optimal filling of the features. Problems arise from the accumulation of material at the upper surface of the feature. The accumulation of such material at the edges of the feature can block or otherwise obstruct the feature prior to completely and evenly filling the feature, resulting in the formation of voids, seams, and uneven structures within the feature. The smaller features that are used in smaller geometry devices, such as trenches in the tens-of-nanometer range, necessarily have a larger aspect ratio (i.e., relationship of feature height to width) than do larger geometry devices, thereby exacerbating the trench and via filling difficulties described above.
Conventional approaches utilize multiple cycles of deposition and anneal in attempt to repair seams and cavities in the features. However, these conventional approaches result in extremely slow process time. Further, these approaches can damage the material of the semiconductor device and cause reliability issues in the operation of the semiconductor device.
Therefore, there is a need for an improved method of correcting seam defects.
In one embodiment, a method of processing a substrate is provided, including positioning a substrate with a plurality of substrate features in a process chamber, depositing a conformal layer on the substrate features, and treating the substrate with a high pressure anneal. A seam is formed between neighboring substrate features when the conformal layer is deposited. The high pressure anneal is performed in the presence of an oxidizer. The volume of the seams within the conformal layer are reduced by the high pressure anneal.
In another embodiment, a method of processing a substrate is provided, including positioning a substrate with a plurality of substrate features in a process chamber, depositing a conformal layer on the substrate features, and treating the substrate with a high pressure anneal. The conformal layer is crystalline in structure. A seam is formed between neighboring substrate features when the conformal layer is deposited. The high pressure anneal is performed in the presence of an oxidizer. The volume of the seams within the conformal layer are reduced by the high pressure anneal.
In another embodiment, a method of processing a substrate is provided, including positioning a substrate with a plurality of substrate features in a process chamber, depositing a conformal layer on the substrate features, and treating the substrate with a high pressure anneal. The conformal layer is crystalline in structure. A seam is formed between neighboring substrate features when the conformal layer is deposited. The high pressure anneal is performed in the presence of an oxidizer. The volume of the seams within the conformal layer are reduced by the high pressure anneal. The volume of the conformal layer expands during the high pressure anneal.
The high pressure anneal helps reduce the size of the seams located between conformal films, where the conformal films are disposed on adjacent features of the semiconductor. The reduction in seam size increases the electrical insulating properties of the conformal film.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of scope, as the disclosure may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
Embodiments of the disclosure provided herein include methods of treating a substrate to remove defects, such as seams, in interconnects formed on the substrate. In some embodiments, the method includes heating the substrate in a pressurized environment in the presence of an oxidizer. The conformal layers deposited on the substrate expand in volume, such that the conformal layers on opposing sides of a seam chemically cross-link with one another, reducing or eliminating the seams. Embodiments of the disclosure may prove useful for, but are not limited to, decreasing the size of seams on substrate features.
Method 100 begins at operation 102. In operation 102, a substrate 210 is positioned in a process chamber. The process chamber is, for example, a deposition chamber. The substrate 210 includes one or more substrate features 212 formed thereon. Here, the substrate features 212 are four trenches. The substrate 210 can be a photomask, a semiconductor wafer, or other workpiece. The substrate 210 comprises any material to make any of integrated circuits, passive (e.g., capacitors, inductors) and active (e.g., transistors, photo detectors, lasers, diodes) microelectronic devices, according to some embodiments. The substrate 210 comprises insulating or dielectric materials that separate such active and passive microelectronic devices (or features thereof) from a conducting layer or layers that are formed on the substrate. In one embodiment, the substrate 210 is a semiconductor substrate that includes one or more dielectric layers e.g., silicon dioxide, silicon nitride, aluminum oxide, and other dielectric materials. In one embodiment, the substrate 210 includes a one or more layers of films. The one or more layers of the substrate 210 can include conducting layers, semiconducting layers, insulating layers, or any combination thereof.
At operation 104, a conformal layer 214 is deposited in the substrate features 212. The conformal layer 214 is a silicon-containing layer, such as a silicon dioxide layer, according to one embodiment. The conformal layer 214 is a metal oxide layer, such as aluminum oxide or vanadium oxide, according to one embodiment. The conformal layer 214 is formed by a deposition process. The deposition process is chemical vapor deposition (CVD) or atomic layer deposition (ALD), according to some embodiments. To deposit the conformal layer 214, a first precursor is flowed into the processing chamber. The precursor may comprise silicon (Si) and hydrogen (H). According to some embodiments, the precursor comprises a silane precursor, a disilane precursor, a trisilane precursor, or a tetrasilane precursor. The first precursor is reacted with a second precursor gas, such as an oxidizing agent, for example ozone or oxygen radicals, to form silicon dioxide within the substrate features 212. The deposition process occurs at a processing temperature in a range, for example, between about 150 degrees Celsius and about 700 degrees Celsius, between about 250 degrees Celsius and about 600 degrees Celsius, between about 300 degrees Celsius and about 550 degrees Celsius, such as between about 350 degrees Celsius and about 500 degrees Celsius. Additionally, during deposition, the chamber is maintained at a reduced pressure. For example, the pressure in the chamber may be between about 5 Torr and about 700 Torr, between about 10 Torr and about 600 Torr, such as between about 15 Torr and about 500 Torr.
As shown in
The substrate 210, having the conformal layer 214 thereon, is transferred to an anneal chamber at operation 106. At operation 108, the substrate 210 is treated with a high pressure anneal. The high pressure anneal is performed with the substrate 210 in the presence of an oxidizer 220 such as steam or a steam/oxygen mixture. The substrate 210 is annealed at an annealing temperature. The annealing temperature is about 100 degrees Celsius to about 600 degrees Celsius, such as about 150 degrees Celsius to about 550 degrees Celsius, or about 200 degrees Celsius to about 500 degrees Celsius.
The pressure within the anneal chamber is raised to a predetermined pressure in order to perform the high pressure anneal. The predetermined pressure is between about 1 bar and about 90 bar, such as about 1 bar to about 80 bar, or about 1 bar to about 70 bar. The increased pressure forces the oxidizer 220 within the environment of the anneal chamber down into the seams of the conformal layer 214. The substrate 210 is treated with the high pressure anneal for a desired soak time. The soak time is generally about 3 minutes to about 150 minutes, such as about 5 minutes to about 120 minutes.
During the high pressure anneal, the oxidizer 220 is carried into the seams 216 by the high pressure. The conformal layer 214 deposited within the substrate features 212 is exposed to the oxidizer 220 in
As a result of the oxidation process of the high-pressure anneal of the high pressure anneal, the conformal layer 214 is converted to a densified oxide substantially free of the seams 216 as shown in
In addition to healing seams in the conformal layer 214, the high pressure anneal of operation 208 densifies the conformal layer 214 via the inclusion of additional oxide, further improving the electrical insulating properties of the conformal layer 214.
Additionally, it is contemplated the conformal layer 214 may be a layer other than silicon dioxide, such as silicon, germanium, a metal layer, a metal oxide layer, or combinations thereof. In such an embodiment, the metals used to form the conformal layer 214 include aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, yttrium, zirconium, hafnium, molybdenum, and alloys thereof, among others. The metals may also be used in combination with one another.
In other embodiments, it is contemplated that deposition processes other than CVD may be used to deposit material in the substrate features 212. For example, atomic layer deposition (ALD), plasma-enhanced, ALD, plasma-enhanced CVD, physical vapor deposition (PVD), plating, or other deposition methods may be utilized, according to various materials to be deposited in the substrate features 212.
Moreover, while
The cassette 330 couples to a shaft 374 which extends through an opening 354 in the chamber body 110. The cassette 330 is moveably disposed within the internal volume 350 by an actuator 370 coupled to the shaft 374. The cassette 130 facilitates transfer of substrates 335 between a loading position and a processing position. Substrates 335 are transferred into and out of the internal volume 350 thorough a loading port 395 formed in the chamber body 310. The shell 320 couples to the lid 340 of the cassette 330 when the cassette 330 is in the processing position and defines a processing region wherein the substrates 335 are annealed at an elevated pressure and an elevated temperature.
During processing, a processing fluid, such as an oxidizer 220, is flowed into the processing region through an inlet port 352. The inlet port 352 is in fluid communication with the substrates 335 through a plurality of apertures 333 in the cassette 330. Auxiliary heaters 327, disposed within the processing region, are configured heat the processing volume and the substrates 335 therein. The pressure and temperature within the processing region are raised in order to anneal the substrates 335 therein. The processing fluid is evacuated from the processing region through an outlet port 356.
The controller 380 is coupled to a plurality of sensors 314, such as temperature sensors or pressure sensors. The sensors 314 provide signals to the controller 380 to indicate the conditions within the internal volume 350. The controller 380 controls the flow of the processing fluid as well as the power supplied to the heaters 312 and auxiliary heaters 327 to process the substrates 335 in a desired manner. In such a manner, the controller 380 is configured to control aspects of the processing chamber 300 to perform operations as disclosed herein.
In one example of operations disclosed herein, a substrate 210 containing one or more substrate features 212 is positioned in a process chamber. A conformal layer 214 is deposited on the substrate features 212 of the substrate 210. The substrate 210 is transferred to an anneal chamber. A high pressure anneal is performed on the substrate 210, and the conformal layers 214 expand in volume such that adjacent conformal layers contact and/or chemically react with one another.
The method described herein results in a high quality oxide layer that is substantially free of seams or voids. The layer is oxidized in a substantially uniform manner across the entirety of the layer, thereby increasing uniformity of the distribution of oxygen throughout the layer. Further, the uniformity of the densification of the oxide layer is increased by the methods described herein. The uniform densification also results in improved etch selectivity.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims priority of U.S. Provisional Application No. 62/621,423, filed Jan. 24, 2018, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4524587 | Kantor | Jun 1985 | A |
5050540 | Lindberg | Sep 1991 | A |
5114513 | Hosokawa et al. | May 1992 | A |
5149378 | Ohmi et al. | Sep 1992 | A |
5175123 | Vasquez et al. | Dec 1992 | A |
5319212 | Tokoro | Jun 1994 | A |
5366905 | Mukai | Nov 1994 | A |
5590695 | Siegele et al. | Jan 1997 | A |
5620524 | Fan et al. | Apr 1997 | A |
5808245 | Wiese et al. | Sep 1998 | A |
5858051 | Komiyama et al. | Jan 1999 | A |
5879756 | Fathi et al. | Mar 1999 | A |
5880041 | Ong | Mar 1999 | A |
5940985 | Kamikawa et al. | Aug 1999 | A |
6082950 | Attwood et al. | Jul 2000 | A |
6136664 | Economikos et al. | Oct 2000 | A |
6150286 | Sun et al. | Nov 2000 | A |
6164412 | Allman | Dec 2000 | A |
6242368 | Holmer et al. | Jun 2001 | B1 |
6251751 | Chu et al. | Jun 2001 | B1 |
6299753 | Chao et al. | Oct 2001 | B1 |
6319766 | Bakli et al. | Nov 2001 | B1 |
6334266 | Moritz et al. | Jan 2002 | B1 |
6368412 | Gomi | Apr 2002 | B1 |
6442980 | Preston et al. | Sep 2002 | B2 |
6500603 | Shioda | Dec 2002 | B1 |
6583497 | Xia et al. | Jun 2003 | B2 |
6619304 | Worm | Sep 2003 | B2 |
6797336 | Garvey et al. | Sep 2004 | B2 |
7055333 | Leitch et al. | Jun 2006 | B2 |
7111630 | Mizobata et al. | Sep 2006 | B2 |
7114517 | Sund et al. | Oct 2006 | B2 |
7282458 | Gates et al. | Oct 2007 | B2 |
7361231 | Fury et al. | Apr 2008 | B2 |
7460760 | Cho et al. | Dec 2008 | B2 |
7491658 | Nguyen et al. | Feb 2009 | B2 |
7503334 | Shrinivasan et al. | Mar 2009 | B1 |
7521089 | Hillman et al. | Apr 2009 | B2 |
7521378 | Fucsko et al. | Apr 2009 | B2 |
7541297 | Mallick et al. | Jun 2009 | B2 |
7576441 | Yin et al. | Aug 2009 | B2 |
7650965 | Thayer et al. | Jan 2010 | B2 |
7651959 | Fukazawa et al. | Jan 2010 | B2 |
7655532 | Chen et al. | Feb 2010 | B1 |
7825038 | Ingle et al. | Nov 2010 | B2 |
7825042 | Mandal | Nov 2010 | B2 |
7867923 | Mallick et al. | Jan 2011 | B2 |
7891228 | Ding et al. | Feb 2011 | B2 |
8027089 | Hayashi | Sep 2011 | B2 |
8318584 | Li et al. | Nov 2012 | B2 |
8349085 | Tahara et al. | Jan 2013 | B2 |
8449942 | Li et al. | May 2013 | B2 |
8466073 | Wang et al. | Jun 2013 | B2 |
8481123 | Kim et al. | Jul 2013 | B2 |
8536065 | Seamons et al. | Sep 2013 | B2 |
8557712 | Antonelli et al. | Oct 2013 | B1 |
8563445 | Liang et al. | Oct 2013 | B2 |
8647992 | Liang et al. | Feb 2014 | B2 |
8741788 | Liang et al. | Jun 2014 | B2 |
8871656 | Mallick et al. | Oct 2014 | B2 |
8906761 | Kim et al. | Dec 2014 | B2 |
8936834 | Kim et al. | Jan 2015 | B2 |
9121515 | Yamamoto et al. | Sep 2015 | B2 |
9153442 | Wang et al. | Oct 2015 | B2 |
9157730 | Rajagopalan et al. | Oct 2015 | B2 |
9257314 | Rivera et al. | Feb 2016 | B1 |
9306026 | Toriumi et al. | Apr 2016 | B2 |
9362107 | Thadani et al. | Jun 2016 | B2 |
9484406 | Sun et al. | Nov 2016 | B1 |
9570551 | Balakrishnan et al. | Feb 2017 | B1 |
10083834 | Thompson et al. | Sep 2018 | B2 |
20010029108 | Tometsuka | Oct 2001 | A1 |
20010041122 | Kroeker | Nov 2001 | A1 |
20010050096 | Costantini et al. | Dec 2001 | A1 |
20020073922 | Frankel et al. | Jun 2002 | A1 |
20020122885 | Ahn | Sep 2002 | A1 |
20020134439 | Kawasaki et al. | Sep 2002 | A1 |
20020148492 | Yamagata et al. | Oct 2002 | A1 |
20020151128 | Lane et al. | Oct 2002 | A1 |
20030030945 | Heinonen et al. | Feb 2003 | A1 |
20030101938 | Ronsse et al. | Jun 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030148631 | Kuo | Aug 2003 | A1 |
20030207593 | Derderian et al. | Nov 2003 | A1 |
20040025908 | Douglas et al. | Feb 2004 | A1 |
20040060519 | Beauchaine et al. | Apr 2004 | A1 |
20040112409 | Schilling | Jun 2004 | A1 |
20040219800 | Tognetti | Nov 2004 | A1 |
20040248392 | Narwankar et al. | Dec 2004 | A1 |
20050003655 | Cathey et al. | Jan 2005 | A1 |
20050051194 | Sakashita et al. | Mar 2005 | A1 |
20050136684 | Mukai et al. | Jun 2005 | A1 |
20050191828 | Al-Bayati et al. | Sep 2005 | A1 |
20050198971 | Leitch et al. | Sep 2005 | A1 |
20050250347 | Bailey et al. | Nov 2005 | A1 |
20050269291 | Kent | Dec 2005 | A1 |
20060003596 | Fucsko et al. | Jan 2006 | A1 |
20060124613 | Kumar et al. | Jun 2006 | A1 |
20060207633 | Kim et al. | Sep 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060279025 | Heidari et al. | Dec 2006 | A1 |
20060290017 | Yanagisawa | Dec 2006 | A1 |
20070012402 | Sneh | Jan 2007 | A1 |
20070187386 | Kim et al. | Aug 2007 | A1 |
20070204797 | Fischer | Sep 2007 | A1 |
20070212850 | Ingle et al. | Sep 2007 | A1 |
20070243317 | Du Bois et al. | Oct 2007 | A1 |
20070256559 | Chen et al. | Nov 2007 | A1 |
20080074658 | Davis et al. | Mar 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080210273 | Joe | Sep 2008 | A1 |
20090081884 | Yokota et al. | Mar 2009 | A1 |
20090148965 | Kim et al. | Jun 2009 | A1 |
20090180847 | Guo et al. | Jul 2009 | A1 |
20090186481 | Suzuki et al. | Jul 2009 | A1 |
20090233449 | Lebouitz et al. | Sep 2009 | A1 |
20090243126 | Washiya et al. | Oct 2009 | A1 |
20100006211 | Wolk et al. | Jan 2010 | A1 |
20100012292 | Yamazaki | Jan 2010 | A1 |
20100022068 | Chen et al. | Jan 2010 | A1 |
20100173495 | Thakur et al. | Jul 2010 | A1 |
20100304027 | Lee et al. | Dec 2010 | A1 |
20100320459 | Umeda et al. | Dec 2010 | A1 |
20100327422 | Lee et al. | Dec 2010 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110165781 | Liang et al. | Jul 2011 | A1 |
20110198736 | Shero et al. | Aug 2011 | A1 |
20120048304 | Kitajima et al. | Mar 2012 | A1 |
20120056173 | Pieralisi | Mar 2012 | A1 |
20120060868 | Gray | Mar 2012 | A1 |
20120142192 | Li et al. | Jun 2012 | A1 |
20120175822 | Inamiya et al. | Jul 2012 | A1 |
20120252210 | Tohnoe | Oct 2012 | A1 |
20120285492 | Lee et al. | Nov 2012 | A1 |
20120304485 | Hayashi et al. | Dec 2012 | A1 |
20130194350 | Watanabe et al. | Aug 2013 | A1 |
20130233170 | Spiegelman et al. | Sep 2013 | A1 |
20130330042 | Nara et al. | Dec 2013 | A1 |
20130337171 | Sasagawa | Dec 2013 | A1 |
20140023320 | Lee et al. | Jan 2014 | A1 |
20140045300 | Chen et al. | Feb 2014 | A1 |
20140076494 | Miyashita et al. | Mar 2014 | A1 |
20140134827 | Swaminathan et al. | May 2014 | A1 |
20140138802 | Starostine et al. | May 2014 | A1 |
20140183743 | Matsumoto et al. | Jul 2014 | A1 |
20140231384 | Underwood et al. | Aug 2014 | A1 |
20140235068 | Ashihara et al. | Aug 2014 | A1 |
20140239291 | Son et al. | Aug 2014 | A1 |
20140264237 | Chen et al. | Sep 2014 | A1 |
20140268080 | Beasley et al. | Sep 2014 | A1 |
20140284821 | Hubbard | Sep 2014 | A1 |
20140322921 | Ahmad et al. | Oct 2014 | A1 |
20150000870 | Hosotani et al. | Jan 2015 | A1 |
20150050807 | Wu et al. | Feb 2015 | A1 |
20150056819 | Wong et al. | Feb 2015 | A1 |
20150091009 | Yamazaki et al. | Apr 2015 | A1 |
20150099342 | Tsai et al. | Apr 2015 | A1 |
20150159272 | Yoon et al. | Jun 2015 | A1 |
20150179501 | Jhaveri et al. | Jun 2015 | A1 |
20150255581 | Lin et al. | Sep 2015 | A1 |
20150292736 | Hirson et al. | Oct 2015 | A1 |
20150309073 | Mirkin et al. | Oct 2015 | A1 |
20150322286 | Cabrini et al. | Nov 2015 | A1 |
20150364348 | Park et al. | Dec 2015 | A1 |
20160027887 | Yuan et al. | Jan 2016 | A1 |
20160035600 | Rivera et al. | Feb 2016 | A1 |
20160064209 | Lee et al. | Mar 2016 | A1 |
20160064482 | Hashemi et al. | Mar 2016 | A1 |
20160076149 | Yamazaki et al. | Mar 2016 | A1 |
20160111272 | Girard et al. | Apr 2016 | A1 |
20160118391 | Zhao et al. | Apr 2016 | A1 |
20160163540 | Liao et al. | Jun 2016 | A1 |
20160208414 | Odawara et al. | Jul 2016 | A1 |
20160260526 | Otto | Sep 2016 | A1 |
20160273758 | Fujimura | Sep 2016 | A1 |
20160274454 | Beasley et al. | Sep 2016 | A1 |
20160334162 | Kim et al. | Nov 2016 | A1 |
20160353522 | Rathi et al. | Dec 2016 | A1 |
20170005204 | Hosoba et al. | Jan 2017 | A1 |
20170011932 | Pethe et al. | Jan 2017 | A1 |
20170104062 | Bi et al. | Apr 2017 | A1 |
20170140996 | Lin et al. | May 2017 | A1 |
20170160012 | Kobayashi et al. | Jun 2017 | A1 |
20170194430 | Wood et al. | Jul 2017 | A1 |
20170253968 | Yahata | Sep 2017 | A1 |
20170263702 | Chan et al. | Sep 2017 | A1 |
20170314125 | Fenwick et al. | Nov 2017 | A1 |
20170358483 | Roy et al. | Dec 2017 | A1 |
20180019249 | Zhang et al. | Jan 2018 | A1 |
20180023192 | Chandra et al. | Jan 2018 | A1 |
20180261480 | Liang et al. | Sep 2018 | A1 |
20180350563 | Manna et al. | Dec 2018 | A1 |
20190259625 | Nemani | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
101871043 | Oct 2010 | CN |
104047676 | Sep 2014 | CN |
104089491 | Oct 2014 | CN |
H07048489 | May 1995 | JP |
2001110729 | Apr 2001 | JP |
2003-51474 | Feb 2003 | JP |
2004127958 | Apr 2004 | JP |
2005064269 | Mar 2005 | JP |
2005-333015 | Dec 2005 | JP |
2007242791 | Sep 2007 | JP |
2008073611 | Apr 2008 | JP |
2010-205854 | Sep 2010 | JP |
2012-503883 | Feb 2012 | JP |
2012-204656 | Oct 2012 | JP |
2013-105777 | May 2013 | JP |
2013516788 | May 2013 | JP |
2013-179244 | Sep 2013 | JP |
2014019912 | Feb 2014 | JP |
20070075383 | Jul 2007 | KR |
20090011463 | Feb 2009 | KR |
1020090040867 | Apr 2009 | KR |
20140003776 | Jan 2014 | KR |
20140135744 | Nov 2014 | KR |
20150006587 | Jan 2015 | KR |
20150122432 | Nov 2015 | KR |
200529284 | Sep 2005 | TW |
200721316 | Jun 2007 | TW |
201507174 | Feb 2015 | TW |
2008089178 | Jul 2008 | WO |
2011103062 | Aug 2011 | WO |
2012133583 | Oct 2012 | WO |
2016065219 | Apr 2016 | WO |
Entry |
---|
Office Action for Japanese Application No. 2018-546484 dated Oct. 8, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/040195 dated Oct. 25, 2019. |
International Search Report and Written Opinion for International Application No. PCT/US2019/029602 dated Aug. 14, 2019. |
International Search Report and Written Opinion for PCT/US2018/021715 dated Jun. 22, 2018. |
International Search Report and Written Opinion from PCT/US2018/034036 dated Aug. 24, 2018. |
International Search Report and Written Opinion dated Aug. 24, 2018 for Application No. PCT/US2018/034284. |
International Search Report, Application No. PCT/US2018/028258 dated Aug. 9, 2018. |
International Search Report and Written Opinion for PCT/US2018/035210 dated Aug. 24, 2018. |
International Search Report and Written Opinion for PCT/US2018/037539 dated Oct. 5, 2018. |
International Search Report and Written Opinion for PCT/US2018/038822 dated Oct. 26, 2018. |
Chen, Yang et al., “Analysis of Supercritical Carbon Dioxide Heat Exchangers in Cooling Process”, International Refrigeration and Air Conditioning Conference at Purdue, Jul. 17-20, 2006, pp. 1-8. |
Shimoyama, Takehiro et al., “Porous Aluminum for Heat Exchanger”, Hitachi Chemical, pp. 19-20. |
Kato, T. et al., “Heat Transfer Characteristics of a Plate-Fin Type Supercritical/Liquid Helium Heat Exchanger”, ICEC 14 Proceedings Supplement, 1992, pp. 260-263. |
Lee, Ho-Saeng et al., “The cooling heat transfer characteristics of the supercritical CO2 in mico-fin tube”, Springer, Oct. 2, 2012, pp. 173-184. |
International Search Report and Written Opinion dated Nov. 30, 2018 for Application No. PCT/US2018/041688. |
International Search Report and Written Opinion for PCT/US2018/043160 dated Jan. 31, 2019. |
International Search Report and Written Opinion dated Jan. 31, 2019 for Application No. PCT/US2018/042760. |
International Search Report and Written Opinion for PCT/US2018/059643 dated Feb. 26, 2019. |
International Search Report and Written Opinion from PCT/US2019/012161 dated Apr. 30, 2019. |
International Search Report and Written Opinion for PCT/US2019/014759 dated May 14, 2019. |
International Search Report and Written Opinion for PCT/US2019/015332 dated May 15, 2019. |
International Search Report and Written Opinion for PCT/US2018/059676 dated May 23, 2019. |
International Search Report and Written Opinion for PCT/US2019/023431 dated Jul. 5, 2019. |
Haskel Pressure on Demand, Pneumatic and Hydraulic Driven Gas Boosters, Apr. 30, 2016, 36 pp. |
Taiwan Office Action dated Jul. 3, 2019 for Application No. 107136181. |
Taiwan Office Action dated Jun. 11, 2019 for Application No. 107138905. |
Taiwan Office Action dated Nov. 19, 2019 for Application No. 108103415. |
Office Action for Japanese Application No. 2018-517285 dated Oct. 23, 2019. |
Office Action for Taiwan Patent Application No. 108111501 dated Nov. 14, 2019. |
Number | Date | Country | |
---|---|---|---|
20190228982 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62621423 | Jan 2018 | US |