This applications claims priority from Japanese patent application No. JP 2006/353412, filed Dec. 27, 2006 which was not published in English.
The invention relates to a semiconductor device and a method for manufacturing the semiconductor device, and particularly, to a semiconductor device used for multiple semiconductor device layering and a method for manufacturing the same.
Recently, downsizing of semiconductor devices used for portable electronic devices such as a portable phone, and a nonvolatile recording medium of an IC memory card have been in high demand. Fulfilling this demand requires techniques for efficiently packaging the semiconductor chip. The package-on-package process for layering the packages on which the semiconductor chip is mounted has been developed as an example of one of these techniques.
Each of
Referring to
Japanese Patent Application Publication No. JP-A-2000-200800 discloses a technology for forming a via post with a stud bump in a semiconductor wafer electrode, which is used for connecting a semiconductor chip and a solder ball that serves as a packaged terminal in a chip-size-package.
In the generally employed example 1, the solder ball 18 is used as the electrode when the semiconductor devices are layered, and also as the electrode when the semiconductor device is mounted on the motherboard, for example. The semiconductor device may be downsized by reducing the electrode pitch of the solder ball 18. However, the solder ball 18 is spherically or elliptically shaped, and as such requires enough spacing from the adjacent electrode so as to not cause short-circuiting when the solder ball is melted. Over-reduction of the electrode pitch of the solder ball may occur, to the extent that a high-precision mount technique is required to mount the solder ball to the motherboard, and accordingly, high-precision inspection jigs are required in the electric inspection step. Therefore, the electrode pitch of the solder ball is required to be wide, which may hinder the downsizing of the semiconductor device.
The present invention has been made in view of the above circumstances and provides a semiconductor device and a method for manufacturing the semiconductor device capable of downsizing the semiconductor device, and further downsizing a semiconductor structure formed by stacking multiple semiconductor devices as well as the method for manufacturing the semiconductor structure.
According to an aspect of the present invention, there is provided a semiconductor device which includes a semiconductor chip, a connection electrode formed of a first land electrode electrically coupled with the semiconductor chip, and a through electrode formed on an upper surface of the first land electrode so as to be electrically coupled with the first land electrode using a stud bump, and a sealing resin, through which the connection electrode passes, for sealing the semiconductor chip. According to the invention, the through electrode is formed as the stud bump. This makes it possible to reduce the electrode pitch of the connection electrodes, thus reducing the size of the semiconductor device.
In the aforementioned structure, a second land electrode electrically coupled with the semiconductor chip used for an external connection is provided. The connection electrode may be provided around a periphery of the semiconductor chip, and the second land electrode is provided directly below the semiconductor chip. In the structure, the connection electrodes used for layering the semiconductor devices are positioned around the semiconductor chip. For example, the second land electrode used for mounting onto the motherboard or the electric test is positioned directly below the semiconductor chip. This makes it possible to reduce the pitch of the connection electrodes while maintaining the widened pitch of the second land electrodes. The size of the semiconductor device may be reduced without deteriorating the convenience in the packaging to the mother board or the electric testing.
In the aforementioned structure, an upper surface of the connection electrode may be positioned higher than an upper surface of the sealing resin. The upper and the lower semiconductor devices to be layered into the semiconductor structure may be electrically coupled with greater ease and stability.
The aforementioned structure may be provided with a wiring layer which is formed from a metal film and includes the first land electrode, the second land electrode and a wiring for electrically coupling the first and the second land electrodes. The structure allows the wiring layer to be provided on the same plane. In the case where the semiconductor devices are layered, or the semiconductor device is mounted onto the motherboard, the respective bonding surfaces may be put together reliably.
In the aforementioned structure, the through electrodes formed on the first land electrodes which are adjacent with each other may be placed at different positions in a longitudinal direction of the first land electrode. The structure allows the pitch of the connection electrodes to be reduced. This makes it possible to further reduce the size of the semiconductor device.
In the aforementioned structure, the through electrode may be formed by layering at least two stud bumps. The structure allows the height of the through electrode to be increased without increasing the diameter of the through electrode. The height of the through electrode may be increased without preventing the downsizing of the semiconductor device. In the case where the semiconductor devices are layered, as the height of the connection electrode is increased, the upper and lower semiconductor devices which are layered may be electrically coupled with even greater ease and stability.
In the aforementioned structure, the wiring layer may be positioned below a lower surface of the semiconductor chip which is positioned through a face-down packaging. The structure allows the semiconductor chip and the wiring layer to be electrically coupled below the semiconductor chip. This makes it possible to downsize the semiconductor device.
In the aforementioned structure, a first semiconductor device and a second semiconductor device may be layered by bonding a first connection electrode of the first semiconductor device to a second connection electrode of the second semiconductor device. As the through electrode contained in the connection electrode may be formed with the stud bump, the layered semiconductor devices may be formed into the compact layered semiconductor structure. This makes it possible to downsize the semiconductor device.
In the aforementioned structure, another stud bump may be applied between an upper surface of the first connection electrode and a lower surface of the second connection electrode. The first and the second semiconductor devices to be layered may be electrically coupled with greater ease and stability.
In the aforementioned structure, the first and the second connection electrodes may be bonded through a thermocompression process or a soldering process.
The invention provides a method for manufacturing a semiconductor device including the steps of electrically coupling a semiconductor chip and a first land electrode; forming, on an upper surface of the first land electrode, a through electrode that is electrically coupled with the first land electrode using a stud bump so as to form a connection electrode including the first land electrode and a through electrode; and forming a sealing resin, through which the connection electrode passes for sealing the semiconductor chip. As the through electrode may be formed with the stud bump, the connection electrode may have the narrow electrode pitch. This makes it possible to downsize the semiconductor device.
In the aforementioned structure, producing a wiring layer formed from a metal film may be performed. The wiring layer is formed from the first land electrode, the second land electrode electrically coupled with the semiconductor chip to be used for an external connection, and a wiring for electrically coupling the first and the second land electrodes. As the wiring layer is applied on the same plane, the respective bonding surfaces may be put together reliably when the semiconductor devices are layered or the semiconductor device is mounted on the motherboard. The wiring layer may be collectively produced from a single film, making it possible to form the wiring layer with ease.
In the aforementioned structure, producing the wiring layer formed from the metal film may be accomplished by etching a metal film that is applied to a tape substrate. The resulting structure allows the tape substrate to be formed as the support body, resulting in the thin wiring layer. This makes it possible to downsize the semiconductor device.
In the aforementioned structure, forming the sealing resin may be a step for accomplished by covering an upper portion of the connection electrode with a sheet for molding such that an upper surface of the connection electrode is formed higher than an upper surface of the sealing resin. This makes it possible to electrically couple the upper and the lower semiconductor devices to be layered with greater ease and stability.
In the aforementioned structure, electrically coupling the semiconductor chip and the first land electrode may include face-down packaging of the semiconductor chip. The semiconductor chip and the wiring layer may be electrically coupled below the semiconductor chip, thus downsizing the semiconductor device.
In the aforementioned structure, forming the through electrode with the stud bump may include forming the stud bump to be executed a plurality of times. In the resultant structure, the height of the through electrode may be increased without increasing the diameter thereof. The height of the through electrode may be increased without interfering the downsizing of the semiconductor device. As the connection electrode may be made higher when the semiconductor devices are layered, the upper and the lower semiconductor devices which are layered may be electrically coupled with greater ease and stability.
In the aforementioned structure, bonding a first connection electrode of a first semiconductor device to a second connection electrode of a second semiconductor device may be performed. In this structure, the through electrode contained in the connection electrode may be formed as the stud bump, the layered structure of the semiconductor devices may be made compact. This makes it possible to downsize the semiconductor device.
In the aforementioned structure, bonding the first and the second connection electrodes may include forming another stud bump to one of the positions at an upper surface of the first connection electrode and a lower surface of the second connection electrode. In this structure, the first and the second semiconductor devices to be layered may be electrically coupled with greater ease and stability.
In the aforementioned structure, bonding the first and the second connection electrodes may include bonding through thermocompression or soldering.
Reference will now be made in detail to various embodiments in accordance with the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with various embodiments, it will be understood that these various embodiments are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the invention as construed according to the Claims. Furthermore, in the following detailed description of various embodiments in accordance with the invention, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be evident to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the invention.
A method for manufacturing the semiconductor device according to the first embodiment will be described referring to
According to the first embodiment, the connection electrode 44 is provided around the semiconductor chip 12 as shown in
Referring to
Referring to
Referring to
A second embodiment is an example of layering the semiconductor devices according to the first embodiment.
Referring to
Referring to
In the semiconductor device according to the first embodiment, the second land electrode 36 is used for conducting the electric test of the semiconductor device. This makes it possible to conduct the electric test of individual semiconductor devices before they are layered to form the layered semiconductor structure. As it is possible to identify the defective product among the individual semiconductor devices before they are layered, the yield may be improved and the waste of the member may be avoided.
Because the stud bump is used for layering the semiconductor devices, the flip chip connection technology can be employed, resulting in easy layering.
A third embodiment is an example of the layered semiconductor devices according to the first embodiment.
In the third embodiment, as the stud bump 54 is provided on the upper surface of the first connection electrode 45 of the first semiconductor device 50, the resultant protrusion amount is increased. This makes it possible to electrically couple the first and the second semiconductor devices 50 and 51 more easily and stably compared with the second embodiment.
The third embodiment shows the structure in which the stud bump 54 is provided on the upper surface of the first connection electrode 45 of the first semiconductor device 50. The stud bump 54 may be provided on the lower surface of the second connection electrode 47 of the second semiconductor electrode 51 to provide the same effects as those achieved in the third embodiment.
A fourth embodiment is an example of the layered semiconductor devices according to the first embodiment.
In the fourth embodiment, the first and the second semiconductor devices 50 and 51 are layered using the solder 56 so as to provide bonding stronger than those in the second and the third embodiments where the first and the second semiconductor devices 50 and 51 are layered through the thermocompression bonding.
A fifth embodiment is an example of the semiconductor device with a through electrode 42 having two or more stud bumps layered.
The height of the through electrode 42 may be controlled in accordance with the material and thickness of the gold wire used for the stud bump. If the thickness of the gold wire is increased to ensure the height of the through electrode 42, the diameter of the through electrode 42 is also increased. This may deteriorate the advantage derived from the formation of the through electrode 42 with the stud bump that the electrode pitch of the connection electrode 44 can be made narrow. In the fifth embodiment, the process step of forming the stud bump using the thin gold wire is executed a plurality of times so as to form the through electrode 42 with sufficient height without increasing the diameter of the through electrode 42. This makes it possible to form the connection electrode 44 with sufficient height while keeping the electrode pitch of the connection electrode 44 narrow. The layered semiconductor structure according to the fifth embodiment allows the electric coupling between the upper and the lower semiconductor devices mode with relative ease and stability compared with the layered semiconductor devices according to the first embodiment.
In the second to the fourth embodiments, it is preferable to apply the adhesive agent 52 before bonding the first connection electrode 45 of the first semiconductor device 50 and the second connection electrode 47 of the second semiconductor device 51 so as to fix the applied state of the adhesive agent 52. Also, it is preferable to form the solder ball 18 on the first semiconductor device 50 after the process of bonding the first and the second connection electrodes 45 and 47 so as to simplify the process of bonding the first connection electrode 45 of the first semiconductor device 50 and the second connection electrode 47 of the second semiconductor device 51 and to prevent formation of the solder ball 18 onto the defective semiconductor device.
In the second to the fourth embodiments, examples of how the semiconductor devices according to the first embodiment are layered are described. When the semiconductor devices according to the fifth embodiment are layered as in the second to the fourth embodiments, the same effects as those derived from the embodiments may be obtained.
The second to the fourth embodiments show the examples of layering the semiconductor devices through the thermocompression bonding or the use of solder. However, it is not limited to these methods, but the method using the ultrasonic wave and the like may be employed.
Embodiments generally relate to semiconductor devices. More particularly, embodiments relate to a semiconductor device used for multiple semiconductor device layering and a method for manufacturing the same. In one implementation, the various embodiments are applicable to flash memory and devices that utilize flash memory. Flash memory is a form of non-volatile memory that can be electrically erased and reprogrammed. As such, flash memory, in general, is a type of electrically erasable programmable read only memory (EEPROM).
Like Electrically Erasable Programmable Read Only Memory (EEPROM), flash memory is nonvolatile and thus can maintain its contents even without power. However, flash memory is not standard EEPROM. Standard EEPROMs are differentiated from flash memory because they can be erased and reprogrammed on an individual byte or word basis while flash memory can be programmed on a byte or word basis, but is generally erased on a block basis. Although standard EEPROMs may appear to be more versatile, their functionality requires two transistors to hold one bit of data. In contrast, flash memory requires only one transistor to hold one bit of data, which results in a lower cost per bit. As flash memory costs far less than EEPROM, it has become the dominant technology wherever a significant amount of non-volatile, solid-state storage is needed.
Exemplary applications of flash memory include digital audio players, digital cameras, digital video recorders, and mobile phones. Flash memory is also used in USB flash drives, which are used for general storage and transfer of data between computers. Also, flash memory is gaining popularity in the gaming market, where low-cost fast-loading memory in the order of a few hundred megabytes is required, such as in game cartridges. Additionally, flash memory is applicable to cellular handsets, smartphones, personal digital assistants, set-top boxes, digital video recorders, networking and telecommunication equipments, printers, computer peripherals, automotive navigation devices, and gaming systems.
As flash memory is a type of non-volatile memory, it does not need power to maintain the information stored in the chip. In addition, flash memory offers fast read access times and better shock resistance than traditional hard disks. These characteristics explain the popularity of flash memory for applications such as storage on battery-powered devices (e.g., cellular phones, mobile phones, IP phones, wireless phones, etc.).
Flash memory stores information in an array of floating gate transistors, called “cells,” each of which traditionally stores one bit of information. However, newer flash memory devices can store more than 1 bit per cell. These newer flash memory devices double the intrinsic density of a Flash memory array by storing two physically distinct bits on opposite sides of a memory cell. Each bit serves as a binary bit of data (e.g., either 1 or 0) that is mapped directly to the memory array. Reading or programming one side of a memory cell occurs independently of whatever data is stored on the opposite side of the cell.
With regards to wireless markets, the newer flash memory devices have several key advantages, such as being capable of burst-mode access as fast as 80 MHz, page access times as fast as 25 ns, simultaneous read-write operation for combined code and data storage, and low standby power (e.g., 1 μA).
Flash memory comes in two primary varieties, NOR-type flash and NAND-type flash. While the general memory storage transistor is the same for all flash memory, it is the interconnection of the memory cells that differentiates the designs. In a conventional NOR-type flash memory, the memory cell transistors are coupled to the bit lines in a parallel configuration, while in a conventional NAND-type flash memory, the memory cell transistors are coupled to the bit lines in series. For this reason, NOR-type flash is sometimes referred to as “parallel flash” and NAND-type flash is referred to as “serial flash.”
Traditionally, portable phone (e.g., cell phone) CPUs have needed only a small amount of integrated NOR-type flash memory to operate. However, as portable phones (e.g., cell phone) have become more complex, offering more features and more services (e.g., voice service, text messaging, camera, ring tones, email, multimedia, mobile TV, MP3, location, productivity software, multiplayer games, calendar, and maps.), flash memory requirements have steadily increased. Thus, an improved flash memory will render a portable phone more competitive in the telecommunications market.
Also, as mentioned above, flash memory is applicable to a variety of devices other than portable phones. For instance, flash memory can be utilized in personal digital assistants, set-top boxes, digital video recorders, networking and telecommunication equipments, printers, computer peripherals, automotive navigation devices, and gaming systems.
It is noted that the components (e.g., 2012, 2014, 2016, 2022, 2028, 2030, etc.) of portable telephone 2010 can be coupled to each other in a wide variety of ways. For example, in an embodiment, the antenna 2012 can be coupled to transmitter 2014 and receiver 2016. Additionally, the transmitter 2014, receiver 2016, speaker 2020, microphone 2018, power supply 2026, keypad 2022, flash memory 2030 and display 2024 can each be coupled to the processor (CPU) 2028. It is pointed out that in various embodiments, the components of portable telephone 2010 can be coupled to each other via, but are not limited to, one or more communication buses, one or more data buses, one or more wireless communication technologies, one or more wired communication technologies, or any combination thereof.
Also, it is appreciated that the computing device 2100 can be a variety of things. For example, computing device 2100 may be, but is not limited to, a personal desktop computer, a portable notebook computer, a personal digital assistant (PDA), and a gaming system. Flash memory is especially useful with small-form-factor computing devices such as PDAs and portable gaming devices. Flash memory offers several advantages. In one example, flash memory is able to offer fast read access times while at the same time being able to withstand shocks and bumps better than standard hard disks. This is important as small computing devices are often moved around and encounter frequent physical impacts. Also, flash memory is more able than other types of memory to withstand intense physical pressure and/or heat. Thus, portable computing devices are able to be used in a greater range of environmental variables.
Computing device 2100 can include at least one processing unit 2102 and memory 2104. Depending on the exact configuration and type of computing device, memory 2104 may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.) or some combination of the two. This most basic configuration of computing device 2100 is illustrated in
In the present embodiment, Flash memory 2120 may include a semiconductor chip; a connection electrode including a first land electrode electrically coupled with the semiconductor chip, and a through electrode formed on an upper surface of the first land electrode to be electrically coupled with the first land electrode using at least one stud bump; and a sealing resin, through which the connection electrode passes, for sealing the semiconductor chip.
In various embodiments, the flash memory 2120 can be utilized with various devices, such as personal digital assistants, set-top boxes, digital video recorders, networking and telecommunication equipments, printers, computer peripherals, automotive navigation devices, gaming systems, mobile phones, cellular phones, internet protocol phones, and/or wireless phones. Further, in one embodiment, the flash memory 2120 utilizes newer flash memory technology to allow storing of two physically distinct bits on opposite sides of a memory cell.
Device 2100 may also contain communications connection(s) or coupling(s) 2112 that allow the device to communicate with other devices. Communications connection(s) 2112 is an example of communication media. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection or coupling, and wireless media such as acoustic, radio frequency (RF), infrared and other wireless media. The term computer readable media as used herein includes both storage media and communication media.
It is noted that the components (e.g., 2102, 2104, 2110, 2120, etc.) of computing device 2100 can be coupled to each other in a wide variety of ways. For example in various embodiments, the components of computing device 2100 can be coupled to each other via, but are not limited to, one or more communication buses, one or more data buses, one or more wireless communication technologies, one or more wired communication technologies, or any combination thereof.
Device 2100 may also have input device(s) 2114 such as keyboard, mouse, pen, voice input device, game input device (e.g., a joy stick, a game control pad, and/or other types of game input device), touch input device, etc. Output device(s) 2116 such as a display (e.g., a computer monitor and/or a projection system), speakers, printer, network peripherals, etc., may also be included. All these devices are well known in the art and need not be discussed at length here.
Aside from mobile phones and portable computing devices, flash memory is also widely used in portable multimedia devices, such as portable music players. As users would desire a portable multimedia device to have as large a storage capacity as possible, an increase in memory density would be advantageous.
The media player 3100 also includes a user input device 3108 that allows a user of the media player 3100 to interact with the media player 3100. For example, the user input device 3108 can take a variety of forms, such as a button, keypad, dial, etc. Still further, the media player 3100 includes a display 3110 (screen display) that can be controlled by the processor 3102 to display information to the user. A data bus 3124 can facilitate data transfer between at least the file system 3104, the cache 3106, the processor 3102, and the CODEC 3112. The media player 3100 also includes a bus interface 3116 that couples to a data link 3118. The data link 3118 allows the media player 3100 to couple to a host computer.
In one embodiment, the media player 3100 serves to store a plurality of media assets (e.g., songs, photos, video, etc.) in the file system 3104. When a user desires to have the media player play/display a particular media item, a list of available media assets is displayed on the display 3110. Then, using the user input device 3108, a user can select one of the available media assets. The processor 3102, upon receiving a selection of a particular media item, supplies the media data (e.g., audio file, graphic file, video file, etc.) for the particular media item to a coder/decoder (CODEC) 3110. The CODEC 3110 then produces analog output signals for a speaker 3114 or a display 3110. The speaker 3114 can be a speaker internal to the media player 3100 or external to the media player 3100. For example, headphones or earphones that couple to the media player 3100 would be considered an external speaker.
In a particular embodiment, the available media assets are arranged in a hierarchical manner based upon a selected number and type of groupings appropriate to the available media assets. For example, in the case where the media player 3100 is an MP3-type media player, the available media assets take the form of MP3 files (each of which corresponds to a digitally encoded song or other audio rendition) stored at least in part in the file system 3104. The available media assets (or in this case, songs) can be grouped in any manner deemed appropriate. In one arrangement, the songs can be arranged hierarchically as a list of music genres at a first level, a list of artists associated with each genre at a second level, a list of albums for each artist listed in the second level at a third level, while at a fourth level a list of songs for each album listed in the third level, and so on.
It is noted that the components (e.g., 3102, 3104, 3120, 3130, etc.) of media player 3100 can be coupled to each other in a wide variety of ways. For example, in an embodiment, the codec 3122, RAM 3122, ROM 3120, cache 3106, processor 3102, storage medium 3104, and bus interface 3116 can be coupled to data bus 3124. Furthermore, the data link 3118 can be coupled to the bus interface 3116. The user input device 3108 and the display 3110 can be coupled to the processor 3102 while the speaker 3114 can be coupled to the codec 3112. It is pointed out that in various embodiments, the components of media player 3100 can be coupled to each other via, but are not limited to, one or more communication buses, one or more data buses, one or more wireless communication technologies, one or more wired communication technologies, or any combination thereof.
The foregoing descriptions of various specific embodiments in accordance with the invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The invention can be construed according to the Claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
JP2006-353412 | Dec 2006 | JP | national |
JP2006/355025 | Dec 2006 | JP | national |