Semiconductor devices including voltage switchable materials for over-voltage protection

Information

  • Patent Grant
  • 7923844
  • Patent Number
    7,923,844
  • Date Filed
    Tuesday, November 21, 2006
    18 years ago
  • Date Issued
    Tuesday, April 12, 2011
    13 years ago
Abstract
Semiconductor devices are provided that employ voltage switchable materials for over-voltage protection. In various implementations, the voltage switchable materials are substituted for conventional die attach adhesives, underfill layers, and encapsulants. While the voltage switchable material normally functions as a dielectric cmaterial, during an over-voltage event the voltage switchable material becomes electrically conductive and can conduct electricity to ground. Accordingly, the voltage switchable material is in contact with a path to ground such as a grounded trace on a substrate, or a grounded solder ball in a flip-chip package.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to the field of electronic devices and more particularly to over-voltage protection.


2. Description of the Prior Art


Semiconductor devices comprising a semiconductor die or chip are easily affected or destroyed by over-voltage events. Examples of over-voltage events include electrostatic discharge (ESD), line transients, and lightening strikes. Electrostatic discharge commonly occurs when a person carrying a static charge touches a semiconductor device. Line transients include power surges on AC power lines, and can also be caused by events such as closing a switch or starting a motor.


Voltage switchable materials, also known as nonlinear resistance materials, are materials that normally behave as dielectric materials, but upon application of a sufficient voltage, known as a switch voltage, will rapidly become electrically conductive. The ability of voltage switchable materials to switch between non-conductive and conductive states makes these materials well suited for over-voltage protection applications.


In the prior art, voltage switchable materials have been used for over-voltage protection in a number of different ways. For example, in Behling et al. (U.S. Pat. No. 6,570,765), microgaps are defined between contact portions and ground bars are filled with a voltage switchable material. Intrater (U.S. Pat. No. 6,433,394) teaches an integrated circuit chip with a plurality of conductive pads disposed around the periphery of a ground plane with a precision gap therebetween, and a protection device comprising a voltage switchable material placed over the integrated circuit chip. Shrier et al. (U.S. Pat. No. 6,542,065) teaches a variable voltage protection component comprising a reinforcing layer embedded with a voltage switchable material. In the prior art, therefore, achieving over-voltage protection through the use of voltage switchable materials requires redesigning semiconductor devices to include additional features, e.g., microgaps in Behling et al., a protection device in Intrater, and a reinforcing layer in Shrier et al.


SUMMARY

An exemplary semiconductor device of the present invention comprises a dielectric substrate and a semiconductor die. The dielectric substrate includes, on one surface thereof, a die bonding pad and a plurality of conductive traces. The semiconductor die is attached to the die bonding pad with a die attach adhesive comprising a first voltage switchable material. The die attach adhesive also contacts a conductive trace of the plurality of conductive traces. In order to contact the conductive trace, in some instances, the die attach adhesive extends beyond the die bonding pad. In other instances, the conductive trace extends between the semiconductor die and the die bonding pad. In further embodiments, the semiconductor device comprises an encapsulant comprising a second voltage switchable material which can be the same as the first voltage switchable material.


Another exemplary semiconductor device of the present invention comprises a dielectric substrate, a semiconductor die, and an underfill layer. The dielectric substrate includes, on one surface, a die bonding pad including a bond pad for ground. The semiconductor die is flip-chip bonded to the die bonding pad by a plurality of solder balls. The underfill layer comprises a first voltage switchable material and is disposed between the die bonding pad and the semiconductor die. The underfill layer also contacts a solder ball of the plurality of solder balls, the solder ball being connected to the bond pad for ground. In further embodiments, the semiconductor device comprises an encapsulant comprising a second voltage switchable material which can be the same as the first voltage switchable material.


Still another exemplary semiconductor device of the present invention comprises a dielectric substrate, a semiconductor die, and an encapsulant. The dielectric substrate includes, on one surface thereof, a die bonding pad and a plurality of conductive traces, and the semiconductor die is attached to the die bonding pad. The encapsulant comprises a first voltage switchable material that encapsulates the semiconductor die. In some embodiments, the semiconductor die is attached to the die bonding pad with a die attach adhesive, and in some of these embodiments the die attach adhesive comprises a second voltage switchable material. As above, the first and second voltage switchable materials can be the same.


In further embodiments the semiconductor die is flip-chip bonded to the die bonding pad and the semiconductor device further comprises an underfill layer disposed between the die bonding pad and the semiconductor die. The underfill layer can comprise a second voltage switchable material, in some instances. In further embodiments the semiconductor device comprises a ground trace disposed on a surface of the substrate and in contact with the encapsulant.


Yet another exemplary semiconductor device of the present invention comprises a dielectric substrate including, on one surface thereof, a die bonding pad including a bond pad for ground. The semiconductor device also comprises a semiconductor die flip-chip bonded to the die bonding pad by a plurality of solder balls. The semiconductor device further comprises a ball formed of a first voltage switchable material, disposed between the semiconductor die and the substrate, and contacting the bond pad for ground.


Still yet another exemplary semiconductor device of the present invention comprises a dielectric substrate, a semiconductor die, and an encapsulant. The dielectric substrate includes a die bonding pad on one surface thereof, and the semiconductor die is attached to the die bonding pad. The encapsulant includes a first conformal layer and a second layer that overlies the first conformal layer. The first conformal layer comprising a first voltage switchable material that conforms to the semiconductor die and at least part of the dielectric substrate.


A further exemplary semiconductor device of the present invention comprises a wafer-scale package. The wafer-scale package comprises a semiconductor die including a plurality of bond pads on a surface thereof, at least one of the bond pads being a bond pad for ground. The wafer-scale package further comprises solder balls disposed on the bond pads, and an encapsulant comprising a voltage switchable material encasing the semiconductor die, where the solder balls protrude through the encapsulant. The encapsulant contacts a solder ball disposed on the bond pad for ground.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a cross-sectional view of a semiconductor device according to an exemplary embodiment of the present invention.



FIG. 2 is a cross-sectional view of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 3 is a cross-sectional view of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 4 is a cross-sectional view of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 5 is a cross-sectional view of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 6 is a cross-sectional view of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 7 is a cross-sectional view of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 8 is a cross-sectional view of a semiconductor device according to another exemplary embodiment of the present invention.



FIG. 9 is a cross-sectional view of a semiconductor device according to another exemplary embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides over-voltage protection to semiconductor devices, such as packaged semiconductor dies. Packaged semiconductor dies can be either conventionally wire bonded or flip-chip bonded, for instance, in a chip-scale package (CSP). Other semiconductor devices that can employ the present invention include wafer-scale packages. Over-voltage protection is achieved in the present invention by the substitution of voltage switchable materials for other materials of the semiconductor device. In various implementations herein, the voltage switchable material replaces a dielectric material and is in contact with a conductor that may be connected to an electrical ground. Thus, the voltage switchable material generally serves as a dielectric material, but during an over-voltage event the voltage switchable material is able to conduct electricity to the electrical ground.



FIG. 1 illustrates a cross-sectional view of an exemplary semiconductor device 100 of the invention, such as an integrated circuit. The semiconductor device 100 comprises a semiconductor die or chip 110 attached to a substrate 120. In this embodiment, the semiconductor die 110 is attached to a die bonding pad (not shown) of the substrate 120 with a die attach adhesive 130 comprising a voltage switchable material. It will be appreciated that the die bonding pad of the substrate 120 is merely a region of the substrate that has been designated as the location for the semiconductor die 110. The die bonding pad therefore need not be demarked, though in some embodiments the die bonding pad is clearly defined.


The semiconductor die 110 includes bond pads (not shown), on a top surface of the semiconductor die 110, that are electrically connected to electrically conductive traces 140 on the substrate 120 by wires 150. The thickness of the traces 140 are greatly exaggerated in the drawings for illustrative purposes. The traces 140 can be connected to solder balls 160 by vias (not shown) through the substrate 120, for example. The solder balls 160, in turn, can be connected to wiring on a printed wiring board (not shown) leading to sources of power, ground, and signals. In this way the semiconductor die 110 is connected to power and ground and is able to send and receive signals. It should be noted that the term “solder ball” is used broadly herein to also include solder bumps.


In the embodiment illustrated by FIG. 1, one bond pad on the semiconductor die 110 is connected to ground through a ground trace 170. The ground trace 170 extends between the semiconductor die 110 and the die bonding pad so that the ground trace 170 is in contact the die attach adhesive 130. Put another way, the ground trace 170 extends into the die bonding pad. During the die attach process the die attach adhesive 130 is applied over die bonding pad and over that portion of the ground trace 170 extending into the die bonding pad. It will be appreciated that the typical semiconductor die 110 will include multiple bond pads for ground, and any, or all, of these bond pads can be connected to ground traces 170.


Suitable voltage switchable materials for the die attach adhesive 130 include a matrix material blended with a particulate conductor. For the purposes of die attach adhesive 130, the matrix material can be similar to conventional die attach adhesives and can include epoxies, polyimides, silicones, and combinations thereof. Accordingly, the die attach adhesive 130 can be applied by conventional techniques. Suitable voltage switchable materials are taught by Wakabayashi et al. (U.S. Pat. No. 3,685,026) and Shrier (U.S. Pat. No. 4,977,357), for example.


Additional suitable voltage switchable materials comprise about 30% to 80% by volume of a dielectric material, about 0.1% to 70% by volume of an electrical conductor, and about 0% to 70% by volume of a semiconducting material. Examples of dielectric materials include, but not limited to, silicone polymers, epoxies, polyimide, polyethylene, polypropylene, polyphenylene oxide, polysulphone, solgel materials, ceramers, silicon dioxide, aluminum oxide, zirconium oxide, and other metal oxide insulators. Examples of electrically conductive materials include, but not limited to, metals such as copper, aluminum, nickel, and stainless steel. Examples of semiconducting materials include both organic and inorganic semiconductors. Suitable inorganic semiconductors include silicon, silicon carbide, boron nitride, aluminum nitride, nickel oxide, zinc oxide, and zinc sulfide. Suitable organic semiconductors include poly-3-hexylthiophene, pentacene, perylene, carbon nanotubes, and C60 fullerenes.



FIG. 2 illustrates a cross-sectional view of another exemplary semiconductor device 200 of the invention. In this embodiment the die attach adhesive 210 at least partially overlays a ground trace 220. Here, the die attach adhesive 210 extends beyond the die bonding pad in order to contact the ground trace 220. The ground trace 220, in some embodiments, extends towards the die bonding pad to minimize the amount of extra die attach adhesive 210 needed to reach the ground trace 220. Similar to the previous embodiment, during the die attach process the die attach adhesive 210 is applied over the die bonding pad and over at least a portion of the ground trace 220. In this and the previously described embodiment, the die attach adhesive 210, 130 normally serves as a dielectric material, but during an over-voltage event will conduct electricity to the ground trace 220, 170 and to ground. In this and the previously described embodiment, the die attach adhesive 210, 130 can be dispensed with the same equipment used to dispense conventional die attach adhesive.



FIG. 3 illustrates a cross-sectional view of still another exemplary semiconductor device 300 of the invention. In this embodiment a semiconductor die 310 is flip-chip bonded to a substrate 320. In flip-chip bonding, the semiconductor die 310 is inverted (relative to the orientation in the prior two embodiments) so that the bond pads on the semiconductor die 310 can be directly connected to a matching set of bond pads on the substrate 320 within the die bonding pad. The connections between opposing pairs of bond pads in flip-chip bonding are made with solder balls 330.


While the solder balls 330 provide a mechanical connection between the semiconductor die 310 and the substrate 320, an underfill layer 340 comprising a voltage switchable material is provided to increase the resiliency of the flip-chip bonding. As in the previous two embodiments, the semiconductor die 310 in the present embodiment has one or more bond pads for ground, each connected by a solder ball 330 to a bond pad (not shown) on the substrate 320. Each of these solder ball 330 connections to ground, within the underfill layer 340, can serve as a ground terminal during an over-voltage event. Advantageously, the voltage switchable material used to form the underfill layer 340 can be injected between the semiconductor die 310 and the substrate 320 by the same equipment used to inject conventional underfill materials.



FIGS. 4 and 5 illustrate cross-sectional views of two additional exemplary semiconductor devices 400 and 500 of the invention. The semiconductor device 400 of FIG. 4 comprises a semiconductor die 410 attached to a substrate 420 with a die attach adhesive 430 that in some embodiments comprises a voltage switchable material. The semiconductor device 400 also comprises an encapsulant 440 that comprises a voltage switchable material and encapsulates the semiconductor die 410.


The semiconductor device 500 of FIG. 5 comprises a semiconductor die 510 flip-chip bonded to a substrate 520 and an underfill layer 530 that in some embodiments comprises a voltage switchable material. The semiconductor device 500 also comprises an encapsulant 540 that comprises a voltage switchable material and encapsulates the semiconductor die 510. In the embodiments illustrated in FIGS. 4 and 5, the encapsulants 440, 540 are normally dielectric but serve to conduct to a proximately situated ground during an over-voltage event. The encapsulants 440, 540 can be applied by conventional methods such as molding and screen printing.


In the embodiment of FIG. 4, any ground trace 450 that is in contact with the encapulant 440 can serve as ground during an over-voltage event. Also in this embodiment, if the die attach adhesive 430 comprises a voltage switchable material, the voltage switchable material of the encapsulant 440 can be either the same or a different voltage switchable material.


In the embodiment of FIG. 5, a ground trace 550 is also provided. The ground trace 550 is in electrical communication with a grounded solder ball 560, in some embodiments. In those embodiments in which the underfill layer 530 also comprises a voltage switchable material, the ground trace 550 is optional as a grounded solder ball 560 can serve as ground during an over-voltage event. Also in the embodiment of FIG. 5, if the underfill layer 530 comprises a voltage switchable material, the voltage switchable material of the encapsulant 540 can be either the same or a different voltage switchable material.



FIG. 6 illustrates a cross-sectional view of still another exemplary semiconductor device 600 of the invention. In this embodiment, a substrate 610 carrying a semiconductor die 620 is mounted to a printed wiring board 630. Solder balls 640 provide electrical connections between the substrate 610 and the printed wiring board 630. As above, some of these connections provide electrical grounding. The semiconductor device 600 also includes an underfill layer 650 that comprises a voltage switchable material. The underfill layer 650 provides over-voltage protection analogously to the underfill layer 340 discussed above with respect to FIG. 3. Although the embodiment shown in FIG. 6 includes a semiconductor die 620 wire bonded to the substrate 610, it will be understood that the semiconductor die 620 can also be flip-chip bonded to the substrate 610. Additionally, in some embodiments an encapsulant 660 and/or a die attach adhesive 670 can also comprise a voltage switchable material. For flip-chip bonding, the die attach adhesive 670 would be replaced with another underfill layer that could also comprise a voltage switchable material.


In still another exemplary semiconductor device 700, shown in cross-section in FIG. 7, a semiconductor die 710 is flip-chip bonded to a substrate 720. In this embodiment, some of the solder balls 730 are replaced by balls 740 comprising a voltage switchable material. In this embodiment the balls 740 are disposed between bond pads on the semiconductor die 710 and substrate 720 for ground. Like the solder balls 730, the balls 740 can be formed on the semiconductor die 710 prior to flip-chip bonding by conventional processes such as screen printing. Additionally, in some embodiments an encapsulant 750 and/or an underfill layer 760 can also comprise a voltage switchable material.


In yet another exemplary semiconductor device 800, shown in cross-section in FIG. 8, a semiconductor die 810 is attached to a substrate 820 by a die attach adhesive 830. In this embodiment, an encapsulant 840 comprises two layers, a conformal layer 850 comprising a voltage svitchable material, and a second layer 860 of a conventional encapsulant disposed over the conformal layer 850. Using a thin, conformal layer 850 in place of the thicker encapsulants 440, 540 of FIGS. 4 and 5 provides the same over-voltage protection but uses less voltage switchable material per semiconductor device 800.


The conformal layer 850 is disposed over the semiconductor die 810 and over a ground trace 870 on the substrate 820. In this way the conformal layer 850 makes contact with a source of ground. In some embodiments, the conformal layer 850 is on the order of 50 mils thick. The conformal layer 850 can be formed, for example, by inkjet printing, screen printing, or painting. The second layer 860 of a conventional encapsulant can be formed by conventional methods such as molding and screen printing, for example. It will be understood that the semiconductor die 810 can also be flip-chip bonded to the substrate 820. As above, the die attach adhesive 830, or an underfill layer in the case of flip-chip bonding, can also comprise a voltage switchable material.



FIG. 9 illustrates a cross-sectional view of yet another exemplary semiconductor device 900 of the invention. The semiconductor device 900 comprises a wafer-scale package. The semiconductor device 900 includes a semiconductor die 910 having solder balls 920 disposed on bonding pads (not shown) and an encapsulant 930 formed to encase the semiconductor die 910. Only the solder balls 920 protrude through the encapsulant 930. The encapsulant 930 comprises a voltage switchable material and is in contact with at least one solder ball 920 disposed on a bond pad for ground.


In the foregoing specification, the invention is described with reference to specific embodiments thereof, but those skilled in the art will recognize that the invention is not limited thereto. Various features. and aspects of the above-described invention may be used individually or jointly. Further, the invention can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive. It will be recognized that the terms “comprising,” “including,” and “having,” as used herein, are specifically intended to be read as open-ended terms of art.

Claims
  • 1. A semiconductor device comprising: a dielectric substrate including, on a first surface thereof, a conductor;a semiconductor die attached to the first surface using a die attach adhesive;a voltage switchable material connecting the semiconductor die to the conductor, the voltage switchable material physically contacting both the semiconductor die and the conductor; andan encapsulant that encapsulates the semiconductor die, wherein the encapsulant and the die attach adhesive include the voltage switchable material.
  • 2. The semiconductor device of claim 1, wherein the conductor is sandwiched between the die attach adhesive and the die bonding pad.
  • 3. The semiconductor device of claim 1, wherein the die attach adhesive extends beyond the die bonding pad to contact the conductor.
  • 4. The semiconductor device of claim 1, wherein the semiconductor die is flip-chip bonded to the die bonding pad.
  • 5. The semiconductor device of claim 4, wherein flip-chip bonding includes the use of solder balls, and at least one of the solder balls is replaced by a ball including the voltage switchable material.
  • 6. The semiconductor device of claim 5, further comprising an encapsulant including a second voltage switchable material.
  • 7. The semiconductor device of claim 1, wherein the encapsulant includes: a first conformal layer comprising the voltage switchable material that conforms to the semiconductor die and at least part of the dielectric substrate, anda second layer that overlies at least a portion of the first conformal layer.
  • 8. The semiconductor device of claim 1, wherein the encapsulant encapsulates the semiconductor die and the conductor.
  • 9. The semiconductor device of claim 1, wherein the encapsulant encapsulates the semiconductor die and the die attach adhesive.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional patent Application No. 60/739,724 filed on Nov. 22, 2005 and entitled “Over-Voltage Protection for Semiconductor Devices Using Voltage Switchable Dielectric Material as an Encapsulant or Underfill” incorporated herein by reference.

US Referenced Citations (192)
Number Name Date Kind
3347724 Schneble, Jr. et al. Oct 1967 A
3685026 Wakabayashi et al. Aug 1972 A
3685028 Wakabayashi et al. Aug 1972 A
3723635 Smith Mar 1973 A
3808576 Castonguay et al. Apr 1974 A
3926916 Mastrangelo Dec 1975 A
3977957 Kosowsky et al. Aug 1976 A
4113899 Henry et al. Sep 1978 A
4133735 Afromowitz et al. Jan 1979 A
4252692 Taylor et al. Feb 1981 A
4331948 Malinaric et al. May 1982 A
4359414 Mastrangelo Nov 1982 A
4405432 Kosowsky Sep 1983 A
4439809 Weight et al. Mar 1984 A
4506285 Einzinger et al. Mar 1985 A
4591411 Reimann May 1986 A
4642160 Burgess Feb 1987 A
4702860 Kinderov et al. Oct 1987 A
4726877 Fryd et al. Feb 1988 A
4726991 Hyatt et al. Feb 1988 A
4799128 Chen Jan 1989 A
4888574 Rice et al. Dec 1989 A
4892776 Rice Jan 1990 A
4918033 Bartha et al. Apr 1990 A
4928199 Diaz et al. May 1990 A
4935584 Boggs Jun 1990 A
4977357 Shrier Dec 1990 A
4992333 Hyatt Feb 1991 A
4996945 Dix, Jr. Mar 1991 A
5068634 Shrier Nov 1991 A
5092032 Murakami Mar 1992 A
5095626 Kitamura et al. Mar 1992 A
5099380 Childers et al. Mar 1992 A
5142263 Childers et al. Aug 1992 A
5148355 Lowe et al. Sep 1992 A
5183698 Stephenson et al. Feb 1993 A
5189387 Childers et al. Feb 1993 A
5246388 Collins et al. Sep 1993 A
5248517 Shrier et al. Sep 1993 A
5252195 Kobayashi et al. Oct 1993 A
5260848 Childers Nov 1993 A
5262754 Collins Nov 1993 A
5278535 Xu et al. Jan 1994 A
5282312 DiStefano et al. Feb 1994 A
5294374 Martinez et al. Mar 1994 A
5295297 Kitamura et al. Mar 1994 A
5300208 Angelopoulos et al. Apr 1994 A
5317801 Tanaka et al. Jun 1994 A
5340641 Xu Aug 1994 A
5347258 Howard et al. Sep 1994 A
5354712 Ho et al. Oct 1994 A
5367764 DiStefano et al. Nov 1994 A
5378858 Bruckner et al. Jan 1995 A
5380679 Kano Jan 1995 A
5393597 Childers et al. Feb 1995 A
5403208 Felcman et al. Apr 1995 A
5404637 Kawakami Apr 1995 A
5413694 Dixon et al. May 1995 A
5416662 Kurasawa et al. May 1995 A
5440075 Kawakita et al. Aug 1995 A
5444593 Allina Aug 1995 A
5476471 Shifrin et al. Dec 1995 A
5481795 Hatakeyama et al. Jan 1996 A
5483407 Anastasio et al. Jan 1996 A
5487218 Bhatt et al. Jan 1996 A
5493146 Pramanik et al. Feb 1996 A
5501350 Yoshida et al. Mar 1996 A
5502889 Casson et al. Apr 1996 A
5510629 Karpovich et al. Apr 1996 A
5550400 Takagi et al. Aug 1996 A
5557136 Gordon et al. Sep 1996 A
5654564 Mohsen Aug 1997 A
5669381 Hyatt Sep 1997 A
5685070 Alpaugh et al. Nov 1997 A
5708298 Masayuki et al. Jan 1998 A
5714794 Tsuyama et al. Feb 1998 A
5734188 Murata et al. Mar 1998 A
5744759 Ameen et al. Apr 1998 A
5781395 Hyatt Jul 1998 A
5802714 Kobayashi et al. Sep 1998 A
5807509 Shrier et al. Sep 1998 A
5808351 Nathan et al. Sep 1998 A
5834160 Ferry et al. Nov 1998 A
5834824 Shepherd et al. Nov 1998 A
5834893 Bulovic et al. Nov 1998 A
5848467 Khandros et al. Dec 1998 A
5856910 Yurchenko et al. Jan 1999 A
5865934 Yamamoto et al. Feb 1999 A
5874902 Heinrich et al. Feb 1999 A
5906042 Lan et al. May 1999 A
5910685 Watanabe et al. Jun 1999 A
5926951 Khandros et al. Jul 1999 A
5940683 Holm et al. Aug 1999 A
5946555 Crumly et al. Aug 1999 A
5955762 Hivley Sep 1999 A
5956612 Elliott et al. Sep 1999 A
5962815 Lan et al. Oct 1999 A
5970321 Hively Oct 1999 A
5972192 Dubin et al. Oct 1999 A
5977489 Crotzer et al. Nov 1999 A
6013358 Winnett et al. Jan 2000 A
6023028 Neuhalfen Feb 2000 A
6064094 Intrater et al. May 2000 A
6108184 Minervini et al. Aug 2000 A
6130459 Intrater Oct 2000 A
6160695 Winnett et al. Dec 2000 A
6172590 Shrier et al. Jan 2001 B1
6184280 Shituba Feb 2001 B1
6191928 Rector et al. Feb 2001 B1
6198392 Hahn et al. Mar 2001 B1
6211554 Whitney et al. Apr 2001 B1
6239687 Shrier et al. May 2001 B1
6251513 Rector et al. Jun 2001 B1
6310752 Shrier et al. Oct 2001 B1
6316734 Yang Nov 2001 B1
6340789 Petritsch et al. Jan 2002 B1
6351011 Whitney et al. Feb 2002 B1
6373719 Behling et al. Apr 2002 B1
6407411 Wojnarowski Jun 2002 B1
6433394 Intrater Aug 2002 B1
6448900 Chen Sep 2002 B1
6455916 Robinson Sep 2002 B1
6512458 Kobayashi et al. Jan 2003 B1
6534422 Ichikawa et al. Mar 2003 B1
6542065 Shrier et al. Apr 2003 B2
6549114 Whitney et al. Apr 2003 B2
6570765 Behling et al. May 2003 B2
6593597 Sheu Jul 2003 B2
6628498 Whitney et al. Sep 2003 B2
6642297 Hyatt et al. Nov 2003 B1
6657532 Shrier et al. Dec 2003 B1
6693508 Whitney et al. Feb 2004 B2
6709944 Durocher et al. Mar 2004 B1
6741217 Toncich et al. May 2004 B2
6797145 Kosowsky Sep 2004 B2
6882051 Majumdar et al. Apr 2005 B2
6903175 Gore et al. Jun 2005 B2
6911676 Yoo Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6981319 Shrier Jan 2006 B2
7034652 Whitney et al. Apr 2006 B2
7049926 Shrier et al. May 2006 B2
7053468 Lee May 2006 B2
7064353 Bhat Jun 2006 B2
7132922 Harris et al. Nov 2006 B2
7141184 Chacko et al. Nov 2006 B2
7173288 Lee et al. Feb 2007 B2
7183891 Harris et al. Feb 2007 B2
7202770 Harris et al. Apr 2007 B2
7205613 Fjelstad et al. Apr 2007 B2
7218492 Shrier May 2007 B2
7279724 Collins et al. Oct 2007 B2
7320762 Greuter et al. Jan 2008 B2
7417194 Shrier Aug 2008 B2
7446030 Kosowsky Nov 2008 B2
7492504 Chopra et al. Feb 2009 B2
7528467 Lee May 2009 B2
7535462 Spath et al. May 2009 B2
7585434 Morita Sep 2009 B2
20020004258 Nakayama et al. Jan 2002 A1
20020061363 Halas et al. May 2002 A1
20030010960 Greuter et al. Jan 2003 A1
20030079910 Kosowsky May 2003 A1
20040095658 Buretea et al. May 2004 A1
20040154828 Moller et al. Aug 2004 A1
20040211942 Clark et al. Oct 2004 A1
20050026334 Knall Feb 2005 A1
20050106098 Tsang et al. May 2005 A1
20050218380 Gramespacher et al. Oct 2005 A1
20050274455 Extrand Dec 2005 A1
20050274956 Bhat Dec 2005 A1
20060060880 Lee et al. Mar 2006 A1
20060152334 Maercklein et al. Jul 2006 A1
20060167139 Nelson et al. Jul 2006 A1
20060181826 Dudnikov, Jr. et al. Aug 2006 A1
20060181827 Dudnikov, Jr. et al. Aug 2006 A1
20060199390 Dudnikov, Jr. et al. Sep 2006 A1
20060211837 Ko et al. Sep 2006 A1
20060291127 Kim et al. Dec 2006 A1
20070116976 Tan et al. May 2007 A1
20070139848 Harris et al. Jun 2007 A1
20070146941 Harris et al. Jun 2007 A1
20070208243 Gabriel et al. Sep 2007 A1
20080045770 Sigmund et al. Feb 2008 A1
20080047930 Blanchet et al. Feb 2008 A1
20080278873 Leduc et al. Nov 2008 A1
20090309074 Chen et al. Dec 2009 A1
20100270545 Kosowsky Oct 2010 A1
20100270546 Kosowsky Oct 2010 A1
20100271831 Kosowsky et al. Oct 2010 A1
20100281453 Kosowsky et al. Nov 2010 A1
20100281454 Kosowsky et al. Nov 2010 A1
Foreign Referenced Citations (15)
Number Date Country
663491 Dec 1987 CH
3040784 May 1982 DE
10115333 Jan 2002 DE
102004049053 May 2005 DE
102006047377 Apr 2008 DE
1003229 May 2000 EP
0790758 Nov 2004 EP
1542240 Jun 2006 EP
56091464 Jul 1981 JP
63 195275 Aug 1988 JP
2000 062076 Feb 2000 JP
WO9726665 Jul 1997 WO
WO9823018 May 1998 WO
WO9924992 May 1999 WO
WO 2005100426 Oct 2005 WO
Related Publications (1)
Number Date Country
20070114640 A1 May 2007 US
Provisional Applications (1)
Number Date Country
60739724 Nov 2005 US