Solder bump connections

Information

  • Patent Grant
  • 8778792
  • Patent Number
    8,778,792
  • Date Filed
    Monday, February 4, 2013
    11 years ago
  • Date Issued
    Tuesday, July 15, 2014
    10 years ago
Abstract
Solder bump connections and methods for fabricating solder bump connections. The method includes forming a layer stack containing first and second conductive layers, forming a dielectric passivation layer on a top surface of the second conductive layer, and forming a via opening extending through the dielectric passivation layer to the top surface of the second conductive layer. The method further includes forming a conductive plug in the via opening. The solder bump connection includes first and second conductive layers comprised of different conductors, a dielectric passivation layer on a top surface of the second conductive layer, a via opening extending through the dielectric passivation layer to the top surface of the second conductive layer, and a conductive plug in the via opening.
Description
BACKGROUND

The invention relates generally to semiconductor structures and fabrication of semiconductor chips and, in particular, to solder bump connections and methods for fabricating solder bump connections during back-end-of-line (BEOL) processing of semiconductor chips.


A chip or die includes integrated circuits formed by front-end-of-line (FEOL) processing and metallization levels of an interconnect structure formed by back-end-of line (BEOL) processing. Chips are then packaged and mounted on a circuit board. Solder bumps are commonly utilized to provide mechanical and electrical connections between the last or top metallization level and the circuit board. A common type of solder bump is the controlled collapse chip connection (C4) solder bump. Controlled Collapse Chip Connection (C4) processes are well known in forming solder bumps in semiconductor fabrication. During assembly of the chip and circuit board, C4 solder bumps establish physical attachment and electrical contact between an array of C4 pads on the chip and a complementary array of C4 pads on the circuit board.


Conventional solder bump connections rely on a group of metallic layers know as the Ball Limiting Metallurgy (BLM) to promote the attachment of the C4 solder bump to the chip. Among the functions of the BLM are to promote adhesion between the underlying dielectric passivation layer and the metal pad, to promote solder wetting, and to act as a solder diffusion barrier.


Improved solder bump connections and fabrication methods are needed that improve on conventional solder bump connections and methods.


BRIEF SUMMARY

In an embodiment of the invention, a method is provided for fabricating a solder bump connection. The method includes forming a layer stack containing a first conductive layer and a second conductive layer on the first layer, forming a dielectric passivation layer on a top surface of the second conductive layer, and forming a via opening extending through the dielectric passivation layer to the top surface of the second conductive layer. The method further includes forming a conductive plug in the via opening.


In an embodiment of the invention, a solder bump connection includes a first conductive layer, a second conductive layer on the first conductive layer, and a dielectric passivation layer on a top surface of the second conductive layer. The first and second conductive layers are respectively comprised of first and second conductors. A via opening extends through the dielectric passivation layer to the top surface of the second conductive layer. A conductive plug is disposed in the via opening.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various embodiments of the invention and, together with a general description of the invention given above and the detailed description of the embodiments given below, serve to explain the embodiments of the invention.



FIGS. 1-5 are cross-sectional views of a portion of a substrate at an initial fabrication stage of a processing method for fabricating a device structure in accordance with an embodiment of the invention.



FIG. 1A is a cross-sectional view similar to FIG. 1 in accordance with an alternative embodiment of the invention.



FIG. 6 is a cross-sectional view similar to FIG. 5 in accordance with an alternative embodiment of the invention.





DETAILED DESCRIPTION

With reference to FIG. 1 and in accordance with an embodiment of the invention, a plurality of dielectric layers 10, 12, 14 and a metal line 16 embedded as metallization in one or more of the dielectric layers 10, 12, 14 represents features in a topmost level of a back-end-of-line (BEOL) interconnect structure. Typical constructions for the BEOL interconnect structure consist of about two (2) to about eight (8) metallization levels. The metallization levels of the BEOL interconnect structure are formed by known lithography and etching techniques characteristic of damascene processes conventionally associated with BEOL processing.


Each of the dielectric layers 10, 12, 14 may comprise any suitable organic or inorganic dielectric material recognized by a person having ordinary skill in the art and at least dielectric layers 12 and 14 should be capable of withstanding high sheer stress. Candidate inorganic dielectric materials may include, but are not limited to, silicon dioxide, fluorine-doped silicon glass (FSG), and combinations of these dielectric materials. Alternatively, the dielectric material of one or more of the dielectric layers 10, 12, 14 may be characterized by a relative permittivity or dielectric constant smaller than the dielectric constant of silicon dioxide, which is about 3.9. Candidate low-k dielectric materials include, but are not limited to, porous and nonporous spun-on organic low-k dielectrics, such as spin-on aromatic thermoset polymer resins like polyarylenes, porous and nonporous inorganic low-k dielectrics like organosilicate glasses, hydrogen-enriched silicon oxycarbide (SiCOH), and carbon-doped oxides, and combinations of these and other organic and inorganic dielectrics. The dielectric layers 10, 12, 14 may be deposited by any number of well known conventional techniques such as sputtering, spin-on application, chemical vapor deposition (CVD) process or a PECVD process.


The metal line 16 may be comprised of copper, aluminum, or an alloy of these materials, and may be formed by a damascene process in dielectric layers 12, 14. The metal line 16 may be configured to limit current crowding with a set of metal-filled TV (terminal via) slots.


The BEOL interconnect structure is carried on a die or chip (not shown) that has been processed by front-end-of-line (FEOL) processes to fabricate one or more integrated circuits that contain device structures. The chip may be formed from any suitable wafer of semiconductor material that a person having ordinary skill in the art would recognize as suitable for integrated circuit fabrication.


A layer stack consisting of an adhesion layer 20 and a seed layer 22 is formed on a top surface 18 of dielectric layer 14. A bottom surface 24 of seed layer 22 directly contacts a top surface 28 of adhesion layer 20 so that layers 20, 22 are in physical and electrical contact. A bottom surface 26 of adhesion layer 20 contacts, preferably directly, the top surface 18 of dielectric layer 14 and is in physical and electrical contact with the metal line 16. In one embodiment, the thickness of adhesion layer 20 ranges between 0.1 μm and 0.3 μm in thickness, preferably about 0.2 μm, and the thickness of seed layer 22 ranges from 0.25 μm to 1.0 μm, preferably about 0.5 μm.


The layers 20, 22 are components of Ball Limiting Metallurgy (BLM) or Under Bump Metallurgy (UBM) used in the construction of the solder bump connection 50 (FIG. 5). The adhesion layer 20 may be comprised of a material that is thermally stable during BEOL processes and that adheres well with the subsequently-formed plug 40 (FIG. 2) for strengthening the bond with the dielectric layer 14 and metal line 16. The material of the adhesion layer 20 may also be capable of blocking the drift or diffusion of atoms from the material of plug 40 into the dielectric layer 14. In one embodiment, the adhesion layer 20 may be comprised of an alloy of titanium and tungsten (TiW). In alternate embodiments, the adhesion layer 20 may include other materials, such as a conductive metal nitride selected from titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), a tungsten nitride (WNx), or multilayer combination of these materials (e.g., a bilayer of TaN/Ta) as recognized by a person having ordinary skill in the art. In one embodiment, seed layer 22 may be comprised of copper, such as a thin layer of copper (Cu) or co-deposited chromium-copper (Cr—Cu).


Layers 20, 22 of the layer stack may be serially deposited utilizing physical vapor deposition (PVD) techniques or other deposition techniques understood by a person having ordinary skill in the art. Prior to deposition of the adhesion layer 20, the top surface 18 of dielectric layer 14 may be prepared by a degas process, precleaned with a plasma etch for, etc.


A dielectric passivation layer 30 is formed on a top surface 29 of seed layer 22. The dielectric passivation layer 30 may be comprised of an organic material, such as a polymer, that is optionally photosensitive. In one embodiment, the dielectric passivation layer 30 may be comprised of photosensitive polyimide (PSPI). The dielectric passivation layer 30 may be prepared by dissolving the polymer in a solvent to form a precursor, spreading the precursor with a spin coating process as a coating across seed layer 22, and then drying the coating to remove solvents from the precursor coating and partially imidize the polymer.


A final via (FV) opening 34 is formed in the dielectric passivation layer 30. The FV opening 34 extends through the entire layer thickness of the dielectric passivation layer 30 to expose a portion of the top surface 29 of seed layer 22. The location of the FV opening 34 defines the intended location on dielectric layer 14 for forming the solder bump connection 50. If the dielectric passivation layer 32 is a non-photosensitive material, a photoresist may be spun onto the dielectric passivation layer 32, exposed using radiation projected through a photomask, and then developed to provide a pattern of islands 25 of photoresist distributed across the top surface 29 of the seed layer 22 at intended locations for the solder bump connections, as shown in FIG. 1A. The island pattern is transferred from the photoresist into the dielectric passivation layer 30 with a wet chemical etch process. If the dielectric passivation layer 32 is a photosensitive material, the dielectric passivation layer 32 may be lithographically patterned by radiation exposure and development. The precursor coating is subsequently cured to imidize and crosslink the polymer.


An annular island region 32 of the dielectric passivation layer 30 remains on the top surface 29 of seed layer 22. The island region 32 includes an inner sidewall 35 that surrounds the FV opening 34, an outer sidewall 36, a bottom surface 33 at the base of the island region 32, and a top surface 31 opposite to the bottom surface 33. The island region 32 has a frustoconical shape in which the sidewalls 35, 36 are tapered from the bottom surface 33 toward the top surface 31. Outside of the island region 32, the top surface 29 of seed layer 22 is also revealed when the dielectric passivation layer 30 is patterned. In one embodiment, the thickness of the dielectric passivation layer 30 may be in a range of 10 μm to 15 μm.


In the process flow, the layer stack of adhesion layer 20 and seed layer 22 are formed before the island region 32 in dielectric passivation layer 30. As a result, the inner sidewall 35 of the island region 32 is not covered by the adhesion layer 20 and seed layer 22 and, hence, is free of the layer stack. The adhesion layer 20 and seed layer 22 are present between a bottom surface of the island region 32 and the top surface 18 of the dielectric layer 14. Preferably, the bottom surface 33 of the dielectric passivation layer 30 is directly formed on the top surface 29 of seed layer 22. At the bottom surface 33, the width, w, of the island region 32 measured between the corners of the sidewalls 35, 36 may range from 5 μm to 100 μm.


With reference to FIG. 2 in which like reference numerals refer to like features in FIG. 1 and at a subsequent fabrication stage, a conductive layer 38 comprised of a conductor is formed on top surface 29 of seed layer 22 in surface areas across which the dielectric passivation layer 30 is absent. A representative conductor for conductive layer 38 is comprised of copper (Cu), although other suitable low-resistivity materials like metals and metal alloys may be selected in alternative embodiments. The conductive layer 38 may be deposited by a conventional deposition process, such as an electrochemical plating process like electroplating. In an electrochemical plating process, the seed layer 22 operates as a catalyst to nucleate the formation of the conductor constituting layer 38. The material in seed layer 22 may be subsumed during the deposition process, such that the seed layer 22 may become continuous with or blend into conductive layer 38. A segment of the seed layer 22 remains disposed beneath the island region 32 of the dielectric passivation layer 30. The dielectric passivation layer 30 may remain uncoated by the conductor in conductive layer 38.


Following deposition, a plug 40 comprised of the conductor resides inside the FV opening 34 and constitutes a component of the BLM. The plug 40 is surrounded or circumscribed by the inner sidewall 35 of the island region 32 of dielectric passivation layer 30 and the plug 40 directly contacts the inner sidewall 35 of the FV opening 34. The plug 40 has a diameter approximately equal to the diameter of the FV opening 34 at any point along its height. The plug 40 has a tapered sidewall 43 that is in direct physical contact with the inner sidewall 35 of the island region 32 due to the absence of layers 20, 22 on the inner sidewall 35. A bottom surface 41 of the plug 40 in is direct physical and electrical contact with the top surface 29 of the seed layer 22. Alternatively, if the seed layer 22 is subsumed into the material of the plug 40, the bottom surface 41 of the plug 40 and the top surface 28 of the adhesion layer 20 can be considered to be in physical and electrical contact. The plug 40 residing in the FV opening 34 and the dielectric passivation layer 30 have approximately equal thicknesses. The nominal diameter of the plug 40, which is determined by the diameter of the FV opening 34, may be selected contingent upon the solder bump connection design dimensions and, in some embodiments, the nominal width of the plug 40 measured at the bottom surface 41 may range from 10 μm to 500 μm.


The plug 40 may be formed and have a thickness equal to the thickness of the dielectric passivation layer 30 without the need for a chemical mechanical polishing (CMP) process as required by conventional processes for forming pad constructions. In particular, the placement of the layers 20, 22 as a layer stack on the surface of the dielectric layer 14 and the formation of the layers 20, 22 before the dielectric passivation layer 30 is formed facilitates the elimination of the CMP process. The layer stack of layers 20, 22 is disposed between the dielectric passivation layer 30 and the dielectric layer 14. In conventional process flows, the dielectric passivation layer is formed and the FV opening is defined before the BLM layer stack is formed. As a result, the conventional BLM layer stack must be removed with a CMP process from the top surface of the dielectric passivation layer after the plug is formed in the FV opening.


With reference to FIG. 3 in which like reference numerals refer to like features in FIG. 2 and at a subsequent fabrication stage, a plating resist mask 44 is formed on the top surface 31 of the dielectric passivation layer 30 and a top surface 37 of conductive layer 38 by applying a resist layer, exposing the resist layer to radiation through a photomask, and developing the exposed resist layer to define an unmasked window 46 exposing a top surface 42 of the plug 40. In one embodiment, the plating resist mask 44 is a photoactive polymer resist, such as RISTON® photopolymer resist that has an optimal exposure response to ultraviolet radiation in the 350 nm to 380 nm range and that can be developed in a carbonate-based solution.


With reference to FIG. 4 in which like reference numerals refer to like features in FIG. 3 and at a subsequent fabrication stage, a barrier layer 48 of the BLM is applied to the top surface 42 of the plug 40 that is exposed through the window 46 in the plating resist mask 44 (FIG. 3). Barrier layer 48 does not form on regions of the conductive layer 38 covered by the plating resist mask 44 and defines a cap on the plug 40. In a representative embodiment, barrier layer 48 may be comprised of a metal formed by a deposition technique, such as nickel (Ni) or a Ni alloy (e.g., NiCo) formed by an electrochemical plating process (e.g., electroplating) to a thickness with a range of 0.5 μm to 4 μm and, preferably, to a thickness of 2 μm. The layer arrangement promotes the electroplating of the barrier layer 48 in contrast to the electroless deposition required in conventional solder bump connection fabrication processes. An optional layer (not shown) of a different material, such as about 1 μm of Cu, may be applied to a top surface 49 of the barrier layer 48. The dimensions of the barrier layer 48 and the top surface 42 of the plug 40 match a specification for solder bumping and, in particular, may match the known C4 solder bumping specification. For example, the barrier layer 48 and the top surface 42 of the plug 40 may have a diameter on the order of the dimensions of the solder bump 52 (FIG. 5) and, in particular, a diameter ranging from 20 μm to 500 μm.


Because of the residence of the plug 40 in the FV opening 34 and the circumscription of the plug 40 by the island region 32 of dielectric passivation layer 30, the process forming the barrier layer 48 is self-aligned with the top surface 42 of the plug 40. The plug 40 and the barrier layer 48 are in direct physical and electrical contact.


The plating resist mask 44 is then stripped from the top surfaces 31, 37 in a conventional manner. For example, if the plating resist mask 44 is comprised of a photoactive polymer resist, such as RISTON®, stripping may be executed using an aqueous stripping solution or a proprietary commercial stripping solution.


Field regions of the conductive layer 38 and layer 22 between adjacent solder bump connections 50 (FIG. 5) are removed from the top surface of adhesion layer 20. In one embodiment in which the conductive layer 38 and seed layer 22 are comprised of Cu, the field regions of the conductive layer 38 may be removed by exposure to an isotropic wet chemical etchant, such as a solution of hydrogen peroxide and sulfuric acid. The wet chemical etchant removes the material of conductive layer 38 and seed layer 22 at a higher etch rate than the material of barrier layer 48 so that the plug 40 residing in the FV opening 34 and layer 48 are substantially unaffected by the wet chemical etchant.


With reference to FIG. 5 in which like reference numerals refer to like features in FIG. 4 and at a subsequent fabrication stage, field regions of the adhesion layer 20 on the top surface 18 of dielectric layer 14 at locations not masked by the overlying dielectric passivation layer 30 and plug 40 are removed. In one embodiment, these regions of the adhesion layer 20 may be removed using an isotropic wet chemical etching process. For example, if the adhesion layer 20 is comprised of TiW, a representing wet etch process may use an etchant comprised of a hydrogen peroxide (H2O2) chemistry with end-point detection control. The patterning of the adhesion layer 20 may complete the formation of an interconnect structure in the form of the solder bump connection 50. During BEOL processing, the solder bump connection 50 is replicated across at least a portion of the surface area of the wafer.


A solder ball or bump 52 is formed on the top surface 49 of the barrier layer 48. The solder bump 52 may be comprised of solder having a conventional lead-free (Pb-free) composition, which may include tin (Sn) as the primary elemental component. In a representative embodiment, the solder bump 52 may be separately formed and transferred to the top surface 49 of the barrier layer 48 by a Controlled Collapse Chip Connection New Process (C4NP) technology, which promotes Pb-free wafer bumping. The solder bump 52 is included among an area array of injection-molded solder bumps that are formed using bulk Pb-free solder injected into cavities in a mold plate matching the locations of solder bump connections, including solder bump connection 50, on the wafer. The molded bumps populating the cavities are transferred to the wafer by precisely aligning the bumps with the solder bump connections and executing a reflow transfer by heating in reducing gas atmosphere to a temperature that is 10° C. to 20° C. above the solder melting temperature. The reflow of the solder bump 52 tends to combine with the material of the barrier layer 48 to form a stable intermetallic composition. The optional layer applied to top surface 49 of the barrier layer 48, as described above, may assist in driving the transfer of the solder bump 52 to the barrier layer 48.


The solder bump 52 protrudes vertically above the level of the top surfaces 31, 37 of the dielectric passivation layer 30 and the plug 40. The height of the solder bump 52 may be on the order of 50 μm. The top surface 49 of the barrier layer 48 operates as a support pad for the solder bump 52. The barrier layer 48, plug 40, and adhesion layer 20 provide a conductive path between the metal line 16 and the solder bump 52. The barrier layer 48 protects the material (e.g., Cu) of the underlying plug 40 against consumption during reflow processes from reactions with the solder bump 52.


After the solder bump 52 is reflowed on the solder bump connection 50, a flip-chip assembly process may be performed. The chip (not shown) is inverted and aligned relative to a laminate substrate (not shown). The solder bumps, including solder bump 52, are bonded to the matching pads on the laminate substrate using a reflow process. The temperature of the reflow process is contingent upon solder composition but is typically in a range of 200° C. to 300° C. Eventually, the solder bump 52 and solder bump connection 50 are components contributing to pathways for transferring data from the chip to an external device, such as a computing system, and for powering the integrated circuits on the chip.


With reference to FIG. 6 in which like reference numerals refer to like features in FIG. 3 and at a subsequent fabrication stage in accordance with an alternative embodiment, the process flow proceeds as described above to the stage shown in FIG. 3, including forming the barrier layer 48. With the plating resist mask 44 still intact and prior to its removal, a solder bump 60 is formed on the barrier layer 48. The window 46 in the plating resist mask 44 defines the lateral location of the solder bump 60. The solder bump 60 may be deposited by a conventional deposition process, such as an electrochemical plating process like electroplating or electroless plating. As described above, the plating resist mask 44 is stripped from the top surface 31 of dielectric passivation layer 30 and the top surface 37 of conductive layer 38 in a conventional manner. The process flow continues by removing regions of conductive layer 38 not covered by the regions of adhesion layer 20 and removing regions of adhesion layer 20 that are not covered by the dielectric passivation layer 30 and plug 40, as described above. In this alternative embodiment of the process flow, the solder bump 60 assists in masking the plug 40 during the wet etch process removing the field regions of conductive layer 38. The solder bump 60 is reflowed using a conventional reflow process to form a spherical shape, which results in the final structure of the solder bump connection 50 depicted in FIG. 5.


The process flow in accordance with the embodiments of the invention eliminates several steps from a conventional process flow. Specifically, the conventional process flow introduces a pedestal as an independent and distinct structure underlying a conventional plug and with a separate set of steps in the conventional process of record. In contrast, the plug 40 operates as an integral, one-piece pedestal/plug structure that can be formed with at least four fewer operations than in a conventional process flow. Specifically, though the process flow of the embodiments of the invention would not eliminate a masking step, the conventional process flow is simplified by eliminating at least two PVD processes used to form barrier and seed layers, a plating process to deposit the conductive material of the pedestal on the barrier and seed layers, and a CMP process to planarized the conductive material to shape the pedestal. In addition to eliminating the independent formation of a pedestal and a plug, the process flow introduces a common metal base layers 20, 22 under the relatively thick plug 40, instead of multiple layers in a stack containing a separate pedestal and plug.


The plug 40 is encapsulated by the dielectric passivation layer 30 and the barrier layer 48 to form a protective envelop. Specifically, the island region 32 of dielectric passivation layer 30 is laterally disposed between the plug 40 and the surrounding environment and the top surface 42 of the plug 40 is capped by layer 48. As a result, the plug 40 is shielded and protected against thermal undercut during reflow because the molten solder does not contact the plug 40 and, as a result, the material of the plug 40. The potential for thermal undercut, which is eliminated by the inventive construction, is particularly acute between Sn in Pb-free solders forming the solder bump 52 and any exposed Cu.


The edges at the perimeter of the adhesion layer 20 are displaced laterally from the bottom surface 41 of the plug 40 by the width of the island region 32 of dielectric passivation layer 30. When the adhesion layer 20 is wet etched, any recession of the peripheral edges of the adhesion layer 20 beneath the island region 32 of dielectric passivation layer 30 are displaced from the location at which the adhesion layer 20 underlies the plug 40. When the seed layer 22 is wet etched, any recession of the peripheral edges of the seed layer 22 beneath the island region 32 of dielectric passivation layer 30 are displaced from the bottom surface 41 of the plug 40. As a result, any recession of the layers 20, 22 during wet chemical etching does not penetrate beneath the dielectric passivation layer 30 along the top surface 18 of dielectric layer 14 to a location proximate to the bottom surface 41 of the plug 40. In particular, the recession of layers 20, 22 may only penetrate inward from the outer sidewall 36 of the island region by a distance of 2 μm or 3 μm, which is less than the width, w, of the island region 32 at its bottom surface 33 (5 μm to 100 μm). Therefore, the plug 40 is not undercut during wet chemical etching and any undercutting of the island region 32 due to etching-induced recession of layers 20, 22 is displaced laterally from the plug 40.


The solder bump connection 50 of the embodiments of the invention physically separates the tensile base of the solder bump 52 from the locations of potential undercutting when the layers 20, 22 are wet etched. The physical separation may reduce the incidence of cracking resulting from chip-package interaction (CPI) during the flip-chip assembly process. During the cool-down phase of the thermal cycle in the flip-chip assembly process described above and subsequent reliability tests, module-level stresses develop because of mismatches in coefficients of thermal expansion (CTEs) between the materials of the chip and the laminate substrate. These stresses may be translated through a pad/bump assembly into the BEOL interconnect structure, which can drive crack initiation and propagation. The susceptibility of the BEOL interconnect structure to cracking may be exacerbated by the implementation of ultra low-k dielectrics and Pb-free solders.


The use of the island mask in forming the dielectric passivation layer 30 promotes the dielectric passivation layer 30 to be thickened, all other factors such as bump height being unchanged, in comparison with dielectric passivation layers found in conventional constructions. Solder bumps normally provide a gap between the chip and the laminate substrate. The enhanced thickness of the dielectric passivation layer 30 and plug 40 operates to further elevate a bottom surface of the chip and to increase the height of the gap. As a result, underfill material may be more readily drawn by capillary action from dispense locations along the edges of the chip into the gap underneath the chip, which facilitates underfilling operations.


The method as described above is used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. The chip may be integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.


It will be understood that when an element is described as being “connected” or “coupled” to or with another element, it can be directly connected or coupled to the other element or, instead, one or more intervening elements may be present. In contrast, when an element is described as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. When an element is described as being “indirectly connected” or “indirectly coupled” to another element, there is at least one intervening element present.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.

Claims
  • 1. A method of fabricating a solder bump connection, the method comprising: forming a layer stack containing a first conductive layer and a second conductive layer on the first conductive layer;forming a dielectric passivation layer in an island region on a top surface of the second conductive layer, wherein the island region includes an inner sidewall and an outer sidewall;forming a via opening extending through the dielectric passivation layer to the top surface of the second conductive layer and circumscribed by the inner sidewall of the island region;forming a conductive plug in the via opening that is coupled by the second conductive layer with the first conductive layer; andafter the conductive plug is formed, removing field regions of the layer stack outside of the outer sidewall of the island region with a selective wet chemical etching process.
  • 2. The method of claim 1 further comprising: forming a dielectric layer; andforming a metal line in the dielectric layer that contacts the first conductive layer;wherein the dielectric passivation layer is arranged relative to the dielectric layer such that the layer stack is disposed in part between the dielectric passivation layer and the dielectric layer.
  • 3. The method of claim 2 wherein the dielectric passivation layer and the conductive plug have approximately equal thicknesses.
  • 4. The method of claim 1 wherein the dielectric passivation layer is comprised of a photosensitive polyimide (PSPI), the first conductive layer is comprised of titanium-tungsten (TiW) or a bilayer of tantalum nitride (TaN) and tantalum (Ta), the second conductive layer is comprised of copper, and the conductive plug is comprised of copper.
  • 5. The method of claim 1 wherein the dielectric passivation layer and the conductive plug have approximately equal thicknesses.
  • 6. The method of claim 5 wherein the approximately equal thicknesses are in a range of 10 μm to 15 μm.
  • 7. The method of claim 1 wherein the conductive plug has a bottom surface directly contacting the top surface of the second conductive layer, and the conductive plug is separated from a dielectric layer by at least the second conductive layer.
  • 8. The method of claim 1 wherein the conductive plug includes a sidewall in direct physical contact with the inner sidewall of the island region.
  • 9. The method of claim 8 wherein the inner sidewall of the island region is free of the first conductive layer and the second conductive layer.
  • 10. The method of claim 8 wherein the sidewall of the conductive plug and the inner sidewall of the island region are each tapered relative to the top surface of the second conductive layer.
  • 11. The solder bump connection of claim 8 wherein the sidewall of the conductive plug and the inner sidewall of the island region has approximately equal diameters over a height of the via opening.
  • 12. The solder bump connection of claim 8 wherein the inner sidewall of the island region is laterally between the conductive plug and the outer sidewall of the island region.
  • 13. The method of claim 1 further comprising: capping the conductive plug with a third conductive layer; andforming a solder bump on the third conductive layer.
  • 14. The method of claim 13 wherein the third conductive layer is comprised of a material that blocks reactions between the solder bump and the conductive plug during reflow processes, and capping the conductive plug with the third conductive layer comprises: electroplating the third conductive layer on the conductive plug.
  • 15. The method of claim 13 wherein the third conductive layer and the top surface of the conductive plug are self-aligned so that the third conductive layer and the top surface of the conductive plug are coextensive.
  • 16. The method of claim 1 further comprising: capping the conductive plug with a third conductive layer; andmasking the conductive plug with the third conductive layer during the selective wet chemical etching process.
  • 17. The method of claim 1 wherein the solder bump connection is formed without use of a conventional chemical mechanical polishing (CMP) process to remove the layer stack after the conductive plug is formed.
  • 18. A method of fabricating a solder bump connection, the method comprising: forming a layer stack containing a first conductive layer and a second conductive layer on the first conductive layer;forming a passivation layer comprised of a coating of a non-photosensitive polymer on a top surface of the second conductive layer;forming an island mask on the coating at an intended location of the solder bump connection;etching unmasked regions of the coating to define an island region of the passivation layer from the coating beneath the island mask and that circumscribes a via opening extending through the passivation layer to the top surface of the second conductive layer; andforming a conductive plug in the via opening that is coupled by the second conductive layer with the first conductive layer.
  • 19. The method of claim 18 wherein the island region includes an inner sidewall circumscribing the via opening and an outer sidewall.
  • 20. The method of claim 1 further comprising: forming a plating resist mask on a top surface of the dielectric passivation layer and including a window that exposes a top surface of the conductive plug;forming a solder bump inside the window and coupled with the conductive plug; andafter the solder bump is formed, stripping the plating resist mask from the top surface of the dielectric passivation layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of application Ser. No. 12/963,139, filed Dec. 8, 2010, which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (172)
Number Name Date Kind
3461357 Mutter et al. Aug 1969 A
4113578 Del Monte Sep 1978 A
5171711 Tobimatsu Dec 1992 A
5291019 Powell et al. Mar 1994 A
5462638 Datta et al. Oct 1995 A
5471092 Chan et al. Nov 1995 A
5656858 Kondo et al. Aug 1997 A
5736456 Akram Apr 1998 A
5753973 Yasunaga et al. May 1998 A
5937320 Andricacos et al. Aug 1999 A
6133136 Edelstein et al. Oct 2000 A
6162652 Dass et al. Dec 2000 A
6165885 Gaynes et al. Dec 2000 A
6197613 Kung et al. Mar 2001 B1
6222279 Mis et al. Apr 2001 B1
6232212 Degani et al. May 2001 B1
6298551 Wojnarowski et al. Oct 2001 B1
6332988 Berger, Jr. et al. Dec 2001 B1
6339024 Petrarca et al. Jan 2002 B1
6346469 Greer Feb 2002 B1
6362090 Paik et al. Mar 2002 B1
6365956 Nonaka Apr 2002 B1
6380555 Hembree et al. Apr 2002 B1
6415974 Jao Jul 2002 B2
6475896 Hashimoto Nov 2002 B1
6492197 Rinne Dec 2002 B1
6521996 Seshan Feb 2003 B1
6522021 Sakihama et al. Feb 2003 B2
6578754 Tung Jun 2003 B1
6592019 Tung Jul 2003 B2
6596624 Romankiw Jul 2003 B1
6605524 Fan et al. Aug 2003 B1
6622907 Fanti et al. Sep 2003 B2
6703069 Moon et al. Mar 2004 B1
6717262 Moriizumi et al. Apr 2004 B1
6806578 Howell et al. Oct 2004 B2
6822327 Mithal et al. Nov 2004 B1
6878465 Moon et al. Apr 2005 B2
6921716 Huang et al. Jul 2005 B2
6924553 Ohara Aug 2005 B2
6974659 Su et al. Dec 2005 B2
7071554 Hussein et al. Jul 2006 B2
7081404 Jan et al. Jul 2006 B2
7081679 Huang et al. Jul 2006 B2
7087458 Wang et al. Aug 2006 B2
7095045 Chiba et al. Aug 2006 B2
7208402 Bohr et al. Apr 2007 B2
7208843 Richling et al. Apr 2007 B2
7325716 Debelius et al. Feb 2008 B2
7328830 Bachman et al. Feb 2008 B2
7329951 Daubenspeck et al. Feb 2008 B2
7411306 Leu et al. Aug 2008 B2
7485564 Daubenspeck et al. Feb 2009 B2
7541272 Daubenspeck et al. Jun 2009 B2
7579694 Jan et al. Aug 2009 B2
7812448 Ramanathan et al. Oct 2010 B2
7816787 Wang Oct 2010 B2
7935408 Daubenspeck et al. May 2011 B2
7939390 Ayotte et al. May 2011 B2
7964961 Lee et al. Jun 2011 B2
7969003 Huang Jun 2011 B2
8003512 Belanger et al. Aug 2011 B2
8232193 Chang Jul 2012 B2
8237276 Song et al. Aug 2012 B2
8294269 Nair et al. Oct 2012 B2
20020000668 Sakihama et al. Jan 2002 A1
20020056910 Howell et al. May 2002 A1
20020077798 Inoue et al. Jun 2002 A1
20020093098 Barr et al. Jul 2002 A1
20020096764 Huang Jul 2002 A1
20020100975 Kanda Aug 2002 A1
20020111009 Huang et al. Aug 2002 A1
20020149105 Yoon et al. Oct 2002 A1
20030025202 Mikagi et al. Feb 2003 A1
20030025203 Akram et al. Feb 2003 A1
20030027379 Liu Feb 2003 A1
20030030142 Nakatani Feb 2003 A1
20030052409 Matsuo et al. Mar 2003 A1
20030052415 Boettcher et al. Mar 2003 A1
20030057551 Datta et al. Mar 2003 A1
20030080420 Ohara May 2003 A1
20030102551 Kikuchi Jun 2003 A1
20030124833 Tong et al. Jul 2003 A1
20030127734 Lee et al. Jul 2003 A1
20030183933 Kobayashi Oct 2003 A1
20030186487 Hogerl Oct 2003 A1
20030189249 Tong et al. Oct 2003 A1
20030211720 Huang et al. Nov 2003 A1
20040008049 Figueras et al. Jan 2004 A1
20040094837 Greer May 2004 A1
20040113272 Chen et al. Jun 2004 A1
20040130034 Alvarez Jul 2004 A1
20040134974 Oh et al. Jul 2004 A1
20040159944 Datta et al. Aug 2004 A1
20040178503 Jin et al. Sep 2004 A1
20040222522 Homma Nov 2004 A1
20040227239 Murata et al. Nov 2004 A1
20040238955 Homma et al. Dec 2004 A1
20050070085 Huang et al. Mar 2005 A1
20050140006 Takahashi Jun 2005 A1
20050212133 Barnak et al. Sep 2005 A1
20050275097 Min-Lung Dec 2005 A1
20060012039 Kim et al. Jan 2006 A1
20060016861 Daubenspeck et al. Jan 2006 A1
20060017160 Huang Jan 2006 A1
20060030139 Mis et al. Feb 2006 A1
20060055013 Ito et al. Mar 2006 A1
20060055037 Park et al. Mar 2006 A1
20060076677 Daubenspeck et al. Apr 2006 A1
20060087034 Huang et al. Apr 2006 A1
20060088992 Huang et al. Apr 2006 A1
20060094226 Huang et al. May 2006 A1
20060214292 Agraharam et al. Sep 2006 A1
20060244139 Daubenspeck et al. Nov 2006 A1
20060249848 Coolbaugh et al. Nov 2006 A1
20070001301 Wang Jan 2007 A1
20070001302 Morita et al. Jan 2007 A1
20070001317 Matsuoka et al. Jan 2007 A1
20070023923 Salmon Feb 2007 A1
20070045840 Varnau Mar 2007 A1
20070052109 Chen et al. Mar 2007 A1
20070075423 Ke et al. Apr 2007 A1
20070085204 Korec et al. Apr 2007 A1
20070096313 Chou et al. May 2007 A1
20070102815 Kaufmann et al. May 2007 A1
20070111499 Lo May 2007 A1
20070111502 Daubenspeck et al. May 2007 A1
20070117368 Tsai et al. May 2007 A1
20070184579 Huang et al. Aug 2007 A1
20070252274 Daubenspeck et al. Nov 2007 A1
20070264519 Kinzer Nov 2007 A1
20070283298 Bernstein et al. Dec 2007 A1
20070287279 Daubenspeck et al. Dec 2007 A1
20070290343 Harada et al. Dec 2007 A1
20080042271 Dauksher et al. Feb 2008 A1
20080067676 Daubenspeck et al. Mar 2008 A1
20080185716 Huang Aug 2008 A1
20080194095 Daubenspeck et al. Aug 2008 A1
20080249727 Takase Oct 2008 A1
20080265413 Chou et al. Oct 2008 A1
20080299757 Wen Dec 2008 A1
20090032929 Daubenspeck et al. Feb 2009 A1
20090072396 Wang Mar 2009 A1
20090127710 Daubenspeck et al. May 2009 A1
20090201626 Ayotte et al. Aug 2009 A1
20100013082 Lin Jan 2010 A1
20100155943 Carey et al. Jun 2010 A1
20100164096 Daubenspeck et al. Jul 2010 A1
20100164104 Daubenspeck et al. Jul 2010 A1
20100193949 Belanger et al. Aug 2010 A1
20100203655 Ayotte et al. Aug 2010 A1
20100203685 Daubenspeck et al. Aug 2010 A1
20100219528 Zhao et al. Sep 2010 A1
20100233872 Brofman et al. Sep 2010 A1
20100258335 Arvin et al. Oct 2010 A1
20100263913 Daubenspeck et al. Oct 2010 A1
20110006422 Daubenspeck et al. Jan 2011 A1
20110062580 Liu et al. Mar 2011 A1
20110084381 Lo et al. Apr 2011 A1
20110147922 Bezama et al. Jun 2011 A1
20110175220 Kuo et al. Jul 2011 A1
20110198748 Koike Aug 2011 A1
20110210441 Lee et al. Sep 2011 A1
20110233763 Pendse et al. Sep 2011 A1
20110233766 Lin et al. Sep 2011 A1
20110254159 Hwang et al. Oct 2011 A1
20120007228 Lu et al. Jan 2012 A1
20120007230 Hwang et al. Jan 2012 A1
20120007233 Kuo et al. Jan 2012 A1
20120056322 Saigoh et al. Mar 2012 A1
20120061827 Fujita Mar 2012 A1
20120091576 Tsai et al. Apr 2012 A1
Foreign Referenced Citations (2)
Number Date Country
2002016065 Jan 2002 JP
2007064073 Jun 2007 WO
Non-Patent Literature Citations (17)
Entry
X. Liu, “Processing and reliability assessment of solder joint interconnection for power chips,” Ph.D. dissertation, Virginia Polytech. Inst. State Univ., Blacksburg, VA, 2001. Chaper 2 pp. 39-82.
David Cleff, et al., “C-4 Makes Way for Electroplated Bumps”, Advanced Packaging, Mar. (2001) whole article.
Kulicke et al. “Flip Chip Division, Repassivation Design Guide”, revision B, Nov. 15, 2001.
Topacio, Roden “Polyimide-over-UBM Process: The Challenges and Solutions on Plating Bump Process” SMTA Inter. Conf. Proc. Oct. 24, 2010 abstract only.
USPTO, final Office Action issued in U.S. Appl. No. 12/421,723 dated Mar. 28, 2012.
USPTO, Office Action issued in U.S. Appl. No. 12/421,723 dated Sep. 2, 2011.
USPTO, Office Action issued in related U.S. Appl. No. 12/963,139 dated Jan. 17, 2013.
USPTO, Office Action issued in related U.S. Appl. No. 12/963,139 dated Aug. 28, 2012.
USPTO, Notice of Allowance issued in related U.S. Appl. No. 12/640,752 dated Jan. 16, 2013.
USPTO, Office Action issued in related U.S. Appl. No. 12/640,752 dated Oct. 26, 2012.
USPTO, Office Action issued in related U.S. Appl. No. 12/640,752 dated Apr. 13, 2012.
“Mini-CU Vias for 3D Connections” IBM Technical Disclosure IPCOM000182403D, Anonymous, Apr. 29, 2009, pp. 1-4.
USPTO, Notice of Allowance issued in U.S. Appl. No. 13/873,801 dated Nov. 6, 2013.
USPTO, Office action issued in U.S. Appl. No. 13/873,801 dated Aug. 15, 2013.
Kang, S., et al., “Interfacial Reactions During Soldering with Lead-Tin Eutectic and Lead (Pb)-Free, Tin-Rich Solders”, Journal of Electronic Materials, vol. 25, No. 7, 1996, pp. 1113-1120.
USPTO, Office Action issued in U.S. Appl. No. 13/433,974 dated Sep. 27, 2013.
USPTO, Office Action issued in U.S. Appl. No. 13/433,974 dated Mar. 18, 2013.
Related Publications (1)
Number Date Country
20130140695 A1 Jun 2013 US
Divisions (1)
Number Date Country
Parent 12963139 Dec 2010 US
Child 13758386 US