Sometimes it seems as if almost every device manufactured today includes electronic circuitry. For example, microprocessors are present in a wide array of products, including such disparate items as high-end computer systems, body-implantable medical systems, kitchen toasters, and simple children toys.
For many electronic systems, achieving small size is highly desired. Accordingly, numerous advancements in the miniaturization of electronic systems have been achieved over the last few decades. Microelectronic circuits, including for example silicon integrated circuits, have become ubiquitous. Integrated circuits are miniature electronic circuits manufactured on a thin substrate of semiconductor material. Typically, multiple circuits are manufactured on a single semiconductor wafer, and the individual circuits are then separated into what is referred to as a chip or die. Die sizes vary widely, although die sizes of about 5 mm to 15 mm per edge are common. The die is typically placed into a package, and small wires are connected between the lead frame of the package and bond pads on the semiconductor die.
The scale of wires and bonding pads used in semiconductors is relatively small. For example, a typical bond pad is a square pad of about 35 micrometer to 50 micrometer on a side. Connection between the bond pad and leads of the device is via 15-micrometer diameter bond wires that are ultrasonically bonded to the bond pad and a lead-connecting portion of a lead frame. Unfortunately, even at these sizes, the space taken up by the bond pads has become a limiting factor in some chip designs. For example, one-tenth of the available semiconductor area can be lost to bond pads. Providing higher density interconnect between the semiconductor die and the package has proven challenging, and typically bond pads are limited to rows of two pads on each side of the die due to the wire bond geometry.
The use of multiple die in a single package is also becoming more common. Interconnect requirements are accordingly increased, as wire bonding between die and from die to package are both required.
Accordingly, there is a need for new interconnection technology that can provide significant improvements in interconnection density.
The present invention includes a method of electrical interconnection for microelectronic circuits that helps to overcome problems and deficiencies inherent in the prior art. In one embodiment, the method includes forming a bundle of microfilaments, wherein at least two of the microfilaments include an electrically-conductive portion extending along their lengths. The microfilaments are bonded to a microelectronic circuit substrate so that electrical connections are formed between the electrically-conductive portions and corresponding bond pads on the microelectronic circuit substrate.
The present invention will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings merely depict exemplary embodiments of the present invention they are, therefore, not to be considered limiting of its scope. It will be readily appreciated that the components of the present invention, as generally described and illustrated in the figures herein, can be arranged and designed in a wide variety of different configurations. Nonetheless, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
a) illustrates a side cross-sectional view of bundle of microfilaments in accordance with an embodiment of the present invention;
b) illustrates an end-on cross-sectional view of bundle of microfilaments in accordance with an embodiment of the present invention;
The following detailed description of exemplary embodiments of the invention makes reference to the accompanying drawings, which form a part hereof and in which are shown, by way of illustration, exemplary embodiments in which the invention may be practiced. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art practice the invention, it should be understood that other embodiments may be realized and that various changes to the invention may be made without departing from the spirit and scope of the present invention. Thus, the following more detailed description of the embodiments of the present invention is not intended to limit the scope of the invention, as claimed, but is presented for purposes of illustration only and not limitation to describe the features and characteristics of the present invention, to set forth the best mode of operation of the invention, and to sufficiently enable one skilled in the art to practice the invention. Accordingly, the scope of the present invention is to be defined solely by the appended claims.
The following detailed description and exemplary embodiments of the invention will be best understood by reference to the accompanying drawings, wherein the elements and features of the invention are designated by numerals throughout.
With reference to
While it is expected that silicon substrates having integrated circuits will be the most common application of the present invention, this is not a limitation. The present invention can equally be applied to other microelectronics types, including for example hybrid microcircuits, other semiconductors (e.g., GaAs), devices on insulating substrates, and printed circuit boards. Furthermore, while the bond pad is illustrated as a flat structure (e.g., for ultrasonic wire bonding), the bond pad can alternately be a plated through hole into which the microfilament is inserted.
a) and 2(b) illustrate a bundle 16 of microfilaments in cross-sectional view in accordance with an embodiment of the present invention. The bundle 16 of microfilaments includes a first subset of signal-carrying 20 microfilaments that are conductive, allowing them to carry an electronic signal. A second subset of microfilaments are insulating 22 microfilaments. The insulating microfilaments are positioned between the signal-carrying microfilaments. For example, the signal-carrying microfilaments can be separated from each other by at least one insulating microfilament. In other words, signal-carrying microfilaments are surrounded by insulating microfilaments.
Although the bundle 16 is shown as a hexagonal close pack arrangement of touching circular cross section microfilaments, many other arrangements and microfilament topologies can be used. The microfilaments can be arranged linearly in a flat one-dimensional bundle (e.g. as shown in
One advantage provided by the use of a bundle 16 of microfilaments is that increased flexibility in locating bond pads on the microelectronic circuit substrate 12 can be achieved. For example, some bond pads can be located within an interior portion 24 (
An alternate arrangement of a microelectronic circuit is illustrated in perspective view in
Providing multiple interconnections using a bundle 16 of microfilaments as just described can help to provide significant improvements in die area efficiency, since the space used for bond pads can be reduced. By using small diameter microfilaments, e.g. 15 micrometer or less, increased interconnection density can be obtained as compared to conventional bond pads with wire bonding. This can help to reduce the amount of die area that is used for bonding pads. As less semiconductor substrate area is used for bonding pads, more circuitry can be placed within a given volume, or conversely, chip size can be reduced while maintaining the same amount of functionality.
The opposite, second ends of the bundle 16 of microfilaments can be connected in various ways. For example, as illustrated in
As another example, as illustrated in
Yet another example is illustrated in
Describing the connector 56 in further detail, the connector can be formed from the bundle of microfilaments by differentially positioning the second ends of the microfilaments to form a three-dimensional interdigitating mating surface. The signal-carrying filaments 20 include electrically conductive contacts 58 disposed on a side surface of the microfilament to tangentially engage a corresponding electrical contact of a mating connector. Portions 60 of the microfilaments near the mating surface can be fixed together, for example by gluing. Commonly-owned U.S. Pat. No. 7,333,699, entitled “Ultra-High Density Connector”, filed the same day as the present application, incorporated herein by reference, describes a variety of microfilament connectors which can be used in embodiments of the present invention.
As yet another example, the second ends 48 of the bundle of microfilaments can be directly bonded to corresponding bond pads of a second substrate. For example,
Turning attention to the signal-carrying microfilaments, various ways of providing the longitudinally-extending conductive portions are possible. For example, as discussed above, the microfilament can be a conductive material, such as a microwire or metal rod. Alternately, the microfilament can be a non-conductive elongate substrate on which a conductive portion is deposited. For example,
For example, each electrically conductive portion 62a, 62b, 62c can include a corresponding circumferential ring 66a, 66b, 66c. The electrically conductive portions can be deposited on the surface of the microfilament 18. Insulating material 68 can be overlaid on the electrically conductive portions, at least at the end of the microfilament where the circumferential rings are to be positioned. A series of holes 67 is defined in the insulating material over locations in the electrically conductive portions corresponding to where the circumferential rings will be positioned, for example by masking or etching the insulating material. The circumferential rings are deposited over the insulating material, making connection through the series of holes to the corresponding longitudinally extending portions.
Using a microfilament with multiple electrically conductive portions as just described can allow for even further density increases in interconnection as will now be explained.
A single microfilament with multiple electrically conductive portions can also be used to connect a packaged microcircuit, for example as illustrated in
Multiple microfilaments, each having a plurality of longitudinally-extending electrically-conductive portions, can be formed into a bundle and directly bonded to the substrate using the techniques described above. The microfilaments can be arranged to avoid electrical shorts between electrically-conductive portions of adjacent signal-carrying microfilaments. Alternately, insulating microfilaments can be included between the signal-carrying microfilaments as described above. A bundle of microfilaments as just described can provide an extremely high-density interconnection.
Finally, a method for electrical interconnection for microelectronics is shown in flow diagram form in
Various ways of forming the bundle of microfilaments are possible. For example, the elongate cylindrical elements can be cut from a spool having a long, continuous microfilament. As another example, the elongate cylindrical elements can be glass fibers draw or extruded from a blank or preform. The microfilaments can be placed into a trough, and portions fixed together, for example with glue. Ends of the microfilaments may be positioned in a desired arrangement using stops located at the end of the trough. For example, the bundle may be stacked up by placing a first microfilament in a manufacturing jig, and then adding microfilaments on top of or along side of previously placed elongate cylindrical elements and sliding the microfilaments along until a stop in the manufacturing jig is reached. The manufacturing jig can thus help to define a three-dimensional interdigitating mating surface (for a connector) or define lengths for fanned out portions of the end of the bundle (for bonding to a substrate).
The method also includes bonding 94 the at least two microfilaments having electrically-conductive portions to a microelectronic circuit substrate at corresponding bond pad locations to form electrical connections between the electrically-conductive portions and the corresponding bond pads. This bonding can be performed, for example, by ultrasonic welding, soldering, gluing with conductive epoxy, diffusion bonding, and similar techniques. For example, solder can be placed on the bond pad, the microfilament, or both, and bonding performed by heating the joint to bond the two together. The microfilament can be positioned either end on to the substrate (e.g., as in
The method may also include connecting a second end of the at least two microfilaments to a second electronic component, for example, a second microelectronic circuit substrate or a connector, as described above.
The method may also include forming a connector at second ends of the bundle. For example, the second ends may be positioned differentially with respect to each other to define a three-dimensional interdigitating mating surface as described above. When forming the connector, it is helpful to fix together a portion of the microfilaments near the second ends to provide structural integrity to the connector. A mating connector can be made from microfilaments using similar techniques. Because of the very small size possible with connectors made from microfilaments, plugging together a pair of mating connectors may be facilitated by the use of a mating fixture. The method may also include plugging the connector into a second microfilament bundle having a compatible (e.g., mating) connector.
Summarizing and reiterating to some extent, it will now be appreciated that embodiments of the present invention provide improved density for electrical connections to a microelectronic circuit substrate. Yield problems observed in conventional wire bonded integrated circuit die caused by crossed or shorted bond wires can be avoided by using a bundle of microfilaments to provide connection between the substrate and package lead frame. Connections between substrates in a single package can be provided by microfilament bundles, providing improvements in interconnect density. Problems caused by shorted and broken bond wires may be reduced by the use of a microfilament bundle, providing an increased reliability. New techniques for interconnecting substrates, such as using a mateable connector may avoid the need for lead frames entirely. A variety of other arrangements for interconnection will also become apparent from the above teachings.
The foregoing detailed description describes the invention with reference to specific exemplary embodiments. However, it will be appreciated that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. The detailed description and accompanying drawings are to be regarded as merely illustrative, rather than as restrictive, and all such modifications or changes, if any, are intended to fall within the scope of the present invention as described and set forth herein.
More specifically, while illustrative exemplary embodiments of the invention have been described herein, the present invention is not limited to these embodiments, but includes any and all embodiments having modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the foregoing detailed description. The limitations in the claims are to be interpreted broadly based the language employed in the claims and not limited to examples described in the foregoing detailed description or during the prosecution of the application, which examples are to be construed as non-exclusive. For example, in the present disclosure, the term “preferably” is non-exclusive where it is intended to mean “preferably, but not limited to.” Any steps recited in any method or process claims may be executed in any order and are not limited to the order presented in the claims. Means-plus-function or step-plus-function limitations will only be employed where for a specific claim limitation all of the following conditions are present: a) “means for” or “step for” is expressly recited in that limitation; b) a corresponding function is expressly recited in that limitation; and c) structure, material or acts that support that function are described within the specification. Accordingly, the scope of the invention should be determined solely by the appended claims and their legal equivalents, rather than by the descriptions and examples given above.
This patent claims the benefit of U.S. Provisional Patent Application Ser. No. 60/749,777 filed Dec. 12, 2005, entitled “Ultra-High Density Electrical Connector” and U.S. Provisional Patent Application Ser. No. 60/749,873, filed Dec. 12, 2005 entitled “Multi-Element Probe Array,” each of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3337838 | Damiano et al. | Aug 1967 | A |
3601759 | Barker | Aug 1971 | A |
4132461 | Jaques | Jan 1979 | A |
4203650 | Millet et al. | May 1980 | A |
4369104 | Beckley | Jan 1983 | A |
5599615 | Swift et al. | Feb 1997 | A |
5610747 | Jacobsen | Mar 1997 | A |
5861662 | Candelore | Jan 1999 | A |
6020747 | Bahns et al. | Feb 2000 | A |
6110354 | Sayan et al. | Aug 2000 | A |
6128527 | Howard, III et al. | Oct 2000 | A |
6289187 | Swift et al. | Sep 2001 | B1 |
6330466 | Hofmann et al. | Dec 2001 | B1 |
6334856 | Allen et al. | Jan 2002 | B1 |
6444102 | Tucci et al. | Sep 2002 | B1 |
6462398 | Jojiki | Oct 2002 | B1 |
6515346 | Kemeny | Feb 2003 | B1 |
6740214 | Dobson et al. | May 2004 | B1 |
6794984 | Koatsu | Sep 2004 | B2 |
6829498 | Kipke et al. | Dec 2004 | B2 |
6851980 | Nelson et al. | Feb 2005 | B2 |
6892438 | Hill et al. | May 2005 | B1 |
6924439 | Bonni et al. | Aug 2005 | B1 |
6946851 | Lee et al. | Sep 2005 | B2 |
6953347 | McGrath et al. | Oct 2005 | B2 |
6993392 | Nicolelis et al. | Jan 2006 | B2 |
7010356 | Jog et al. | Mar 2006 | B2 |
7333699 | Jacobsen et al. | Feb 2008 | B2 |
7550677 | Debladis et al. | Jun 2009 | B2 |
20040080056 | Lim et al. | Apr 2004 | A1 |
20040125515 | Popovich | Jul 2004 | A1 |
20050029009 | Swift | Feb 2005 | A1 |
20050029646 | Ueda et al. | Feb 2005 | A1 |
20050143790 | Kipke | Jun 2005 | A1 |
20050159028 | Sweetland | Jul 2005 | A1 |
20050202695 | Sweetland | Sep 2005 | A1 |
20050230795 | Furuyama et al. | Oct 2005 | A1 |
20060039660 | Henze | Feb 2006 | A1 |
20070142714 | Shumate | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
2039421 | Aug 1980 | GB |
2004237077 | Aug 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20070132109 A1 | Jun 2007 | US |
Number | Date | Country | |
---|---|---|---|
60749873 | Dec 2005 | US | |
60749777 | Dec 2005 | US |