The invention relates to an electronic device for protection against transient-voltages in high-power applications.
The invention further relates to a method of manufacturing such device.
A lot of research has been done on Transient Voltage Suppression (TVS) circuits, in particular using TVS diodes for providing a simple solution to increase the immunity level against electrical overstress of an electronic circuit from transients caused e.g. by lightning, inductive load switching and electrostatic discharge (ESD). Such TVS diodes are typically used in TVS protection circuits of which many variations have been reported in the prior art. What all such circuits have at least in common is that they all make use of rectifying elements of which the diode is widely used. An alternative rectifying element is a transistor having its gate short-circuited to the source or drain.
The functional performance of a TVS diode is significantly influenced by the package. More precisely, the maximum peak pulse power (PPP) depends on the amount of transient heat that can be dissipated from the junction area of the diode to the outer part of the package. Heat dissipation is optimized when the backside and, in particular, the topside of the die (substrate comprising the diode) are fully soldered to a copper part (a clip or lead frame).
The maximum size of the soldered area (the bond pad) is limited to prevent electrical shortage due to small solder remains that are always formed during reflow.
Besides this, the EU-government restricts the use of lead-solder widely used for such kind of devices. Exemptions will be revised in 2014. At present, all lead-free materials that could replace lead solder do not selectively wet to the bond pad of the die (one of the connection terminals of the diode). This is because these materials lack the material property of selectively wetting, i.e. it is not possible to maximize coverage to the bond pad without risking electrical shortages.
The above-mentioned problems are particularly relevant for the high-power applications, such as in communications (example: charger line protection from inductive coupling surges), industrial applications (example: DC motor EMI limiting), and automotive applications (example: fuel-injector transient limiting). In the applications here mentioned the respective diodes need to be able to dissipate up to and even over 600 W in a so called 10/1000 μs surge pulse.
The proposed invention offers a solution for both the earlier-described limited solder coverage when using lead-solder (due to the solder limitation), and for the limitations when using lead-free materials (due to the government restrictions). The invention is defined by the independent claims. The dependent claims define advantageous embodiments.
In accordance with a first aspect of the invention an electronic device for protection against transient voltages in high-power applications as described in claim 1 is provided. The electronic device comprises:
a semiconductor substrate comprising an active element having at least two terminals;
a conductive pad provided on said substrate and being electrically coupled to one of said terminals;
electrically-conductive interconnect material provided on the conductive pad, and
a first conductive part electrically coupled to the conductive pad via the electrically-conductive interconnect material.
The electronic device in accordance with the invention further comprises a wall being provided along the periphery of the conductive pad for forming a lateral confinement of the interconnect material on the conductive pad.
The electronic device constitutes a significant improvement over the prior art devices. The provision of a wall along the periphery of the conductive pad for forming a lateral confinement of the interconnect material has two effects. The first effect (for lead solder) is that it prevents lead solder material to get outside the conductive pad (bond pad) during reflow, because it forms a confinement for this solder material. So, expressed differently, it becomes easier to increase the ratio of bond pad size over silicon die size, and thus to increase the product PPP performance without the need to increase the die size or package size. The second effect (for leadfree interconnect materials) is that the wall makes it easier to apply lead-free interconnect materials such that the bond-pad is completely covered even if the lead-free interconnect material does not selectively wet to the bond-pad.
In order to facilitate the understanding of the invention a few expressions are defined hereinafter.
Throughout the description the term “high-power” implies power levels in a 10/1000 μs surge pulse of the order of hundreds or even thousands of watts, i.e. 600 W or even 1500 Watt or more. However, it must be stressed that, albeit that the invention is particularly advantageous in high-power applications, the invention is also advantageous in lower power applications, i.e. the prevention of short-circuits on the die, and the better wettability in case of lead-free interconnect materials.
Throughout the description the term “substrate” is defined as a carrier onto which or in which an active element (such as a diode and a transistor) is integrated. Such substrate may be a semiconductor substrate, but this is not essential (for example, a silicon-on-insulator substrate or a silicon-on-anything substrate).
Throughout the description the term “active element” is defined as an element of an electronic circuit, such as a transistor, a diode, a thyristor, etc. All such elements may be used as rectifying elements in transient voltage suppression circuits.
Throughout the description the term “terminal” is defined as an electrical connection of an active element, such as a gate connection, a drain connection, a source connection, and a bulk connection.
Throughout the description the term “interconnect material” is defined as a conductive material that is suitable for soldering parts together such that a physical, but also an electrical connection is achieved.
In an embodiment of the electronic device the wall comprises organic material. Organic materials are materials that are readily available in most manufacturing environments (cleanrooms, etc.). Moreover, such materials are generally quite easy to deposit and pattern using conventional techniques.
In an embodiment of the electronic device the wall comprises material selected from a group comprising: polyimide, and epoxy polymer. These materials are examples of organic materials.
In an embodiment of the electronic device the active element comprises at least one of a diode, a transistor, and a thyristor. These three are the most common examples of active elements that are used as rectifier elements in transient voltage suppressor circuits.
In an embodiment of the electronic device the electrically-conductive interconnect material comprises material selected from a group comprising: lead solder and lead-free interconnect materials such as high-conductive adhesives and sinter silver. As already explained earlier, the invention is applicable to both kinds of interconnect material and solves respective problems that exist for the respective types.
An embodiment of the electronic device further comprises a second conductive part electrically coupled to another one of said at least two terminals. An active element, such as a diode, has mostly at least two terminals. Therefore, this embodiment conveniently renders external connection of such active element possible. In a further embodiment, wherein a transistor (having three terminals) is used as active element, the electronic device further comprises a third conductive part electrically coupled to the respective third terminal of the transistor. In yet another embodiment, wherein a thyristor (having four terminals) is used as active element, the electronic device further comprises a fourth conductive part electrically coupled to the respective fourth terminal of the transistor.
In accordance with a second aspect, the invention provides a packaged semiconductor component comprising the electronic device of the invention. Packaging a semiconductor component, such as a diode, conventionally means that the silicon substrate is connected to copper parts, and embedded in an epoxy or resin material.
In accordance with a third aspect, the invention provides a transient-voltage suppression circuit comprising the electronic device of the invention. TVS circuits typically benefit from the electronic device of the invention. However, the invention is not limited to such applications only.
In accordance with a fourth aspect, the invention provides a method of manufacturing an electronic device for protection against transient voltages in high-power applications. The method of the invention comprises:
providing an intermediate device comprising:
providing a wall along the periphery of the conductive pad for forming a lateral confinement of interconnect material to be applied on the conductive pad, and
providing electrically-conductive interconnect material on the conductive pad. The advantages and effects of the method of the invention follow those of the corresponding embodiments of the electronic device of the invention.
An embodiment of the method further comprises: providing a first conductive part and electrically coupling said part to the conductive pad via the electrically-conductive interconnect material.
An embodiment of the method further comprises: providing a second conductive part and electrically coupling said part to another one of said at least two terminals.
An embodiment of the method further comprises packaging said electronic device to obtain a packaged semiconductor component.
In an embodiment of the method the wall that is provided comprises organic material.
In an embodiment of the method the wall that is provided comprises material selected from a group comprising: polyimide, and epoxy polymer.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter. In the drawings,
It should be noted that items which have the same reference numbers in different Figures, have the same structural features and the same functions, or are the same signals. Where the function and/or structure of such an item has been explained, there is no necessity for repeated explanation thereof in the detailed description.
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail one or more specific embodiments, with the understanding that the present disclosure is to be considered as exemplary of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
On the right-side in
So, in a SOD128 package silicon die 120 is clamped between two copper parts 110, 130, and the generated transient heat in the die 120 is distributed over both copper parts 110, 130 (so energy is withdrawn from the die). The level of energy in transient over-voltage can be expressed by peak pulse power (PPP). The PPP value depends on the ability to dissipate energy from the diode surface in a very short time (milliseconds to microseconds). When insufficient energy is withdrawn from the die surface, breakdown will occur on the top of the die 120, and the product is destroyed.
Lead-free interconnect materials for replacing lead-solder are being developed worldwide. Application of these new materials into TVS diodes has also been looked at by the inventors. Solder has one unique property: during reflow it becomes liquid. In this liquid phase, it selectively wets the bond pad material. Physically this means that the adhesion between the liquid solder material and the bond pad material is strong. Material outside the bond pad retracts to the bond pad during reflow, provided that no excessive amount of solder is applied. Only small amounts of solder may remain on the area outside the bond pad.
All lead-free materials that have currently been found do not selectively wet the bond pad. This makes it in the prior art impossible to implement lead-free materials into TVS products without significant loss in surge power dissipation capability. Thus the challenges of the prior art may be summarized as follows. In today's leaded solutions, in order to increase the PPP level, a larger part of the top side of the die should be connected by solder. This would allow for more heat dissipation. However, electrical shorts with the sides of the die are not allowed. This limits the extension of the bond pad. In the future's lead-free solutions, there is an additional problem, namely that the lead-free materials do not selectively wet to the bond pad. To prevent possible electrical shorts, less material is deposited on the bond pad. This results in insufficient coverage of the bond pad on the topside of the die, and thus in a low PPP level.
The invention, however, has opened up the possibility to use lead-free materials, without the risk of short-circuiting.
Many different ways of executing the methods are possible, as will be apparent to a person skilled in the art. For example, the order of the steps can be varied or some steps may be executed in parallel. Moreover, in between steps other method steps may be inserted. The inserted steps may represent refinements of the method such as described herein, or may be unrelated to the method. Moreover, a given step may not have finished completely before a next step is started.
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments.
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. Use of the verb “comprise” and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
12172505.5 | Jun 2012 | EP | regional |