The present disclosure relates to power modules for controlling power delivery to a load.
As power costs continue to rise and environmental impact concerns mount, the demand for power devices with increased performance and efficiency continues to grow. One way to improve the performance and efficiency of a power device is by fabricating the device using silicon carbide (SiC). Power devices made with SiC are expected to show great advantages compared to conventional silicon power devices in switching speed, power handling capability, and temperature handling capability. Specifically, the high critical field and wide band gap of SiC devices allows for increases in both performance and efficiency when compared to conventional silicon devices.
Due to the performance limitations inherent in silicon, a conventional power device may require a bipolar structure, such as that of an insulated gate bipolar transistor (IGBT), when blocking high voltages (e.g., voltages greater than 5 kV). While utilizing a bipolar structure generally decreases the resistance of the drift layer due to conductivity modulation thereof, bipolar structures also suffer from relatively slow switching times. As will be appreciated by those of ordinary skill in the art, the reverse recovery time (attributed to the relatively slow diffusion of minority carriers) of a bipolar structure limits the maximum switching time thereof, thereby making silicon devices generally unsuitable for high voltage and high frequency applications.
Due to the performance enhancements discussed above with respect to SiC power devices, unipolar SiC power devices may be used to block voltages up to 10 kV or more. The majority carrier nature of such unipolar SiC power devices effectively eliminates the reverse recovery time of the device, thereby allowing for very high switching speeds (e.g., less than 100 ns for a double-diffused metal-oxide-semiconductor field-effect transistor (DMOSFET) with a 10 kV blocking capability and a specific on-resistance of about 100 mΩ*cm2).
Power devices are often interconnected and integrated into a power module, which operates to dynamically switch large amounts of power through various components such as motors, inverters, generators, and the like. As discussed above, due to the rising cost of power and environmental impact concerns, there is a continuing need for power modules that are smaller, less expensive to manufacture, and more efficient, while simultaneously providing similar or better performance than their conventional counterparts.
The present disclosure relates to power modules for controlling power delivery to a load. According to one embodiment, a power module includes a housing with an interior chamber and multiple switch modules mounted within the interior chamber of the housing. The switch modules are interconnected and configured to facilitate switching power to a load. Each one of the switch modules includes at least one transistor and at least one diode. Together, the switch modules are able to block 1200 volts, conduct 300 amperes, and have switching losses of less than 20 milli-Joules. By including switching modules in the power module such that the power module has switching losses of less than 20 milli-Joules for a 1200V/300A rating, the performance of the power module is significantly improved when compared to conventional power modules.
According to one embodiment, a power module includes a housing with an interior chamber, at least one power substrate within the interior chamber, and a gate connector. The power substrate includes a switch module on a first surface of the power substrate for facilitating switching power to a load. The switch module includes at least one transistor and at least one diode. The gate connector is coupled to a gate contact of the at least one transistor via a signal path that includes a first conductive trace on the first surface of the power substrate. Using a conductive trace on the first surface of the power substrate to connect the gate connector to the gate of the at least one transistor reduces interference in the power module and increases the reliability of the connection between the gate connector and the gate contact of the at least one transistor.
According to one embodiment, a power module includes a housing with an interior chamber, a pair of output contacts, and a plurality of switch modules. The plurality of switch modules are mounted within the interior chamber of the housing, and are interconnected to facilitate switching power from a power source coupled between the output contacts to a load. The pair of output contacts are arranged such that an area of at least 150 mm2 of each one of the output contacts is located less than 1.5 mm from the other output contact. Providing an area of each output contact of at least 150 mm2 that is less than 1.5 mm from the other output contact reduces the leakage inductance between the output contacts, thereby increasing the performance of the power module.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
A gate contact G of the first transistor Q1 and a source contact S of the first transistor Q1 are coupled to the control system 12. Similarly, a gate contact G and a source contact S of the second transistor Q2 are also coupled to the control system 12. Notably, the connection from the gate contact G to the first transistor Q1 and the second transistor Q2 to the control system 12 may be accomplished via a relatively low power gate connector G1 and G2, respectively. Similarly, the connection from the source contact S of the first transistor Q1 and the second transistor Q2 to the control system 12 may be accomplished via a low-power source return connection S1 and S2 used to measure one or more operational parameters of the first transistor Q1 or the second transistor Q1, respectively. A drain contact D of the first transistor Q1 is coupled to a positive power supply terminal DC+. A drain contact D of the second transistor Q2 is coupled to an output terminal OUT. The source contact S of the first transistor Q1 is also coupled to the output terminal OUT. The source contact S of the second transistor Q2 is coupled to a negative power supply terminal DC−. Finally, the load 14 is coupled between the output terminal OUT and the negative DC power supply terminal DC−.
The first transistor Q1, the first diode D1, the second transistor Q2, and the second diode D2 may each be majority carrier devices. Majority carrier devices generally include FETs such as MOSFETs, HEMTs, JFETs, and the like, but do not include thyristors, bipolar transistors, and insulated gate bipolar transistors (IGBTs). Accordingly, the power module 10 may be capable of operating at higher switching speeds and suffer lower switching losses when compared to a conventional power module employing bipolar devices. In one embodiment, the first transistor Q1, the first diode D1, the second transistor Q2, and the second diode D2 are wide band-gap devices. For purposes of the present disclosure, a wide band-gap device is a semiconductor device with a band-gap greater than or equal to 3.0 electron-volts (eV). For example, the first transistor Q1, the first diode D1, the second transistor Q2, and the second diode D2 may be silicon carbide (SiC) or gallium nitride (GaN) devices. For reference purposes, Si has a bandgap of approximately 1.1 eV, while SiC has a band-gap of approximately 3.3 eV. As discussed above, using SiC for the first transistor Q1, the first diode D1, the second transistor Q2, and the second diode D2, significantly reduces the switching time of each one of the devices when compared to a conventional silicon (Si) IGBT-based power module, and further suffers lower switching losses. For example, if the power module 10 is rated at 1200V and 300A, the power module 10 may maintain switching losses of less than 25 milli-Joules (mJ), less than 20 mJ, and even less than 15 mJ in various embodiments when operating between −40 C and 150 C, while also providing a low on-state voltage drop. As will be appreciated by those of ordinary skill in the art, the switching losses of the power module 10 generally will not fall below 1 mJ. In an additional embodiment, the first transistor Q1, the first diode D1, the second transistor Q2, and the second diode D2 are both majority carrier devices and wide band-gap devices.
In operation, the control system 12 operates the first switching module SM1 and the second switching module SM2 in a complementary fashion, such that when the first switching module SM1 is conducting, the second switching module SM2 is blocking, and vice-versa. A graph showing the voltage at the gate contact G of the first transistor Q1, the voltage at the gate contact G of the second transistor Q2, the voltage at the output terminal OUT, and the current through the load 14 over the course of a switching cycle of the power module 10 is shown in
During a second time period T2, the first switching module SM1 is switched to a blocking mode. Further, the second switching module SM2 remains in a blocking mode. In this time period, current continues to flow to the load 14 from the output terminal OUT due to the internal capacitances associated with each one of the first switching module SM1 and the second switching module SM2. Specifically, about half of the current through the load 14 is provided by the internal capacitance of each one of the switching modules SM1 and SM2. The voltage at the output terminal OUT therefore slews to ground at a given rate, and the current through the load 14 gradually decreases.
As the second switching module SM2 is switched to a conducting mode in a third time period T3, the output terminal OUT is coupled to the negative power supply terminal DC−, which may be ground in some embodiments. Accordingly, current flows through the second transistor Q2 and into the load 14 through the output terminal OUT, causing the current to become increasingly negative.
During a fourth time period T4, the second switching module SW2 is switched to a blocking mode. Further, the first switching module SM1 remains in a blocking mode. In this time period, a negative current continues to flow to the load from the output terminal OUT due to the internal capacitances associated with each one of the first switching module SM1 and the second switching module SM2. Specifically, about half of the current through the load 14 is provided by the internal capacitance of each one of the switching modules SM1 and SM2. The voltage at the output terminal OUT therefore slews from ground to the positive power supply voltage provided at the positive power supply terminal DC+, and the current through the load 14 becomes increasingly positive. Finally, during a fifth time period T5, the switching cycle starts over, such that the first switching module SM1 is placed in a conducting mode while the second switching module SM2 remains in a blocking mode.
Including multiple parallel-coupled transistors Q11-6 and multiple anti-parallel diodes D11-6 allows the first switching module SM1 to handle larger amounts of power than would otherwise be possible. For example, in one embodiment each one of the transistors Q11-6 is rated to block 1.2 kV and conduct 50 A, thereby making the first switching module SM1 capable of conducting 300 A. In other embodiments, each one of the transistors Q11-6 may be rated to block 1.2 kV and conduct 40 A, thereby making the first switching module SM1 capable of conducting 240 A. In yet another embodiment, each one of the transistors Q11-6 may be rated to block 1.2 kV and conduct 20 A, thereby making the first switching module SM1 capable of conducting 120 A.
The gate resistors RG may be provided to dampen any undesirable oscillations in the first switching module SM1 that may occur when the first switching module SM1 is driven at a relatively high transition speed (e.g., greater than 20 V/ns). The resistance of the gate resistors RG may vary according to the current rating of each one of the transistors Q11-6, and therefore, the overall current rating of the first switching module SM1. In one embodiment wherein the first switching module SM1 has a current rating of 120 A, each one of the gate resistors RG has a resistance between about 1Ω and 15Ω. In an additional embodiment wherein the first switching module SM1 has a current rating of 240 A, each one of the gate resistors RG has a resistance between about 1Ω and 15Ω. In yet another embodiment wherein the first switching module SM1 has a current rating of 300 A, each one of the gate resistors has a resistance between about 15Ω and 20Ω.
As discussed above, the multiple transistors Q and diodes D may be majority carrier devices, thereby decreasing the switching time and losses associated with each one of the transistors Q and diodes D. Accordingly, the power module 10 may operate at higher frequencies, and suffer smaller switching losses than a conventional power module. Further, the transistors Q and diodes D may be wide band-gap devices, such as SiC devices. As discussed above, using SiC for the transistors Q and diodes D significantly reduces the switching time and switching losses of the transistors Q and diodes D, thereby increasing the performance of the power module 10.
In one embodiment, the gate bus 26 may be replaced with one or more coaxial cables to connect the gate contacts G of the transistors Q21-6 in the second switching module and the outputs 24 of the power module 10. Using coaxial cables to connect the outputs to the gate contacts G of the transistors Q21-6 may provide improved isolation when compared to other solutions, thereby improving the performance of the power module 10. Further, although the outputs 24 for the gate contacts G of both the switching module SM1 and the second switching module SM2 are provided on the same side of the housing 16 of the power module 10, in other embodiments they may be provided on opposite sides of the housing 16. Providing the outputs 24 for the gate contacts G of the first switching module SM1 and the second switching module SM2 on opposite sides of the housing 16 may provide a shorter connection route to each one of the gate contacts G of the second switching module SM2, thereby reducing interference and improving the ruggedness of the power module 10. Further, providing the outputs 24 for the gate contacts G of the first switching module SM1 and the second switching module SM2 on opposite sides of the housing 16 may reduce the required resistance of the gate resistor RG of each one of the transistors Q21-6 in the second switching module SM2, as a shorter connection path between the gate contacts G and the outputs 24 reduces the amount of oscillation seen by the transistors Q21-6.
As shown in
Using AlN for the insulating layer 40 may provide much higher thermal conductivity when compared to conventional alumina or silicon nitride (SiN) layers. Given the relatively low electrical resistance associated with SiC devices and the low thermal resistance of AlN, the power module 10 can thus handle higher currents than conventional power modules. The thickness of the insulating layer 40 may be selected based on the targeted isolation voltage. Due to the advantages provided by the use of SiC components and the AlN insulating layer 40, the power module 10 is capable of handling greater power than a conventional device of the same size, and/or may be reduced to a smaller size than its conventional counterpart.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 14/277,820, filed May 15, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 13/893,998, filed May 14, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/588,329, filed Aug. 17, 2012, which claims the benefit of U.S. provisional patent application No. 61/533,254, filed Sep. 11, 2011, the disclosures of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3439189 | Petry | Apr 1969 | A |
3629011 | Tohi et al. | Dec 1971 | A |
3924024 | Naber et al. | Dec 1975 | A |
4160920 | Courier de Mere | Jul 1979 | A |
4242690 | Temple | Dec 1980 | A |
4466172 | Batra | Aug 1984 | A |
4581542 | Steigerald | Apr 1986 | A |
4644637 | Temple | Feb 1987 | A |
4811065 | Cogan | Mar 1989 | A |
4875083 | Palmour | Oct 1989 | A |
4927772 | Arthur et al. | May 1990 | A |
4945394 | Palmour et al. | Jul 1990 | A |
4946547 | Palmour et al. | Aug 1990 | A |
5005462 | Jasper, Jr. et al. | Apr 1991 | A |
5011549 | Kong et al. | Apr 1991 | A |
5028977 | Kenneth et al. | Jul 1991 | A |
5032888 | Seki | Jul 1991 | A |
5111253 | Korman et al. | May 1992 | A |
5155289 | Bowles | Oct 1992 | A |
5168139 | Bettge et al. | Dec 1992 | A |
5170231 | Fujii et al. | Dec 1992 | A |
5170455 | Goossen et al. | Dec 1992 | A |
5184199 | Fujii et al. | Feb 1993 | A |
5192987 | Khan et al. | Mar 1993 | A |
5200022 | Kong et al. | Apr 1993 | A |
5210051 | Carter, Jr. | May 1993 | A |
5270554 | Palmour | Dec 1993 | A |
5292501 | Degenhardt et al. | Mar 1994 | A |
5296395 | Khan et al. | Mar 1994 | A |
5348895 | Smayling et al. | Sep 1994 | A |
5371383 | Miyata et al. | Dec 1994 | A |
5384270 | Ueno et al. | Jan 1995 | A |
5385855 | Brown et al. | Jan 1995 | A |
RE34861 | Davis et al. | Feb 1995 | E |
5393993 | Edmond et al. | Feb 1995 | A |
5393999 | Malhi | Feb 1995 | A |
5396085 | Baliga | Mar 1995 | A |
5459107 | Palmour | Oct 1995 | A |
5468654 | Harada | Nov 1995 | A |
5479316 | Smrtic et al. | Dec 1995 | A |
5488236 | Baliga et al. | Jan 1996 | A |
5506421 | Palmour | Apr 1996 | A |
5510281 | Ghezzo et al. | Apr 1996 | A |
5510630 | Agarwal et al. | Apr 1996 | A |
5523589 | Edmond et al. | Jun 1996 | A |
5539217 | Edmond et al. | Jul 1996 | A |
5545905 | Muraoka et al. | Aug 1996 | A |
5587870 | Anderson et al. | Dec 1996 | A |
5629531 | Palmour | May 1997 | A |
5710059 | Rottner | Jan 1998 | A |
5726463 | Brown et al. | Mar 1998 | A |
5726469 | Chen | Mar 1998 | A |
5734180 | Malhi | Mar 1998 | A |
5739564 | Kosa et al. | Apr 1998 | A |
5763905 | Harris | Jun 1998 | A |
5776837 | Palmour | Jul 1998 | A |
5804483 | Harris | Sep 1998 | A |
5814859 | Ghezzo et al. | Sep 1998 | A |
5831288 | Singh et al. | Nov 1998 | A |
5837572 | Gardner et al. | Nov 1998 | A |
5851908 | Harris et al. | Dec 1998 | A |
5877041 | Fuller | Mar 1999 | A |
5877045 | Kapoor | Mar 1999 | A |
5885870 | Maiti et al. | Mar 1999 | A |
5914500 | Bakowski et al. | Jun 1999 | A |
5917203 | Bhatnagar et al. | Jun 1999 | A |
5939763 | Hao et al. | Aug 1999 | A |
5960289 | Tsui et al. | Sep 1999 | A |
5969378 | Singh | Oct 1999 | A |
5972801 | Lipkin et al. | Oct 1999 | A |
5976936 | Miyajima et al. | Nov 1999 | A |
5977605 | Bakowsky et al. | Nov 1999 | A |
6020600 | Miyajima et al. | Feb 2000 | A |
6025233 | Terasawa | Feb 2000 | A |
6025608 | Harris et al. | Feb 2000 | A |
6028012 | Wang | Feb 2000 | A |
6040237 | Bakowski et al. | Mar 2000 | A |
6048766 | Gardner et al. | Apr 2000 | A |
6054352 | Ueno | Apr 2000 | A |
6054728 | Harada et al. | Apr 2000 | A |
6063698 | Tseng et al. | May 2000 | A |
6083814 | Nilsson et al. | Jul 2000 | A |
6096607 | Ueno | Aug 2000 | A |
6100169 | Suvorov et al. | Aug 2000 | A |
6104043 | Hermansson et al. | Aug 2000 | A |
6107142 | Suvorov et al. | Aug 2000 | A |
6117735 | Ueno | Sep 2000 | A |
6121633 | Singh et al. | Sep 2000 | A |
6133587 | Takeuchi et al. | Oct 2000 | A |
6136727 | Ueno | Oct 2000 | A |
6136728 | Wang | Oct 2000 | A |
6165822 | Okuno et al. | Dec 2000 | A |
6180958 | Cooper, Jr. | Jan 2001 | B1 |
6190973 | Berg et al. | Feb 2001 | B1 |
6204135 | Peters et al. | Mar 2001 | B1 |
6204203 | Narwankar et al. | Mar 2001 | B1 |
6211035 | Moise et al. | Apr 2001 | B1 |
6218254 | Singh et al. | Apr 2001 | B1 |
6218680 | Carter, Jr. et al. | Apr 2001 | B1 |
6221700 | Okuno et al. | Apr 2001 | B1 |
6228720 | Kitabatake et al. | May 2001 | B1 |
6238967 | Shiho et al. | May 2001 | B1 |
6239463 | Williams et al. | May 2001 | B1 |
6239466 | Elasser et al. | May 2001 | B1 |
6246076 | Lipkin et al. | Jun 2001 | B1 |
6252258 | Chang et al. | Jun 2001 | B1 |
6252288 | Chang | Jun 2001 | B1 |
6297100 | Kumar et al. | Oct 2001 | B1 |
6297172 | Kashiwagi | Oct 2001 | B1 |
6303508 | Alok | Oct 2001 | B1 |
6316791 | Schörner et al. | Nov 2001 | B1 |
6316793 | Sheppard et al. | Nov 2001 | B1 |
6329675 | Singh et al. | Dec 2001 | B2 |
6344663 | Slater, Jr. et al. | Feb 2002 | B1 |
6365462 | Baliga | Apr 2002 | B2 |
6365932 | Kouno et al. | Apr 2002 | B1 |
6388271 | Mitlehner et al. | May 2002 | B1 |
6399996 | Chang et al. | Jun 2002 | B1 |
6420225 | Chang et al. | Jul 2002 | B1 |
6429041 | Ryu et al. | Aug 2002 | B1 |
6448160 | Chang et al. | Sep 2002 | B1 |
6455892 | Okuno et al. | Sep 2002 | B1 |
6475889 | Ring | Nov 2002 | B1 |
6515303 | Ring | Feb 2003 | B2 |
6524900 | Dahlqvist et al. | Feb 2003 | B2 |
6534367 | Peake et al. | Mar 2003 | B2 |
6548333 | Smith | Apr 2003 | B2 |
6551865 | Kumar et al. | Apr 2003 | B2 |
6573534 | Kumar et al. | Jun 2003 | B1 |
6593620 | Hshieh et al. | Jul 2003 | B1 |
6610366 | Lipkin | Aug 2003 | B2 |
6627539 | Zhao et al. | Sep 2003 | B1 |
6649497 | Ring | Nov 2003 | B2 |
6653659 | Ryu et al. | Nov 2003 | B2 |
6696705 | Barthelmess et al. | Feb 2004 | B1 |
6703642 | Shah | Mar 2004 | B1 |
6743703 | Rodov et al. | Jun 2004 | B2 |
6767843 | Lipkin et al. | Jul 2004 | B2 |
6861723 | Willmeroth | Mar 2005 | B2 |
6936850 | Friedrichs et al. | Aug 2005 | B2 |
6946739 | Ring | Sep 2005 | B2 |
6956238 | Ryu et al. | Oct 2005 | B2 |
6979863 | Ryu | Dec 2005 | B2 |
7026650 | Ryu et al. | Apr 2006 | B2 |
7074643 | Ryu | Jul 2006 | B2 |
7118970 | Das et al. | Oct 2006 | B2 |
7125786 | Ring et al. | Oct 2006 | B2 |
7221010 | Ryu | May 2007 | B2 |
7230275 | Kumar et al. | Jun 2007 | B2 |
7253031 | Takahashi et al. | Aug 2007 | B2 |
7276747 | Loechelt et al. | Oct 2007 | B2 |
7279115 | Sumakeris | Oct 2007 | B1 |
7304363 | Shah | Dec 2007 | B1 |
7365363 | Kojima et al. | Apr 2008 | B2 |
7381992 | Ryu | Jun 2008 | B2 |
7407837 | Tsuji | Aug 2008 | B2 |
7528040 | Das et al. | May 2009 | B2 |
7544963 | Saxler | Jun 2009 | B2 |
7548112 | Sheppard | Jun 2009 | B2 |
7649213 | Hatakeyama et al. | Jan 2010 | B2 |
7687825 | Zhang | Mar 2010 | B2 |
7728402 | Zhang et al. | Jun 2010 | B2 |
7829402 | Matocha et al. | Nov 2010 | B2 |
8035112 | Cooper et al. | Oct 2011 | B1 |
9373617 | Das | Jun 2016 | B2 |
20010011729 | Singh et al. | Aug 2001 | A1 |
20010033502 | Blair et al. | Oct 2001 | A1 |
20010055852 | Moise et al. | Dec 2001 | A1 |
20020030191 | Das et al. | Mar 2002 | A1 |
20020038891 | Ryu et al. | Apr 2002 | A1 |
20020047125 | Fukuda et al. | Apr 2002 | A1 |
20020072247 | Lipkin et al. | Jun 2002 | A1 |
20020102358 | Das et al. | Aug 2002 | A1 |
20020121641 | Alok et al. | Sep 2002 | A1 |
20020125482 | Friedrichs et al. | Sep 2002 | A1 |
20020125541 | Korec et al. | Sep 2002 | A1 |
20020185679 | Baliga | Dec 2002 | A1 |
20030025175 | Asano et al. | Feb 2003 | A1 |
20030107041 | Tanimoto et al. | Jun 2003 | A1 |
20030137010 | Friedrichs et al. | Jul 2003 | A1 |
20030142513 | Vinciarelli | Jul 2003 | A1 |
20030178672 | Hatakeyama et al. | Sep 2003 | A1 |
20030201455 | Takahashi et al. | Oct 2003 | A1 |
20040016929 | Nakatsuka et al. | Jan 2004 | A1 |
20040082116 | Kub et al. | Apr 2004 | A1 |
20040183079 | Kaneko et al. | Sep 2004 | A1 |
20040207968 | Martin et al. | Oct 2004 | A1 |
20040211980 | Ryu | Oct 2004 | A1 |
20040212011 | Ryu | Oct 2004 | A1 |
20040227231 | Maly | Nov 2004 | A1 |
20040256659 | Kim et al. | Dec 2004 | A1 |
20040259339 | Tanabe et al. | Dec 2004 | A1 |
20050012143 | Tanaka et al. | Jan 2005 | A1 |
20050035364 | Sano et al. | Feb 2005 | A1 |
20050104072 | Slater, Jr. et al. | May 2005 | A1 |
20050139936 | Li | Jun 2005 | A1 |
20050151138 | Slater, Jr. et al. | Jul 2005 | A1 |
20050152100 | Rodriguez et al. | Jul 2005 | A1 |
20050181536 | Tsuji | Aug 2005 | A1 |
20050230686 | Kojima et al. | Oct 2005 | A1 |
20050275055 | Parthasarathy et al. | Dec 2005 | A1 |
20060011128 | Ellison et al. | Jan 2006 | A1 |
20060055027 | Kitabatake et al. | Mar 2006 | A1 |
20060060884 | Ohyanagi et al. | Mar 2006 | A1 |
20060071295 | Chang | Apr 2006 | A1 |
20060086997 | Kanaya et al. | Apr 2006 | A1 |
20060211210 | Bhat et al. | Sep 2006 | A1 |
20060244010 | Saxler | Nov 2006 | A1 |
20060255423 | Ryu et al. | Nov 2006 | A1 |
20060261347 | Ryu et al. | Nov 2006 | A1 |
20060261876 | Agarwal et al. | Nov 2006 | A1 |
20060267021 | Rowland et al. | Nov 2006 | A1 |
20060270103 | Das et al. | Nov 2006 | A1 |
20070066039 | Agarwal et al. | Mar 2007 | A1 |
20070090415 | Ronsisvalle | Apr 2007 | A1 |
20070114606 | Hoshino et al. | May 2007 | A1 |
20070120148 | Nogome | May 2007 | A1 |
20070164321 | Sheppard et al. | Jul 2007 | A1 |
20070241427 | Mochizuki et al. | Oct 2007 | A1 |
20070262324 | Kaneko | Nov 2007 | A1 |
20080001158 | Das et al. | Jan 2008 | A1 |
20080006848 | Chen et al. | Jan 2008 | A1 |
20080029838 | Zhang et al. | Feb 2008 | A1 |
20080048258 | de Fresart et al. | Feb 2008 | A1 |
20080105949 | Zhang et al. | May 2008 | A1 |
20080191304 | Zhang et al. | Aug 2008 | A1 |
20080224316 | Kroeninger | Sep 2008 | A1 |
20080230787 | Suzuki et al. | Sep 2008 | A1 |
20080251793 | Mazzola et al. | Oct 2008 | A1 |
20080258252 | Shimizu et al. | Oct 2008 | A1 |
20080277669 | Okuno et al. | Nov 2008 | A1 |
20080296771 | Das et al. | Dec 2008 | A1 |
20090008709 | Yedinak et al. | Jan 2009 | A1 |
20090039498 | Bayerer | Feb 2009 | A1 |
20090121319 | Zhang et al. | May 2009 | A1 |
20090146154 | Zhang et al. | Jun 2009 | A1 |
20090212301 | Zhang et al. | Aug 2009 | A1 |
20090225578 | Kitabatake | Sep 2009 | A1 |
20090272982 | Nakamura et al. | Nov 2009 | A1 |
20090289262 | Zhang et al. | Nov 2009 | A1 |
20090321746 | Harada et al. | Dec 2009 | A1 |
20100032685 | Zhang et al. | Feb 2010 | A1 |
20100127371 | Tschirbs | May 2010 | A1 |
20100133549 | Zhang et al. | Jun 2010 | A1 |
20100133550 | Zhang et al. | Jun 2010 | A1 |
20100140628 | Zhang | Jun 2010 | A1 |
20100244047 | Hull et al. | Sep 2010 | A1 |
20100295062 | Uchida et al. | Nov 2010 | A1 |
20110012132 | Otsuka et al. | Jan 2011 | A1 |
20110018004 | Shimizu et al. | Jan 2011 | A1 |
20110018040 | Smith et al. | Jan 2011 | A1 |
20110058293 | Pardoen | Mar 2011 | A1 |
20110193412 | Lacarnoy | Aug 2011 | A1 |
20110199792 | Friebe et al. | Aug 2011 | A1 |
20110246794 | Liao | Oct 2011 | A1 |
20110292617 | Darroman et al. | Dec 2011 | A1 |
20110317729 | Matsumoto et al. | Dec 2011 | A1 |
20120044720 | Shea et al. | Feb 2012 | A1 |
20130000170 | Dueck et al. | Jan 2013 | A1 |
20130001703 | Sugawara | Jan 2013 | A1 |
20130016542 | Nakamura | Jan 2013 | A1 |
20130056755 | Hatai | Mar 2013 | A1 |
20130307500 | Nojiri et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
3942640 | Aug 1990 | DE |
19809554 | Sep 1998 | DE |
19832329 | Feb 1999 | DE |
19900171 | Jul 1999 | DE |
19817444 | Sep 1999 | DE |
10036208 | Feb 2002 | DE |
0176778 | Apr 1986 | EP |
0372412 | Jun 1990 | EP |
0389863 | Oct 1990 | EP |
0637069 | Feb 1995 | EP |
0837508 | Apr 1996 | EP |
0735591 | Oct 1996 | EP |
0865085 | Sep 1998 | EP |
1058317 | Dec 2000 | EP |
1361614 | Nov 2003 | EP |
1460681 | Sep 2004 | EP |
1503425 | Feb 2005 | EP |
1693896 | Aug 2006 | EP |
1806787 | Jul 2007 | EP |
1845561 | Oct 2007 | EP |
2015364 | Jan 2009 | EP |
2124257 | Nov 2009 | EP |
2432014 | Mar 2012 | EP |
60240158 | Nov 1985 | JP |
1117363 | May 1989 | JP |
03034466 | Feb 1991 | JP |
03157974 | Jul 1991 | JP |
3225870 | Oct 1991 | JP |
08264766 | Oct 1996 | JP |
09205202 | Aug 1997 | JP |
H10290562 | Oct 1998 | JP |
11191559 | Jul 1999 | JP |
11238742 | Aug 1999 | JP |
11261061 | Sep 1999 | JP |
11266017 | Sep 1999 | JP |
11274487 | Oct 1999 | JP |
2000049167 | Feb 2000 | JP |
2000082812 | Mar 2000 | JP |
2000106371 | Apr 2000 | JP |
2000252461 | Sep 2000 | JP |
2000252478 | Sep 2000 | JP |
2002314099 | Oct 2002 | JP |
2010183840 | Aug 2010 | JP |
2011030424 | Feb 2011 | JP |
2012156548 | Aug 2012 | JP |
9603774 | Feb 1996 | WO |
9708754 | Mar 1997 | WO |
9717730 | May 1997 | WO |
9739485 | Oct 1997 | WO |
9802916 | Jan 1998 | WO |
9802924 | Jan 1998 | WO |
9808259 | Feb 1998 | WO |
9832178 | Jul 1998 | WO |
9963591 | Dec 1999 | WO |
0013236 | Mar 2000 | WO |
0178134 | Oct 2001 | WO |
2004020706 | Mar 2004 | WO |
2004079789 | Sep 2004 | WO |
2005020308 | Mar 2005 | WO |
2006135031 | Dec 2006 | WO |
2007040710 | Apr 2007 | WO |
2009128382 | Oct 2009 | WO |
2010004715 | Jan 2010 | WO |
2010074275 | Jul 2010 | WO |
2013036370 | Mar 2013 | WO |
Entry |
---|
U.S. Appl. No. 13/588,329, filed Aug. 17, 2012. |
U.S. Appl. No. 13/893,998, filed May 14, 2013. |
Lai, P.T. et al., “Interface properties of N2O-Annealed NH3-Treated 6H-SiC MOS Capacitor”, Proceedings of the IEEE Hong Kong Electron Devices Meeting, Jun. 26, 1999, pp. 46-49. |
Leonhard et al. “Long Term Stability of Gate-Oxides on n- and P-Type Silicon Carbide Studied By Charge Injection Techniques,” Materials Science Engineering, vol. 46, No. 1-3, Apr. 1997, pp. 263-266. |
Levinshtein, Michael E. et al., “On the Homogeneity of the Turn-On Process in High-Voltage 4H-SiC Thyristors”, Solid-State Electronics, Feb. 2005, vol. 49, pp. 233-237. |
Li, H.F. et al., “Improving SiO2 Grown on P-Type 4H-SiC by NO Annealing”, Materials Science Forum, Feb. 1998, vol. 264-268, pp. 869-872. |
Li, Y. et al., “High-Voltage (3 kV) UMOSFETs in 4H-SiC”, IEEE Transactions on Electron Devices, Jun. 2002, vol. 49, No. 6, pp. 972-975. |
Lipkin, L.A. et al., “Low Interfaces State Density Oxides on P-Type SiC”, Materials Science Forum, Jan. 1998, vols. 264-268, pp. 853-856. |
Lipkin, Lori et al., “Challenges and State-of-the-Art of Oxides on SiC”, Material Research Social Symposium Proceedings, Nov. 2000, vol. 640, pp. 89-98. |
Lipkin, Lori et al., “Insulator Investigation on SiC for Improved Reliability”, IEEE Transactions on Electron Devices, Mar. 1999, vol. 46, No. 3, pp. 525-532. |
Losee, P.A. et al., “High-Voltage 4H-SiC PiN Rectifiers with Single-Implant, Multi-Zone JTE Termination”, Proceedings for 2004 International Symposium on Power Semiconductor Devices & ICs, May 2004, pp. 301-304. |
Losse, P.A. et al., “Degraded Blocking Performance of 4H-SiC Rectifiers Under High dV/dt Conditions”, Proceedings for 17th International Symposium on Power Semiconductor Devices & ICs, May 23-26, 2005, pp. 1-4. |
Ma, Y. et al., “Fixed and Trapped Charges at Oxide-Nitride-Oxide Heterostructure Interfaces Formed by Remote Plasma Enhanced Chemical Vapor Deposition”, American Vacuum Society, Jul. 1993, vol. 11, No. 4, pp. 1533-1540. |
Miura, Naruhisa et al., “Successful Development of 1.2 kV 4H-SiC MOSFETs with the Very Low On-Resistance of 5 mΩm2,” Proceedings of the 18th International Symposium on Power Semiconductor Devices & IC's, Jun. 4-8, 2006, 4 pages, Naples Italy. |
Mondal, K. et al., “An Integrated 500-V Power DMOSFET/Antiparallel Rectifier Device with Improved Diode Reverse Recovery Characteristics”, IEEE Electron Device Letters, Sep. 2002, vol. 23, No. 9, pp. 562-564. |
Mutin, P. Hubert, “Control of the Composition and Structure of Silicon Oxycarbide and Oxynitride Glasses Derived from Polysiloxane Precursors”, Journal of Sol-Gel Science and Technology, Mar. 1999, pp. 27-38. |
Myer-Ward, R.L. et al., “Turning of Basal Plane Dislocations During Epitaxial Growth on 4 Off-Axis 4h-SiC”, 7th European Conference on Silicon Carbide and Related Materials, Sep. 7-11, 2008, retrieved Jul. 1, 2009, http://escrm08.com/invited_presentations.html, Barcelona, Spain. |
Palmour, J.W. et al., “SiC Device Technology: Remaining Issues”, Diamond and Related Materials, Aug. 1997, vol. 5, pp. 1400-1404. |
Palmour, John, “Silicon Carbide npnp Thyristors”, NASA Tech Briefs. Updated: Dec. 1, 2000, Retrieved Sep. 2, 2010, http://www.techbriefs.com/component/content/article/7031. |
Pankin, D. et al., “Electrical and Microstructural Properties of Highly Boron-Implantation Doped 6H-SiC”, Journal of Applied Physics, Mar. 15, 2001, vol. 89, No. 6, pp. 3162-3167. |
Pantelides, S.T. et al., “Atomic-Scale Engineering of the SiC-SiO2 Interface”, Materials Science Forum, Oct. 1999, vols. 338-342, pp. 1133-1136. |
Patel, R. et al., “Phosphorus-Implanted High-Voltage N+P 4H-SiC Junction Rectifiers”, Proceedings of 1998 International Symposium on Power Semiconductor Devices & Ics, Jun. 1998, pp. 387-390. |
Rao et al., “Al and N Ion Implantations in 6H-SiC,” Inst. Phys. Conf. Ser. No. 142, Chapter 3, Jan. 1996, pp. 521-524. |
Rao, Mulpuri V. et al., “P-N Junction Formation in 6H-SiC Acceptor Implantation into a N-Type Substrate”, Nuclear Instructions and Mechanics in Physics Res., Dec. 1995, vol. 106, pp. 333-338. |
Rao, Mulpuri V., “Maturing Ion-Implantation Technology and its Device Applications in SiC”, Solid State Electronics, Feb. 2003, vol. 47, pp. 213-222. |
Rao, S. et al., “Silane Overpressure Post-Implant Annealing of A1 Dopants in SiC: Cold Wall CVD Apparatus”, Applied Surface Science, Mar. 2006, vol. 252, pp. 3837-3842. |
Richmond, J.T. et al., “Hybrid 4H-SiC MOS Gated Transistor (MGT)”, DARPA Contract #N00014-99-C-0377, Sep. 2002, 6 pages. |
Ryu, Sei-Hyung et al., “27 mΩ-cm2, 1.6 kV Power DiMOSFETs in 4H-SiC”, Proceedings of the 14th International Symposium on Power Semiconductor Devices & ICs 2002, ISPSD '02 Proceedings, Jun. 4-7, 2002, pp. 65-68, Santa Fe, NM. |
Salem, T.E. et al., “High-Temperature High-Power Operation of a 100 A SiC DMOSFET Module,” Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Feb. 2009, pp. 653-657. |
Schörner, Reinhold et al., “Rugged Power MOSFETs in 6H-SiC with Blocking Capability up to 1800V”, Silicon Carbide and Related Materials, Jan. 2000, vols. 338-342, pp. 1295-1298. |
Schörner, Reinhold et al., “Significantly Improved Performance of MOSFET's on Silicon Carbide Using the 15R-SiC Polytype”, IEEE Electron Device Letters, May 1999, vol. 20, No. 3, pp. 241-244. |
Senzaki, Junji et al., “Effects of Pyrogenic Reoxidation Annealing on Inversion Channel Mobility of 4H-SiC Metal-Oxide-Semiconductor Field-effect Transistor Fabricated on (1120) Face”, The Japanese Society of Applied Physics, Nov. 15, 2001, vol. 40, pp. 1201-1203. |
Shenoy, Jayarama N. et al., “High-Voltage Double-Implanted Power MOSFET's in 6H-SiC”, IEEE Electron Device Letters, Mar. 1997, vol. 18, No. 3, pp. 93-95. |
Shenoy, Praveen M. et al., “The Planar 6H-SiC Accufet: A New High-Voltage Power MOSFET Structure”, IEEE Electron Device Letters, Sep. 1999, vol. 18, No. 12, pp. 589-591. |
Singh, R. et al., “Planar Terminations in 4H-SIC Schottky Diodes with Low Leakage and High Yields”, ISPSD '97, May 1997, pp. 157-160. |
Singh, R. et al., “High Temperature, High Current, 4H-SiC Accu-DMOSFET”, Silicon Carbide and Related Materials, Copyright: 2000, vols. 338-342, pp. 1271-1274. |
Sridevan, S. et al., “Lateral N-Channel Inversion Mode 4H-SiC MOSFET'S”, IEEE Electron Devices Letters, Jul. 1998, vol. 19, No. 7, pp. 228-230. |
Sridevan, S. et al., “On the Presence of Aluminum in Thermally Grown Oxides on 6H-Silicon Carbide”, IEEE Electron Devices Letters, Mar. 1996, vol. 17, No. 3, pp. 136-138. |
Stengl, R. et al., “Variation of Lateral Doping—A New Concept to Avoid High Voltage Breakdown of Planar Junctions”, Science Research Laboratories, Jan. 12, 1985, 4 pages. |
Stengl, R. et al., “Variation of Lateral Doping as a Field Terminator for High-Voltage Power Devices”, IEEE Transactions on Electron Devices, Mar. 1986, vol. ED-33, No. 3, pp. 426-428. |
Streetman, Ben G., “Chapter 7: Bipolar Junction Transistors”, Solid State Electronic Devices, Mar. 1980, pp. 228-284, Englewood Cliffs, NJ, Prentice-Hall, Inc. |
Sugawara, Yoshitaka et al., “3.6 kV 4H-SiC JBS Diodes with Low RonS”, Materials Science Forum: Silicon Carbide and Related Materials, Sep. 2000, vol. 338-342, pp. 1183-1186. |
Sundaresan, Siddarth G. et al., “Ultra-Low Resistivity A1+ Implanted 4H-SiC Obtained by Microwave Annealing and a Protective Graphite Cap”, Solid-State Electronics 52, Jan. 2008, pp. 140-145. |
Suvorov, A.V. et al., “4H-Sic Self-Aligned Implant-Diffused Structure for Power DMOSFETs”, Materials Science Forum, Jan. 2000, vols. 338-342, pp. 1275-1278. |
Suzuki, Seiji et al., “Effect of Post-Oxidation-Annealing in Hydrogen on SiO2 /4H-SiC Interface”, Materials Science Forums, Jan. 2000, vols. 338-342, pp. 1073-1076. |
Sze, S.M., “Si-SiO2 MOS Diode”, Physics of Semiconductor Devices, 2nd Edition, Jan. 1998, pp. 383-390, Korea, John Wiley & Sons, Inc. |
Sze, S.M., “Chapter 5: Bipolar Transistor and Related Devices”, Semiconductor Devices Physics and Technology, Jan. 2002, p. 130, United States of America, John Wiley & Sons, Inc. |
Tamaki, Tomohiro et al., “Optimization of ON-State and Switching Performances for 15-20-kV 4H-SiC IGBTs,” IEEE Transactions on Electron Devices, vol. 55, No. 8, Aug. 2008, pp. 1920-1927. |
Tan, J. et al., “High-Voltage Accumulation-Layer UMOSFET's in 4H-SiC”, IEEE Electron Device Letters, Sep. 1998, vol. 49, No. 12, pp. 487-489. |
Thomas, Chris et al., “Annealing of Ion Implantation Damage in SiC Using a Graphite Mask”, Materials Research Society Symposium Proc., Apr. 1999, vol. 572, pp. 45-50. |
Tobin, Philip et al., “Furnace Formation of Silicon Oxynitride Thin Dielectrics in Nitrous Oxide N2O: The Role of Nitric Oxide (NO)”, Junior Applied Physics, Feb. 1, 1994, vol. 75, No. 3, pp. 1811-1817. |
Tone, Kiyoshi et al., “4H-SiC Normally-Off Vertical Junction Field-Effect Transistor With High Current Density,” IEEE Electron Device Letters, vol. 24, No. 7, Jul. 2003, pp. 463-465. |
Treu, M. et al., “A Surge Current Stable and Avalanche Rugged SiC Merged pn Schottky Diode Blocking 600V Especially Suited for PFC Applications”, Materials Science Forum: Silicon Carbide and Related Materials, Oct. 2006, vol. 527-539, pp. 1155-1158. |
Ueno, Katsunori et al., “The Guard-Ring Termination for High-Voltage SiC Schottky Barrier Diodes”, IEEE Electron Device Letters, Jul. 1995, vol. 16, No. 7, pp. 331-332. |
Ueno, Katsunori et al., “4H-SiC MOSFET's Utilizing the H2 Surface Cleaning Technique”, IEEE Electron Device Letters, Jul. 1998, vol. 19, No. 7, pp. 244-246. |
Ueno, Katsunori et al., “Counter-Doped MOSFET's of 4H-SiC”, IEEE Electron Device Letters, Dec. 1999, vol. 20, No. 12, pp. 624-626. |
Vassilveski, K. et al., “High Voltage Silicon Carbide Schottky Diodes with Single Zone Junction Termination Extension”, Materials Science Forum, Sep. 2007, pp. 873-876, Switzerland, Trans Tech Publications. |
Vassilveski, K.V. et al., “Protection of Selectively Implanted and Patterned Silicon Carbide Surfaces with Graphite Capping Layer During Post-Implantation Annealing”, Semiconductor Science and Technology, Feb. 3, 2005, pp. 271-278, Switzerland, Trans Tech Publications. |
Vathulya, Vickram et al., “A Novel 6H-SiC Power DMOSFET with Implanted P-Well Spacer”, IEEE Electron Device Letters, Jul. 1999, vol. 20, No. 7, pp. 354-356. |
Vathulya, Vickram et al., “Characterization of Channel Mobility of Implanted SiC to Determine Polytype Suitability for the Power DIMOS Structure”, Powerpoint Presentation at Lehigh University, Presented 1999, 26 total slides, 13 pages. |
Wang, Xiewen W. et al., “High Temperature Characteristics of High-Quality SiC MIS Capacitors with O/N/O Gate Dielectric”, IEEE Transactions on Electron Devices, Feb. 2000, vol. 47, No. 2, pp. 450-462. |
Wang, Y. et al., “Accumulation-Mode SiC Power MOSFET Design Issues”, Material Science Forum, Feb. 2000, vols. 338-342, pp. 1287-1290. |
Williams, J.R. et al., “Passivation of the 4H-SiC/SiO2 Interface with Nitric Oxide”, Materials Science Forum, Jan. 2002, vols. 389-393, pp. 967-972. |
Xu, J.P. et al., “Improved Performance and Reliability of N20-Grown Oxynitride on 6H-SiC”, IEEE Electron Device Letters, Jun. 2000, vol. 21, No. 6, pp. 298-300. |
Yilmaz, Hamza, “Optimization and Surface Charge Sensitivity of High Voltage Blocking Structures with Shallow Junctions”, IEEE Transactions on Electron Devices, Jul. 1991, vol. 38, No. 7, pp. 1666-1675. |
Zhang, Qingchun at al., “A 10-K Monolithic Darlington Transistor with βforced of 336 in 4H-SiC”, Feb. 2009, IEEE Electron Device Letters, Feb. 2009, vol. 30, No. 2, pp. 142-144. |
Zhang, Qingchun et al., “12 Kv 4H-SiC p-IGBTs with Record Low Specific On-Resistance”, Materials Science Forum, Sep. 2008, vols. 600-603, 4 pages. |
Zhang, Qingchun et al., “Design and Fabrications of High Voltage IGBTs on 4H-SiC”, Power semiconductor devices and IC's, 2006 IEEE International Symposium, Jun. 4-8, 2006, pp. 1-4. |
Office Action for Chinese Patent Application No. 2007800294605, dated Jan. 22, 2010, 7 pages. |
European Search Report for European Patent Application No. 09177558.5, dated Feb. 22, 2010, 6 pages. |
European Search Report for European Patent Application No. 07120038.0, dated Jun. 16, 2008, 7 pages. |
European Search Report for European Patent Application No. 09163424.6, dated Apr. 9, 2010, 10 pages. |
Extended European Search Report for European Patent Application No. 07112298.0, dated Feb. 18, 2009, 12 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/051429 dated Nov. 22, 2012, 15 pages. |
International Search Report for International Patent Application No. PCT/US01/30715 dated Jun. 5, 2002, 9 pages. |
International Search Report for International Patent Application No. PCT/US01/42414, dated Apr. 23, 2002, 10 pages. |
International Search Report for International Patent Application No. PCT/US02/11691, dated Dec. 17, 2002, 9 pages. |
International Search Report for International Patent Application No. PCT/US2004/004982 dated Jul. 22, 2004, 13 pages. |
International Search Report for International Patent Application No. PCT/US2010/025053, dated Jul. 2, 2010, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/27255 dated Jun. 13, 2012, 10 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2007/0014139, dated Feb. 4, 2008, 15 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/0008574, dated Sep. 26, 2008, 15 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/0010538, dated Dec. 22, 2008, 13 pages. |
International Search Report for International Patent Application No. PCT/US2009/0000734, dated Apr. 23, 2009, 13 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/0003089, dated Aug. 20, 2009, 16 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/0065251, dated Jun. 1, 2010, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0020071, dated Mar. 26, 2010, 14 pages. |
Invitation to Pay Additional Fee for International Patent Application No. PCT/US2007/0010192, dated Oct. 29, 2007, 10 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2008/004239, dated Mar. 2, 2009, 14 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0026632, dated Oct. 8, 2010, 13 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0028612, dated Jun. 17, 2010, 9 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0035713, dated Jul. 27, 2010, 11 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/0042075, dated Sep. 24, 2010, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 13/108,440, dated Aug. 2, 2012, 23 pages. |
Non-Final Office Action for U.S. Appl. No. 13/102,510, dated Aug. 2, 2012, 32 pages. |
Final Office Action for U.S. Appl. No. 13/108,440, dated Jan. 17, 2013, 36 pages. |
Final Office Action for U.S. Appl. No. 13/102,510, dated Feb. 12, 2013, 27 pages. |
Advisory Action for U.S. Appl. No. 13/108,440, dated Mar. 25, 2013, 4 pages. |
Advisory Action for U.S. Appl. No. 13/102,510, dated Apr. 19, 2013, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 13/102,510, dated Jun. 20, 2013, 28 pages. |
Restriction Requirement for U.S. Appl. No. 13/588,329, dated Aug. 26, 2013, 7 pages. |
Report of Reexamination before Appeal for Japanese Patent Application No. 2014-529750, dated Aug. 18, 2016, 6 pages. |
Advisory Action for U.S. Appl. No. 13/893,998, dated Aug. 31, 2016, 3 pages. |
Second Office Action for Chinese Patent Application No. 201280055081.4, dated Nov. 8, 2016, 20 pages. |
International Preliminary Report on Patentability for No. PCT/US2015/030853, dated Nov. 24, 2016, 10 pages. |
Notice of Allowance for U.S. Appl. No. 13/588,329, dated Dec. 23, 2016, 10 pages. |
Notice of Allowance for U.S. Appl. No. 13/893,998, dated Dec. 15, 2016, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/588,329, dated Jun. 27, 2016, 19 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2012/051429, dated Mar. 20, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/588,329, dated Apr. 22, 2014, 21 pages. |
International Search Report and Written Opinion for PCT/US2014/037977, dated Sep. 15, 2014, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 13/588,329, dated Sep. 24, 2014, 16 pages. |
Afanasev, V. et al., “Intrinsic SiC/SiO2 Interface States”, Phys. Stat. Sol., Jan. 31, 1997, vol. 162, pp. 321-337. |
Agarwal et al., “9kV, 1xcm SiC Super GTO Technology Development for Pulse Power,” Pulsed Power Conference, 2009, presented Jun. 28-Jul. 2, 2009, pp. 264-269. |
Agarwal, A.K. et al., “700-V Assymetrical 4H-SiC Gate Turn-Off Thyristors (GTO's),” IEEE Electron Device Letters, vol. 18, No. 11, Nov. 1997, pp. 518-520. |
Agarwal, A.K. et al., “1.1 kV 4H-SiC Power UMOSFETs”, IEEE Electron Devices Letters, Dec. 1997, vol. 18, No. 12, pp. 586-588. |
Agarwal, A.K. et al., “1400 V 4H-SiC Power MOSFETs”, Materials Science Forum, Jan. 1998, vols. 264-268, pp. 989-992. |
Agarwal, A.K. et al., “A Critical Look at the Performance Advantages and Limitations of 4H-SiC Power UMOSFET Structures”, Proceedings of the International Symposium on Power Semiconductor Devices and IC's, May 20-23, 1996, pp. 119-122. |
Agarwal, A.K. et al., “Investigation of Lateral RESURF, 6H-SiC MOSFETs”, Materials Science Forum, Copyright: 2000, vols. 338-342, pp. 1307-1310. |
Agarwal, A.K. et al., “Temperature Dependence of Fowler-Nordheim Current in 6H- and 4H-SiC MOS Capacitors”, IEEE Electron Device Letters, Dec. 1997, vol. 18, No. 12, pp. 592-594. |
Alok, Dev. et al., “Process Dependence of Inversion Layer Mobility in 4H-SiC Devices”, Silicon Carbide and Related Materials, Oct. 10-15, 1999, pp. 1077-1080. |
Asano, K. et al., “Dynamic Characteristics of 6.2 kV High Voltage 4H-SiC pn Diode with Low Loss”, Transactions of the Institute of Electrical Engineers of Japan, May 2003, vol. 123-D, No. 5, pp. 623-627. |
Author Unknown, “Definition of Overlap,” The American Heritage Dictionary of the English Language, Fourth Edition, Sep. 2003, 3 pages, http://www.thefreedictionary.com/overlap. |
Author Unknown, “Insulated-Gate Bipolar Transistor,” Wikipedia—The Free Encyclopedia, Jun. 21, 2010, 6 pages, http://en.wikipedia.org/wiki/Insulated-gate_bipolar_transistor. |
Author Unknown, “Motorola Power MOSFET Transistor Databook”, 4th Edition, Motorola, Inc., Copyright: 1989, pp. 254-257. |
Author Unknown, “The Insulated Gate Biopolar Transistor (IGBT)”, University of Glasgow, Updated: Feb. 14, 2007, Retrieved Jul. 7, 2006, http://www.elec.gla.ac.uk/groups/dev_mod/papers/igbt/igbt.html. |
Ayalew, T., “4.4.3.1 MPS Diode Structure”, Tu Wien. Jul. 6, 2006, http://www.iue.tuwien.ac.at/phd/ayalew/node88.html. |
Baliga, B., “Chapter 7: Power Mosfet”, Power Semiconductor Devices, May 2, 1995, pp. 335-425, Boston, MA, PWS Publishing Company. |
Baliga, B., “Chapter 8: Insulated Gate Bipolar Transistor”, Power Semiconductor Devices, May 2, 1995, pp. 426-502, Boston, MA, PWS Publishing Company. |
Bhatnagar et al., “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” Transactions on Electron Devices, vol. 40, No. 3, Mar. 1993, pp. 645-655. |
Buchner, R. et al., “Laser Recrystallization of Polysilicon for Improved Device Quality”, Springer Proceedings in Physics, Copyright: 1989, vol. 55, pp. 289-294. |
Capano, M.A. et al., “Ionization Energies and Electron Mobilities in Phosphorus- and Nitrogen-Implanted 4H Silicon Carbide”, IEEE ICSCRM Conference 1999, Oct. 10-13, 1999, 4 pages. |
Capano, M.A. et al., “Surface Roughening in Ion Implanted 4-H Silicon Carbide”, Journal of Electronic Materials, Jul. 20, 1998, vol. 28, No. 3, pp. 214-218. |
Casady, J.B. et al., “900 V DMOS and 1100 V UMOS 4H-SiC Power FETs”, Northrop Grumman Science and Technology Center, Published: 1997, 2 Pages. |
Chakraborty, Supratic et al., “Interface Properties of N2O-Annealed SiO2/SiC System”, 2008 IEEE Proceedings of the Electron Devices Meeting, Dec. 15-17, 2000, pp. 108-111, Hong Kong. |
Chang, H.R. et al., “500-V n-Channel Insulated-Gate Bipolar Transistor with a Trench Gate Structure,” IEEE Transactions on Electron Devices, vol. 36, No. 9, Sep. 1989, pp. 1824-1829. |
Chang, K.C. et al., “Observation of a Non-Stoichiometric Layer at the Silicon Dioxide—Silicon Carbide Interface: Effect of Oxidation Temperature and Post-Oxidation Processing Conditions”, Materials Research Social Symposium Procedures, vol. 640, Nov. 29-Dec. 2, 2011, 6 pages. |
Chen, Jia-Rong et al., “Theoretical Analysis of Current Crowding Effect in Metal/AlGaN/GaN Schottky Diodes and its Reduction by Using Polysilicon in Anode”, Chinese Physics Letters, Jul. 2007, vol. 24, No. 7, pp. 2112-2114. |
Cho, Won-Ju et al., “Improvement of Charge Trapping by Hydrogen Post-Oxidation Annealing in Gate Oxide of 4H-SiC metal-oxide-semiconductor capacitors”, Applied Physical Letters, Aug. 21, 2000, vol. 77, No. 8, 1215-1217. |
Chung, G.Y. et al., “The Effect of Si:C Source Ratio on S102 /SiC Interface State Density for Nitrogen Doped 4H and 6H SiC”, Materials Science Forum, Copyright: 2000, vol. 338-342, pp. 1097-1100. |
Chung, G.Y. et al., “Effect of Nitric Oxide Annealing on the Interface Trap Densities Near the Band Edges in the 4H Polytype Silicon Carbide”, Applied Physics Letters, Mar. 27, 2000, vol. 76, No. 13, pp. 1713-1715. |
Chung, G.Y. et al., “Improved Inversion Channel Mobility for 4h-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide”, IEEE Electron Device Letters, Apr. 2001, vol. 22, No. 4, pp. 176-178. |
Chung, Gilyong et al., “Effects of Anneals in Ammonia on the Interface Trap Density Near the Band Edges in 4H-Silicon Carbide Metal-Oxide-Semiconductor Capacitors”, Applied Physical Letters, Nov. 27, 2000, vol. 77, No. 22, pp. 3601-3603. |
Dahlquist, F. et al., “A 2.8kV, Forward Drop JBS Diode with Low Leakage”, Materials Science Forum, Jan. 2000, vols. 338-342, pp. 1179-1182. |
Das, M.K. et al., “High Mobility 4H-SiC Inversion Mode MOSFETs Using Thermally Grown”, No Annealed SiO2,, IEEE 58th Device Research Conference, Jun. 19-21, 2000, 3 Pages. |
Das, M.K. et al., “Inversion Channel Mobility in 4H- and 6H-SiC MOSFETs”, School of Electrical and Computer Engineering at Purdue University, Published: 1998, 2 pages. |
Das, Mrinal K. et al., “A 13 kV 4H-SiC n-Channel IGBT with Low Rdiff on and Fast Switching”, DARPA Contract, Sep. 2008, 4 Pages. |
Das, Mrinal K., “Fundamental Studies of the Silicon Carbide MOS Structure”, Thesis submitted to Purdue University for Doctorate of Philosophy Program, Dec. 1999, 160 Pages. |
Dastidar, Sujoyita, “A Study of P-Type Activation in Silicon Carbide”, Thesis submitted to Faculty of Purdue University, May 1998, 102 Pages. |
De Meo, R.C. et al., “Thermal Oxidation of SiC in N2O”, The Electrochemical Society, Inc., Nov. 1994, vol. 141, No. 11, pp. L150-L152. |
Del Prado, A. et al., “Full Composition Range Silicon Oxynitride Films Deposited by ECR-PECVD at Room Temperature”, Thin Solid Films, Apr. 1999, vols. 343-344, pp. 437-440. |
Dimitrijev, Sima et al., “Nitridation of Silicon-Dioxide Films Grown on 6H Silicon Carbide”, IEEE Electron Device Letters, May 1997, vol. 18, No. 5, pp. 175-177. |
Fisher, C.A. et al., “The Performance of High-Voltage Field Relieved Schottky Barrier Diodes”, IEE Proceedings, Dec. 1985, vol. 132, Pt. 1, No. 6, pp. 257-260. |
Fuda, Kenji et al., “Improvement of SiO2/4H-SiC Interface by Using High Temperature Hydrogen Annealing at 1000° C”, External Abstracts of the 1998 International Conference on Solid State Devices and Materials, Published: 1998, pp. 100-101. |
Fukuda, Kenji et al., “Improvement of SiO2/4H-SiC Interface Using High-Temperature Hydrogen Annealing at Low Pressure and Vacuum Annealing”, Japanese Journal of Applied Physics, Apr. 1999, vol. 38, pp. 2306-2309. |
Hubel, Kerstin, “Hybrid Design Improves Diode Robustness and Boosts Efficiency”, Compound Semiconductor. Net, Updated: May 2006, Retrieved: Jul. 7, 2006, http://www.compoundsemiconductor.net. |
Hull, Brett A. et al., “Drift-Free 10-kV, 20-A 4H-SiC PiN Diodes”, Journal of Electronic Materials, Apr. 2005, vol. 34, No. 4, pp. 341-344. |
Jamet, P. et al., “Physical Properties of N/sub 2/0 and No—Nitrided Fate Oxides Grown on 4H SiC”, Applied Physics Letters, Jul. 2001, vol. 79, No. 3, pp. 323-325. |
Kinoshita, Kozo et al., “Guard Ring Assisted RESURF: A New Termination Structure Providing Stable and High Breakdown Voltage for SiC Power Devices”, Proceedings of the 14th International Symposium on Power Semiconductor Devces and ICs, Jun. 7, 2002, pp. 253-256. |
Kobayashi, K. et al., “Dielectric Breakdown and Current Conduction of Oxide/Nitride/Oxide Multi-Layer Structures”, 1990 Symposium of VLSI Technology, Jun. 4-7, 1990, pp. 119-120. |
Krishnaswami, Sumi et al., “High Temperature Characterization of 4H-SiC Bipolar Junction Transistors”, Materials Science Forum, Jan. 1, 2009, vols. 527-529, pp. 1437-1440. |
Lai, P.T. et al., “Effects of Nitridation and Annealing on Interface Properties of Thermally Oxidized SIO2 /SiC Metal-Oxide-Semiconductor System”, Applied Physics Letters, Jun. 19, 2000, vol. 75, No. 25, pp. 3744-3748. |
Berning, David W. et al., “High-Voltage Isolated Gate Drive Circuit for 10 kV, 100 A SiC MOSFET/JBS Power Modules,” IEEE Industry Applications Society Annual Meeting, Oct. 5-9, 2008, IEEE, pp. 1-7. |
Grider, David et al., “10kV/120 A SiC DMOSFET Half H-Bridge Power Modules for 1 MVA Solid State Power Substation,” IEEE Electric Ship Technologies Symposium (ESTS), Apr. 10-13, 2011, IEEE, pp. 131-134. |
Mauch, Daniel et al., “High Power Lateral Silicon Carbide Photoconductive Semiconductor Switches and Investigation of Degradation Mechanisms,” IEEE Transactions on Plasma Science, vol. 43, Issue 6, Jun. 2015, IEEE, pp. 2021-2031. |
Moran, S.L. et al., “Hydrogen spark switches for rep-rated accelerators,” 9th International Conference on High-Power Particle Beams, May 25-29, 1992, IEEE, 1 page, Abstract. |
Rognlien, S., “Electric power supply with rectifier installation for the Alnor aluminum works at Karmoy,” Elektroteknisk Tidsskrift, vol. 81, Issue 20, Oct. 17, 1968, Oslo, Ingeniørforlaget, 1 page, Abstract. |
Wang, Jun et al., “Characterization, Modeling, and Application of 10-kV SiC MOSFET,” IEEE Transactions on Electron Devices, vol. 55, Issue 8, Aug. 2008, IEEE, pp. 1798-1806. |
Yu, Lei et al., “Design of 150 kV all-solid-state high voltage pulsed power generator,” High Power Laser and Particle Beams, vol. 24, Issue 3, Mar. 2012, Nuclear Society of China, 1 page, Abstract. |
Zorngiebel, Volker et al., “Modular 50-kV IGBT Switch for Pulsed-Power Applications,” IEEE Transactions on Plasma Science, vol. 39, Issue 1, Jan. 2011, IEEE, pp. 364-367. |
Corrected Notice of Allowability for U.S. Appl. No. 13/588,329, dated Jan. 25, 2017, 7 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 13/588,329, dated Mar. 13, 2017, 7 pages. |
Examination Report for European Patent Application No. 12762112.6, dated Feb. 1, 2017, 4 pages. |
Notice of Allowability for U.S. Appl. No. 13/893,998, dated Jan. 10, 2017, 6 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 13/893,998, dated Jan. 25, 2017, 6 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 13/893,998, dated Feb. 16, 2017, 6 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 13/893,998, dated Mar. 14, 2017, 6 pages. |
Third Office Action for Chinese Patent Application No. 201280055081.4, dated Apr. 1, 2017, 19 pages. |
Decision on Appeal for Japanese Patent Application No. 2014-529750, dated May 10, 2017, 41 pages. |
Corrected Notice of Allowability and Response to Rule 312 Communication for U.S. Appl. No. 13/893,998, dated Mar. 30, 2017, 7 pages. |
Notice of Reasons for Rejection for Japanese Patent Application No. 2016-567562, dated Mar. 13, 2018, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 15/482,936, dated Feb. 23, 2018, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 15/483,039, dated Feb. 22, 2018, 22 pages. |
Examination Report for European Patent Application No. 14730035.4, dated Jun. 28, 2018, 9 pages. |
First Office Action for Chinese Patent Application No. 2015800376807, dated Jun. 5, 2018, 7 pages. |
Notice of Allowance for U.S. Appl. No. 15/482,936, dated Jul. 23, 2018, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20160204101 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
61533254 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14277820 | May 2014 | US |
Child | 15077329 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13893998 | May 2013 | US |
Child | 14277820 | US | |
Parent | 13588329 | Aug 2012 | US |
Child | 13893998 | US |