1. Technical Field
Embodiments of the present disclosure are related to manufacturing processes of semiconductor packages, and in particular, to wafer level packaging of devices that incorporates a plurality of components or packages within the footprint of a single package, such as, e.g., system-in-package (SiP) devices and package-on-package (PoP) devices.
2. Description of the Related Art
For manufacturers of semiconductor devices, there is a continuing market pressure to increase the density and reduce the size of the devices, so that packages can be made smaller and more devices can be fit into ever smaller spaces, and so that products that incorporate the devices can be made more compact. One response to this pressure has been the development of chip scale and wafer level packaging. Chip scale packages have a footprint that is very close to the actual area of the semiconductor die. They are generally direct surface mountable, using, e.g., flip chip configurations. Wafer-level packages are packages in which some portion of the “back-end” processing is performed on all of the chips in a wafer, before the wafer is singulated.
Another development is the reconstituted wafer, also referred to as a reconfigured wafer, in which a semiconductor wafer is separated into individual dice, which are reformed into a reconstituted wafer. The dice are spaced some greater distance apart than on the original wafer, and embedded in a layer of molding compound, after which additional processing steps are performed on the reconstituted wafer. One benefit is that this provides increased area for each die for back end processes, such as the formation of contacts at a scale or pitch that is compatible with circuit board limitations, without sacrificing valuable real estate on the original wafer. Some packages of this type are known as fan-out wafer level packages, because the contact positions of the original die are “fanned out” to a larger foot print.
“System-in-package” (SiP) is a type of semiconductor package in which multiple devices are enclosed within a single package. Typically, the multiple devices include one or more dice mounted onto a chip carrier substrate and wirebonded to a wiring circuit of the substrate. The entire assembly is encapsulated as a single unit. The dice may be positioned side-by-side on the substrate, or stacked on each other. Other components, such as passive components, antennae, etc., can also be included.
“Package-on-Package” (POP) is a configuration in which one semiconductor package is stacked on top of another package, with, typically, solder connections between contact pads on the bottom surface of the upper package and the top surface of the lower package. In some cases, through-mold vias are provided, i.e., electrically conductive paths extending vertically through the lower package, enabling direct connection of the upper package with an underlying circuit board.
According to an embodiment, a manufacturing process is provided, which includes forming a reconstituted wafer, including embedding semiconductor dice in a molding compound layer and forming through-wafer vias in the molding compound layer. A fan-out redistribution layer is formed on a front side of the wafer, with electrical traces interconnecting circuit contacts of the dice, through-wafer vias, and contact pads of the redistribution layer. Solder balls are coupled to the contact pads and a molding compound layer is formed on the redistribution layer, which reinforces the solder balls and reduces joint failure resulting from thermal mismatch.
A second fan-out redistribution layer is formed on a back side of the wafer, with electrical traces interconnecting back ends of the through-wafer vias and contact pads of the second redistribution layer. Flip-chips and/or surface-mounted devices are coupled to the contact pads of the second redistribution layer and encapsulated in an molded underfill layer formed on the back face of the second redistribution layer.
According to an embodiment, the last step of the process is singulation, meaning that the entire packaging process is performed at the wafer level.
According to an embodiment, the outermost dielectric layer of the fan-out redistribution layer formed on the front side of the wafer is made to completely cover the contact pads of the first redistribution layer. Later, before the solder balls are coupled to the contact pads, openings are made in the outermost dielectric layer over each of the plurality of contact pads by laser ablation.
According to an embodiment, a chemical coating is deposited over the contact pads of the second redistribution layer. Solder paste is used to couple surface-mounted devices to the contact pads of the second redistribution layer. During a process to reflow the solder paste, flux in the solder paste dissolves the chemical coating between the solder and the respective contact pad.
According to an embodiment, a semiconductor package is provided, manufactured according to one of the processes disclosed below.
The through-wafer connector elements 108 can be in any number of different configurations. For example, they can be in the form of a conductive metal bar, or a nonconductive structure with a conductive core. Furthermore, multiple connector elements can be provided in the form of a block of nonconductive material in which a plurality of conductive cores are encapsulated. By providing the connector elements in this form, distribution and spacing of the elements can be established in advance, and the pick-and-place operation in which they are positioned on the carrier can be significantly simplified.
Following formation of the molding compound layer 110, the reconstituted wafer 100 is debonded from the carrier substrate 104 and coupled to a temporary bonded carrier 115 via adhesive 117, as shown in
Devices that are formed on semiconductor material substrates are generally formed on only one surface thereof, and occupy a relatively small part of the total thickness of the substrate. This surface is generally referred to as the active side, or front face. Therefore, for the purposes of the present disclosure and claims, the terms front and back are used to establish an orientation with reference to the active face of a semiconductor wafer or die. For example, reference to a front surface of some element of an assembly that includes a semiconductor die refers to the surface of that element that would be uppermost if the device as a whole were oriented so that the active face of the die was the uppermost part of the die. Of course, a back surface of an element is the surface that would be lowermost, given the same orientation of the device. Use of either term to refer to an element of such a device is not to be construed as indicating an actual physical orientation of the element, the device, or the associated semiconductor die, and, where used in a claim, does not limit the claim except as explained above.
The term planarize is used to refer to any process employed to produce a smooth, flat surface, and/or to thin a structure, including chemical and mechanical machining and grinding processes, polishing processes, etc.
According to one preferred embodiment, as shown in
Furthermore, as used in the claims, the term through-wafer via is to be read broadly as reading also on through-silicon vias formed in a semiconductor die embedded in the molding compound layer of a reconstituted wafer.
As is known in the art, the dielectric material of a redistribution layer is typically formulated to act as a passivation barrier to protect underlying structures such as semiconductor surfaces, metallic layers, etc., and also to provide some degree of mechanical protection. Elements and details of the back redistribution layer 118 are shown as examples only. In practice, the back redistribution layer 118 may have any number of dielectric, passivation, and conductive layers, as necessary for the particular design. Determining factors may include the complexity of the circuit, the particular materials used, and the processes employed.
Turning now to
To couple the secondary dice 140 and passive devices 144 to the wafer 100, according to an embodiment, solder paste is first deposited over selected ones of the contact pads 128. In a pick-and-place operation, the passive devices 144 are placed on the back redistribution layer 118 over the selected ones of the contact pads 128, in contact with the solder paste. The flip-chip dice 140 are then positioned over others of the contact pads 128. A reflow procedure is then performed, in which the solder balls 142 and the solder paste reflow to mechanically and electrically couple the secondary dice 140 and passive devices 144 to the contact pads 128.
Following the reflow procedure, a molding compound layer 146 is deposited over the back redistribution layer 118, completely encapsulating the secondary dice 140 and the passive devices 144. According to an embodiment, the molding compound layer 146 is formulated as a molded underfill material, so that when it is deposited on the back face of the reconstituted wafer 100, it is drawn by capillary action under the flip chips 140 and the passive devices 144 to support and protect the solder joints. Once cured, the molded underfill material is in most respects indistinguishable from more convention molding compound material.
According to another embodiment, a layer of underfill material is first deposited under and around the flip chips 140 and passive devices 144, then a layer of more convention molding compound is deposited over the back redistribution layer 118 to encapsulate the secondary components. According to an embodiment, the underfill layer may be partially or fully cured prior to deposition of the molding compound.
Primary differences between underfill material and more conventional molding compound include viscosity and the size of the grains and/or fibers used as filler. In the case of the underfill material, the filler may comprise fibers in the 3-10 μm size, where typical molding compound may employ fibers in the range of 50-100 μm.
The flip-chip dice 140 and the passive devices 144 are shown as examples of devices that can be employed, according to some embodiments. In practice, the devices used will depend on the required functionality of the completed package, and may include semiconductor packages of various types and sizes, passive devices, and discrete active devices.
As shown in
As with the back redistribution layer 118, details of the front redistribution layer 150 that are shown are merely exemplary. For example, the front redistribution layer 150 is shown having two layers of conductive material, such as might be provided for a more complicated wiring pattern. The configuration used in practice will again depend on the specific device.
In the case of the embodiment shown, both the back and front redistribution layers 118, 150 can be defined as fan-out redistribution layers, inasmuch as they include contact pads positioned outside the boundaries of the semiconductor dice 102.
Turning to
A front molding compound layer 168 is deposited over the front redistribution layer 150. The front molding compound layer 168 is formulated to flow around the solder balls 164, and has a thickness that is less than a height of the solder balls from the front face of the front redistribution layer 150. Thus, on each of the finished packages, a portion of each solder ball will extend from the front molding compound layer 168 so that the package can be coupled to contact pads of a circuit board in a reflow process. Meanwhile, the front molding compound layer 168 will maintain a selected spacing between the finished package and the circuit board, and will provide lateral support to the portions of the solder balls 164 that remain encapsulated by the front molding compound layer, reducing the incidence of solder joint failure caused by thermal mismatch.
Finally, as shown in
According to an alternative embodiment, as shown in
The front redistribution layer 150, formed substantially as described with reference to
Following the curing of the front molding compound layer 168, a temporary protective layer 182 is formed over the front redistribution layer 150, encapsulating the solder balls 164, as shown in
According to a further alternative embodiment, when the first molding compound layer 110 is formed, as described with reference to
Following formation of the front redistribution layer 202, the reconstituted wafer 200 is turned over, as shown in
Turning to
Following formation of the molding compound layer 214, the wafer 200 is again turned over, as shown in
The material of the chemical coating 208 described with reference to
At locations where openings are provided in the dielectric layer over contact pads, under-bump metallization layers are often provided, in part, to prevent oxidation of the contact pad material exposed by the openings in the dielectric layer.
In contrast to the process described above, the material of the chemical coating 208 can be deposited by various processes, including spraying, dipping, or screen printing, then air drying the wafer 200. The chemical coating 208 serves primarily to prevent oxidation of the contact pad material, and is preferably electrically nonconductive. There is no particular requirement of durability or chemical resistance because the back molding compound layer 214 that will be deposited over the secondary elements provides the physical and chemical protection. In fact, as previously noted, the material of the chemical coating is specifically formulated to dissolve under selected circumstances. According to a preferred embodiment, the chemical coating is formulated to be easily dissolved by solder fluxes that are commonly used in semiconductor packaging processes.
In the embodiment of
With regard to the various orders of operation described above, there are, of course, benefits to performing all process steps related to one side of a reconstituted wafer prior to turning the wafer, as described, for example, with reference to the embodiment of
Typically, as described with reference to the embodiment of
The semiconductor packages described above provide several advantages over other types of packages used for similar systems. Some of the advantages and benefits are described below. By providing the necessary secondary active and passive components in a same package, those components are removed from the circuit board on which the package is to be mounted, and will normally occupy less space than the package and secondary components would otherwise collectively occupy. Additionally, the wiring circuit of the circuit board is simplified because it is not necessary to provide interconnecting lines between the mother chip and the secondary components.
Encapsulating all of the associated components together in the package protects all of the components and the interconnecting circuits.
In typical package-on-package systems, the upper package(s) is usually about the same size, in lateral dimensions, as the lower package. In such cases it would be possible to attach the upper packages at the wafer stage, then turn the wafer over to attach solder balls. However, in cases where multiple upper packages or components of different sizes and heights are positioned on a lower package, it is no longer safe to turn the wafer over for further processing, because pressure applied to the wafer during application of flux, solder balls, etc. can damage the devices on the opposite side, or can break the wafer. On the other hand, attaching the solder balls first is problematic because the reflow temperature of the solderballs should be lower than the temperature used to reflow the upper solder joints so that the PoP package can be later attached to a circuit board without desoldering the upper packages. Thus, wafer level processing of more complex PoP packages is discouraged.
According to some embodiments, the first problem is obviated by formation of the back molding compound layer, which provides a smooth, even surface on the back side of the wafer so that the wafer can be safely turned over for work on the front side of the wafer. In embodiments in which the front side of the wafer is completed prior to positioning the secondary components, a temporary protective layer formed over the solder balls, such as layer 182 described with reference to the embodiment of
A particular benefit is provided in reduced manufacturing costs. Known packages having similar functionality are typically manufactured on a per-unit basis, in which the mother chip is encapsulated in a primary package with contact pads on an upper surface, and additional components or packages are assembled onto the primary package. In contrast, the packages of the disclosed embodiments are fully assembled at the wafer level, so that the last step in the process is singulation of the wafer. Thus, all of the process steps are performed on all of the individual devices substantially simultaneously, which results in a significant reduction of cost, as compared to the known processes.
Additional cost reductions are made possible by aspects of the embodiment described with reference to
Finally, deposition of the chemical coating, as described with reference to the embodiment of
A number of processes are referred to or described above as examples of respective known or previously disclosed processes. These include, for example, the formation and/or positioning of through-wafer vias, redistribution layers, molding compound layers, and solder balls. The following U.S. patent applications include descriptions of these and other related processes: Ser. No. 12/651,304, filed Dec. 31, 2009; Ser. No. 12/651,365, filed Dec. 31, 2009; Ser. No. 12/651,362, filed Dec. 31, 2009; Ser. No. 12/651,295, filed Dec. 31, 2009; Ser. No. 12/977,697, filed Dec. 23, 2010; Ser. No. 13/173,991, filed Jun. 30, 2011; Ser. No. 13/232,780, filed Sep. 14, 2011; Ser. No. 13/312,562, filed Dec. 6, 2011; Ser. No. 13/340,575, filed Dec. 29, 2011; and Ser. No. 13/485,624, filed May 31, 2012. These applications are incorporated herein in their entireties.
The unit symbol “μm” is used herein to refer to a value in microns. One micron is equal to 1×10−6 meters.
For the purposes of the present disclosure and claims, redistribution layer is a structure that includes one or more layers of dielectrics and conductors that are formed or deposited on an underlying substrate or layer to create and isolate redistributing signal paths of a semiconductor die.
Terms such as circuit pad, contact pad, contact surface, etc., are used substantially synonymously to refer to different structures that are functionally, and often structurally, similar. Accordingly, where the claims use such terms, the language is for clarity purposes to differentiate one element from another and not because they necessarily have different structures, and the corresponding elements are not limited by the terms as used in the description.
Molding compounds are substances used to encapsulate semiconductor devices in many different packaging processes, are typically composite materials made from blends of ingredients such as, e.g., resins, hardeners, silicas, catalysts, pigments, and release agents, and are generally provided in a substantially liquid form of a selected viscosity so that they can be injected or poured. Molding compounds are available in a very wide range of formulations from different manufacturers and to meet many different criteria. Accordingly, the term molding compound is to be construed broadly to apply to all such compounds.
Ordinal numbers, e.g., first, second, third, etc., are used in the claims according to conventional claim practice, i.e., for the purpose of clearly distinguishing between claimed elements or features thereof. The use of such numbers does not suggest any other relationship, e.g., order of operation or relative position of such elements. Furthermore, ordinal numbers used in the claims have no specific correspondence to those used in the specification to refer to elements of disclosed embodiments on which those claims read, nor to numbers used in unrelated claims to designate similar elements or features.
The term over is used in the specification and claims to refer to the relative positions of two or more elements with respect to a third element, although the third element may be implied by the context. The term should not be construed as requiring direct physical contact between the elements, nor should it be construed as indicating any particular orientation, either absolute, or with respect to the third element. So, for example, if a claim recites a second layer positioned over a first layer on a substrate, this phrase indicates that the second layer is coupled to the substrate and that the first layer is between the second layer and the substrate. It does not indicate that the layers are necessarily in direct physical contact with each other or with the substrate, but may instead have one or more intervening layers or structures. It also does not indicate that the substrate is oriented in a manner that places the second layer physically above the first layer, nor that, for example, the layers are positioned over a front face of the substrate, as that term is used herein.
The abstract of the present disclosure is provided as a brief outline of some of the principles of the invention according to one embodiment, and is not intended as a complete or definitive description of any embodiment thereof, nor should it be relied upon to define terms used in the specification or claims. The abstract does not limit the scope of the claims.
The various embodiments described above can be combined to provide further embodiments. For example, a selected feature of one embodiment can be combined with a feature of another embodiment to provide a new embodiment. Furthermore, unless explicitly set forth in the claims, no element or feature is essential to any particular embodiment. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled.
Accordingly, the claims are not limited by the disclosure.