The present disclosure is directed generally to microelectronic packages with leadframes, including leadframes configured for stacked die packages, and associated systems and methods.
Packaged microelectronic assemblies, such as memory chips and microprocessor chips, typically include a microelectronic die mounted to a substrate and encased in a plastic protective covering. The die includes functional features, such as memory cells, processor circuits and interconnecting circuitry. The die also typically includes bond pads electrically coupled to the functional features. The bond pads are electrically connected to pins or other types of terminals that extend outside the protective covering for connecting the die to busses, circuits, and/or other microelectronic assemblies.
In one conventional arrangement, the die is mounted to a supporting substrate (e.g., a printed circuit board), and the die bond pads are electrically coupled to corresponding bond pads of the substrate with wirebonds. After encapsulation, the substrate can be electrically connected to external devices with solder balls or other suitable connections. Accordingly, the substrate supports the die and provides an electrical link between the die and the external devices.
In other conventional arrangements, the die can be mounted to a leadframe that has conductive leadfingers connected to a removable frame. The frame temporarily supports the leadfingers in position relative to the die during manufacture. Each leadfinger is wirebonded to a corresponding bond pad of a die, and the assembly is encapsulated in such a way that the frame and a portion of each of the leadfingers extends outside the encapsulating material. The frame is then trimmed off, and the exposed portions of each leadfinger can be bent to form pins for connecting the die to external components.
Die manufacturers have come under increasing pressure to reduce the size of their dies and the volume occupied by the dies, and to increase the capacity of the resulting encapsulated assemblies. One approach to addressing these issues has been to stack multiple dies on top of each other so as to make increased use of the limited surface area on the circuit board or other element to which the dies are mounted. One drawback with some of the existing stacking techniques is that one of the dies may fail during a following-on test process. When this occurs, the entire package, including operational dies, is typically discarded because it is not practical to replace a single die within a package. Another potential drawback is that the stacked dies can occupy a significant volume in a vertical direction, which can in some cases reduce the benefits associated with stacking the dies. Accordingly, there is a need for techniques that reduce the thickness of stacked die packages, and improve the reliability of such packages.
The present disclosure relates generally to microelectronic packages having leadframes, including leadframes configured for stacked packages, and associated systems and methods. For example, one system includes a support member having first package bond sites and leadframe bond sites that are electrically coupled to the first package bond sites. A microelectronic die carried by the support member is electrically coupled to the first package bond sites. The leadframe can be attached to the leadframe bond sites and can extend adjacent to the microelectronic die, with the microelectronic die positioned between the leadframe and the support member. The leadframe can have second package bond sites facing away from the first package bond sites. An encapsulant at least partially surrounds the leadframe and the microelectronic die, with the first and second package bond sites accessible from outside the encapsulant.
In a further particular aspect, the support member, the microelectronic die, the leadframe and the encapsulant form a first microelectronic package, and the system can further include a second microelectronic package having a configuration generally similar to that of the first, with the second microelectronic package stacked on the first, and with the first package bond sites of the second microelectronic package electrically connected to the second package bond sites of the first microelectronic package. In yet further aspects, one or more of the packages can itself include multiple microelectronic dies positioned between the corresponding leadframe and the corresponding support member.
Other aspects are directed to a leadframe for electrical coupling to a microelectronic die. The leadframe can include a conductive frame and a plurality of conductive leadfingers that are connected to and extend inwardly from the frame. Individual leadfingers can have a leadfinger surface that faces in a first direction and is located in a leadfinger plane. The individual leadfingers can further have an electrically conductive bond site with a bonding surface that is offset away from the leadfinger plane in the first direction. Leadfingers having such a construction can be positioned within microelectronic packages, with the offset bonding surfaces accessible from outside the encapsulant of the package, so as to permit coupling to the microelectronic die within the package.
Further aspects are directed to methods for making a microelectronic die system. One such method can include carrying a microelectronic die with a support member having first package bond sites and leadframe bond sites that are electrically coupled to the first package bond sites. The method can further include electrically coupling the microelectronic die to the first package bond sites, and positioning the leadframe adjacent to the microelectronic die, with the microelectronic die located between the leadframe and the support member, and with second package bond sites of the leadframe facing away from the microelectronic die. The method can further include electrically connecting the leadframe to the leadframe bond sites, at least partially surrounding the leadframe and the die with an encapsulant, and allowing access to the first and second package bond sites from outside the encapsulant. Accordingly, the package can be coupled to external devices, and can be stacked to improve device density.
In particular aspects, allowing access to the second package bond sites can include removing encapsulant adjacent to the package bond sites, grinding the encapsulant to expose the package bond sites, and/or restricting the encapsulant from being disposed adjacent to the second package bond sites. In further aspects, the support member can include a circuit board, and can be the only support member within the encapsulant.
Many specific details of certain embodiments of the invention are set forth in the following description and in
Referring to the first package 110a, the support member 130 can both carry the microelectronic die 120 and provide electrical communication to and from the die 120. Accordingly, the support member 130 can have support member bond sites 133 that are electrically coupled to corresponding die bond sites 121 of the die 120. In an embodiment shown in
Each package 110 can include an encapsulant 111 that surrounds and protects the internal components, including the wirebonds 122 and the leadframe 140. The encapsulant 111 can be positioned and/or configured with the first package bond sites 112 and the second package bond sites 113 exposed for electrical coupling to other components. The other components can include other packages 110 (e.g., when the packages 110 are stacked), and/or external circuit boards, and/or any of a wide variety of intermediate and/or end-user devices, such as computing devices, communication devices, testing devices or other electronic components.
Stacked packages can, but need not have generally similar configurations. For example, as shown in
In another arrangement, the step of removing the portion of the encapsulant 111 overlying the second package bond sites 113 can be eliminated by preventing the encapsulant 111 from being disposed on the second package bond sites 113 in the first place. For example, the mold in which the first package 110a is placed during the encapsulation process can include pins or other removable structures that cover over the second package bond sites 113 and prevent the encapsulant 111 from contacting and adhering to the second package bond sites 113. Also, as discussed above with reference to
The process for stacking the packages 110a, 110b can include placing the second package 110b on the first package 110a, with the first package bond sites 112 of the second package 110b aligned with the second package bond sites 113 of the first package 110a. When solder balls 101 are used to connect the packages 110a, 110b, a reflow operation can be used to connect the solder between the two sets of package bond sites 112, 113.
One feature of at least some of the embodiments described above with reference to
Another feature of at least some of the embodiments described above with reference to
Another feature of at least some of the embodiments described above with reference to
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. For example, the microelectronic dies can have configurations other than those shown in the Figures and/or can be combined in manners other than those shown in the Figures. In certain embodiments, when packages are stacked on each other, they need not have the same configuration. For example, the upper package may have no second package bond sites, a different leadframe arrangement than that of the lower package, or no leadframe at all. The bond sites, electrical couplers and circuitry can be arranged and/or combined in manners other than those discussed above and shown in the Figures. Although advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages. Additionally, none of the foregoing embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
200604777-3 | Jul 2006 | SG | national |
This application is a divisional of U.S. application Ser. No. 11/509,291 filed Aug. 23, 2006, which claims foreign priority benefits of Singapore Application No. 200604777-3 filed Jul. 17, 2006, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3746934 | Stein | Jul 1973 | A |
5107328 | Kinsman | Apr 1992 | A |
5128831 | Fox, III et al. | Jul 1992 | A |
5138434 | Wood et al. | Aug 1992 | A |
5145099 | Wood et al. | Sep 1992 | A |
5252857 | Kane et al. | Oct 1993 | A |
5356838 | Kim | Oct 1994 | A |
5518957 | Kim | May 1996 | A |
5554886 | Song et al. | Sep 1996 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5677566 | King et al. | Oct 1997 | A |
5760471 | Fujisawa et al. | Jun 1998 | A |
5801439 | Fujisawa et al. | Sep 1998 | A |
5811877 | Miyano et al. | Sep 1998 | A |
5826628 | Hamilton | Oct 1998 | A |
5835988 | Ishii et al. | Nov 1998 | A |
5851845 | Wood et al. | Dec 1998 | A |
5879965 | Jiang et al. | Mar 1999 | A |
5883426 | Tokuno et al. | Mar 1999 | A |
5891797 | Farrar | Apr 1999 | A |
5894218 | Farnworth et al. | Apr 1999 | A |
5933713 | Farnworth | Aug 1999 | A |
5938956 | Hembree et al. | Aug 1999 | A |
5946553 | Wood et al. | Aug 1999 | A |
5986209 | Tandy | Nov 1999 | A |
5990566 | Farnworth et al. | Nov 1999 | A |
5994784 | Ahmad | Nov 1999 | A |
RE36469 | Wood et al. | Dec 1999 | E |
6002167 | Hatano et al. | Dec 1999 | A |
6004867 | Kim et al. | Dec 1999 | A |
6008070 | Farnworth | Dec 1999 | A |
6018249 | Akram et al. | Jan 2000 | A |
6020624 | Wood et al. | Feb 2000 | A |
6020629 | Farnworth et al. | Feb 2000 | A |
6028365 | Akram et al. | Feb 2000 | A |
6030858 | Cha et al. | Feb 2000 | A |
6048744 | Corisis et al. | Apr 2000 | A |
6051878 | Akram et al. | Apr 2000 | A |
6064194 | Farnworth et al. | May 2000 | A |
6066514 | King et al. | May 2000 | A |
6072233 | Corisis et al. | Jun 2000 | A |
6072236 | Akram et al. | Jun 2000 | A |
6089920 | Farnworth et al. | Jul 2000 | A |
6097087 | Farnworth et al. | Aug 2000 | A |
6103547 | Corisis et al. | Aug 2000 | A |
6104086 | Ichikawa et al. | Aug 2000 | A |
6107122 | Wood et al. | Aug 2000 | A |
6111312 | Hirumuta et al. | Aug 2000 | A |
6124634 | Akram et al. | Sep 2000 | A |
6130474 | Corisis | Oct 2000 | A |
6133068 | Kinsman | Oct 2000 | A |
6133622 | Corisis et al. | Oct 2000 | A |
6146919 | Tandy | Nov 2000 | A |
6148509 | Schoenfeld et al. | Nov 2000 | A |
6150710 | Corisis | Nov 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6153924 | Kinsman | Nov 2000 | A |
6159764 | Kinsman et al. | Dec 2000 | A |
6175149 | Akram | Jan 2001 | B1 |
6184465 | Corisis | Feb 2001 | B1 |
6187615 | Kim et al. | Feb 2001 | B1 |
6188232 | Akram et al. | Feb 2001 | B1 |
6198172 | King et al. | Mar 2001 | B1 |
6201304 | Moden | Mar 2001 | B1 |
6212767 | Tandy | Apr 2001 | B1 |
6214716 | Akram | Apr 2001 | B1 |
6225689 | Moden et al. | May 2001 | B1 |
6228548 | King et al. | May 2001 | B1 |
6228687 | Akram et al. | May 2001 | B1 |
6229202 | Corisis | May 2001 | B1 |
6232666 | Corisis et al. | May 2001 | B1 |
6235552 | Kwon et al. | May 2001 | B1 |
6235554 | Akram et al. | May 2001 | B1 |
6239489 | Jiang | May 2001 | B1 |
6246108 | Corisis et al. | Jun 2001 | B1 |
6246110 | Kinsman et al. | Jun 2001 | B1 |
6247629 | Jacobson et al. | Jun 2001 | B1 |
6252772 | Allen | Jun 2001 | B1 |
6258623 | Moden et al. | Jul 2001 | B1 |
6258624 | Corisis | Jul 2001 | B1 |
6259153 | Corisis | Jul 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6265766 | Moden | Jul 2001 | B1 |
6271580 | Corisis | Aug 2001 | B1 |
6281042 | Ahn et al. | Aug 2001 | B1 |
6281577 | Oppermann et al. | Aug 2001 | B1 |
6284571 | Corisis et al. | Sep 2001 | B1 |
6285204 | Farnworth | Sep 2001 | B1 |
6291894 | Farnworth et al. | Sep 2001 | B1 |
6294839 | Mess et al. | Sep 2001 | B1 |
6297547 | Akram | Oct 2001 | B1 |
6303981 | Moden | Oct 2001 | B1 |
6303985 | Larson et al. | Oct 2001 | B1 |
6310390 | Moden | Oct 2001 | B1 |
6313998 | Kledzik et al. | Nov 2001 | B1 |
6320251 | Glenn | Nov 2001 | B1 |
6326697 | Farnworth | Dec 2001 | B1 |
6326698 | Akram | Dec 2001 | B1 |
6329222 | Corisis et al. | Dec 2001 | B1 |
6329705 | Ahmad | Dec 2001 | B1 |
6331221 | Cobbley | Dec 2001 | B1 |
6331448 | Ahmad | Dec 2001 | B1 |
6344976 | Schoenfeld et al. | Feb 2002 | B1 |
6388333 | Taniguchi et al. | May 2002 | B1 |
6407381 | Glenn et al. | Jun 2002 | B1 |
6429528 | King et al. | Aug 2002 | B1 |
6432796 | Peterson | Aug 2002 | B1 |
6433418 | Fujisawa et al. | Aug 2002 | B1 |
6437449 | Foster | Aug 2002 | B1 |
6437586 | Robinson | Aug 2002 | B1 |
6483044 | Ahmad | Nov 2002 | B1 |
6503780 | Glenn et al. | Jan 2003 | B1 |
6548376 | Jiang | Apr 2003 | B2 |
6548757 | Russell et al. | Apr 2003 | B1 |
6552910 | Moon et al. | Apr 2003 | B1 |
6560117 | Moon et al. | May 2003 | B2 |
6564979 | Savaria | May 2003 | B2 |
6576531 | Peng et al. | Jun 2003 | B2 |
6607937 | Corisis | Aug 2003 | B1 |
6614092 | Eldridge et al. | Sep 2003 | B2 |
6652910 | Pan et al. | Nov 2003 | B2 |
6746894 | Fee et al. | Jun 2004 | B2 |
6864566 | Choi et al. | Mar 2005 | B2 |
6885107 | Kinsman | Apr 2005 | B2 |
6900530 | Tsai | May 2005 | B1 |
7006360 | Kim | Feb 2006 | B2 |
7015587 | Poddar | Mar 2006 | B1 |
7119427 | Kim | Oct 2006 | B2 |
7394148 | Karnezos | Jul 2008 | B2 |
7589417 | Ramanathan et al. | Sep 2009 | B2 |
7633157 | Jiang et al. | Dec 2009 | B2 |
8030098 | Liou et al. | Oct 2011 | B1 |
8319353 | Liou et al. | Nov 2012 | B1 |
8450839 | Corisis et al. | May 2013 | B2 |
20020096760 | Simelgor et al. | Jul 2002 | A1 |
20030113952 | Sambasivam et al. | Jun 2003 | A1 |
20050101056 | Song et al. | May 2005 | A1 |
20050242421 | Tandy | Nov 2005 | A1 |
20060068527 | Cobbley et al. | Mar 2006 | A1 |
20060138628 | Tzu | Jun 2006 | A1 |
20070013038 | Yang | Jan 2007 | A1 |
20070108560 | Tang et al. | May 2007 | A1 |
20070210441 | Corisis et al. | Sep 2007 | A1 |
20070284715 | Li et al. | Dec 2007 | A1 |
20080012110 | Chong et al. | Jan 2008 | A1 |
20090026600 | Koon et al. | Jan 2009 | A1 |
20090045489 | Koon et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
0522518 | Jan 1993 | EP |
1503417 | Feb 2005 | EP |
60206058 | Oct 1985 | JP |
61018164 | Jan 1986 | JP |
20020024654 | Apr 2002 | KR |
2005017968 | Feb 2005 | WO |
Entry |
---|
Search Report and Written Opinion issued Mar. 9, 2009 in Singapore Application No. 200604777-3. |
Unisemicon, Product Information, Stack Package Product for DDR/DDR2, 2 pages, retrieved from the Internet on May 30, 2006, <http://www.unisemicon.com/wizhome/menu—48.html>. |
Number | Date | Country | |
---|---|---|---|
20100173454 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11509291 | Aug 2006 | US |
Child | 12726130 | US |