Since the development of the integrated circuit (IC), the semiconductor industry has experienced continued rapid growth due to continuous improvements in the integration density of various electronic components (i.e., transistors, diodes, resistors, capacitors, etc.). For the most part, these improvements in integration density have come from repeated reductions in minimum feature size, which allows more components to be integrated into a given area.
These integration improvements are essentially two-dimensional (2D) in nature, in that the area occupied by the integrated components is essentially on the surface of the semiconductor wafer. The increased density and corresponding decrease in area of the integrated circuit has generally surpassed the ability to bond an integrated circuit chip directly onto a substrate. Interposers have been used to redistribute ball contact areas from that of the chip to a larger area of the interposer. Further, interposers have allowed for a three-dimensional (3D) package that includes multiple chips. Other packages have also been developed to incorporate 3D aspects.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
Various embodiments include methods applied to the formation of a device package (e.g., a chip-on-wafer-on-substrate (CoWoS) package) comprising one or more semiconductor chips bonded to an interposer and a package substrate bonded to a side of the interposer opposing the one or more semiconductor chips. The interposer may include a redistribution structure (e.g., comprising redistribution lines and/or conductive vias disposed in one or more insulating layers) disposed on a semiconductor substrate. The redistribution structure may be formed by the methods that include forming a patterned photoresist over a first conductive feature and forming a conductive via in the patterned photoresist over the first conductive feature. The photoresist is removed and a polyimide layer is coated over the conductive via and the first conductive feature. The polyimide layer is etched to expose a top surface of the conductive via and a second conductive feature is then formed over the conductive via and the etched polyimide layer. One or more embodiments disclosed herein may include allowing the conductive via to have a smaller width and a larger height (e.g., having a higher aspect ratio), which allows for a higher routing density that is suitable for high-speed transmission, high capacity bandwidth, and high speed computing applications. In addition, the polyimide layer can be formed to a greater thickness, which increases the reliability of the device package and helps to prevent resistive-capacitive (RC) delay during operation. In addition, the greater thickness of the polyimide layer enhances the stability of the device package.
Embodiments will be described with respect to a specific context, namely a Die-Interposer-Substrate stacked package using Chip-on-Wafer-on-Substrate (CoWoS) processing. Other embodiments may also be applied, however, to other packages, such as a Die-Die-Substrate stacked package, a System-on-Integrated-Chip (SoIC) device package, an Integrated Fan-Out (InFO) package, and other processing. Embodiments discussed herein are to provide examples to enable making or using the subject matter of this disclosure, and a person having ordinary skill in the art will readily understand modifications that can be made while remaining within contemplated scopes of different embodiments. Like reference numbers and characters in the figures below refer to like components. Although method embodiments may be discussed as being performed in a particular order, other method embodiments may be performed in any logical order.
An interconnect structure 64 comprising one or more dielectric layer(s) and respective metallization pattern(s) is formed on the active surface 62. The metallization pattern(s) in the dielectric layer(s) may route electrical signals between the devices, such as by using vias and/or traces, and may also contain various electrical devices, such as capacitors, resistors, inductors, or the like. The various devices and metallization patterns may be interconnected to perform one or more functions. The functions may include memory structures, processing structures, sensors, amplifiers, power distribution, input/output circuitry, or the like. Additionally, die connectors 66, such as conductive pillars (for example, comprising a metal such as copper), are formed in and/or on the interconnect structure 64 to provide an external electrical connection to the circuitry and devices. In some embodiments, the die connectors 66 protrude from the interconnect structure 64 to form pillar structure to be utilized when bonding the dies 68 to other structures. One of ordinary skill in the art will appreciate that the above examples are provided for illustrative purposes. Other circuitry may be used as appropriate for a given application.
More particularly, an inter-metallization dielectric (IMD) layer may be formed in the interconnect structure 64. The IMD layer may be formed, for example, of a low-K dielectric material, such as phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorosilicate glass (FSG), SiOxCy, Spin-On-Glass, Spin-On-Polymers, silicon carbon material, compounds thereof, composites thereof, combinations thereof, or the like, by any suitable method known in the art, such as spinning, chemical vapor deposition (CVD), plasma-enhanced CVD (PECVD), high-density plasma chemical vapor deposition (HDP-CVD), or the like. A metallization pattern may be formed in the IMD layer, for example, by using photolithography techniques to deposit and pattern a photoresist material on the IMD layer to expose portions of the IMD layer that are to become the metallization pattern. An etch process, such as an anisotropic dry etch process, may be used to create recesses and/or openings in the IMD layer corresponding to the exposed portions of the IMD layer. The recesses and/or openings may be lined with a diffusion barrier layer and filled with a conductive material. The diffusion barrier layer may comprise one or more layers of tantalum nitride, tantalum, titanium nitride, titanium, cobalt tungsten, the like, or a combination thereof, deposited by atomic layer deposition (ALD), or the like. The conductive material of the metallization patterns may comprise copper, aluminum, tungsten, silver, and combinations thereof, or the like, deposited by CVD, physical vapor deposition (PVD), or the like. Any excessive diffusion barrier layer and/or conductive material on the IMD layer may be removed, such as by using a chemical mechanical polish (CMP).
In
Each of the dies 68 may include one or more logic dies (e.g., central processing unit, graphics processing unit, system-on-a-chip, field-programmable gate array (FPGA), microcontroller, or the like), memory dies (e.g., dynamic random access memory (DRAM) die, static random access memory (SRAM) die, or the like), power management dies (e.g., power management integrated circuit (PMIC) die), radio frequency (RF) dies, sensor dies, micro-electro-mechanical-system (MEMS) dies, signal processing dies (e.g., digital signal processing (DSP) die), front-end dies (e.g., analog front-end (AFE) dies), the like, or a combination thereof. Also, in some embodiments, the dies 68 may be different sizes (e.g., different heights and/or surface areas), and in other embodiments, the dies 68 may be the same size (e.g., same heights and/or surface areas).
Through-vias (TVs) 74 are formed to extend from the first surface 72 of substrate 70 into substrate 70. The TVs 74 are also sometimes referred to as through-substrate vias or through-silicon vias when substrate 70 is a silicon substrate. The TVs 74 may be formed prior to forming the redistribution structure 93. In some embodiments, the TVs 74 may be formed by forming recesses in the substrate 70 by, for example, etching, milling, laser techniques, a combination thereof, and/or the like. A thin dielectric material may be formed in the recesses, such as by using an oxidation technique. A thin barrier layer may be conformally deposited over the front side of the substrate 70 and in the openings, such as by CVD, ALD, PVD, thermal oxidation, a combination thereof, and/or the like. The barrier layer may comprise a nitride or an oxynitride, such as titanium nitride, titanium oxynitride, tantalum nitride, tantalum oxynitride, tungsten nitride, a combination thereof, and/or the like. A conductive material may be deposited over the thin barrier layer and in the openings. The conductive material may be formed by an electro-chemical plating process, CVD, ALD, PVD, a combination thereof, and/or the like. Examples of conductive materials are copper, tungsten, aluminum, silver, gold, a combination thereof, and/or the like. Excess conductive material and barrier layer is removed from the front side of the substrate 70 by, for example, CMP. Thus, the TVs 74 may comprise a conductive material and a thin barrier layer between the conductive material and the substrate 70.
Still referring to
The first redistribution portion 93A may comprise insulating layers (e.g., insulating layer 42, insulating layer 44, insulating layer 46, and insulating layer 48), and metallization patterns within each of the insulating layers. In some embodiments, the first redistribution portion 93A may have any number of insulating layers or metallization patterns.
Each of the insulating layers 42, 44, 46, or 48 may comprise, for example, a low-K dielectric material, such as phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorosilicate glass (FSG), SiOxCy, Spin-On-Glass, Spin-On-Polymers, silicon carbon material, compounds thereof, composites thereof, combinations thereof, or the like, formed by any suitable method known in the art, such as spinning, chemical vapor deposition (CVD), plasma-enhanced CVD (PECVD), high-density plasma chemical vapor deposition (HDP-CVD), or the like. A metallization pattern may then be formed in the insulating layer, for example, by using photolithography techniques to deposit and pattern a photoresist material on the insulating layer to expose portions of the insulating layer that are to become the metallization pattern. An etch process, such as an anisotropic dry etch process, may be used to create recesses and/or openings in the insulating layer corresponding to the exposed portions of the insulating layer. The recesses and/or openings may be lined with a diffusion barrier layer and filled with a conductive material. The diffusion barrier layer may comprise one or more layers of tantalum nitride, tantalum, titanium nitride, titanium, cobalt tungsten, the like, or a combination thereof, deposited by atomic layer deposition (ALD), or the like. The conductive material of the metallization patterns may comprise copper, aluminum, tungsten, silver, and combinations thereof, or the like, deposited by CVD, physical vapor deposition (PVD), or the like. Any excessive diffusion barrier layer and/or conductive material on the insulating layer may be removed, such as by using a chemical mechanical polish (CMP).
Further referring to
In
In
After the formation of the seed layer 69, a photoresist is formed and patterned on top of the seed layer 69 in a desired pattern for the conductive features 55 (shown subsequently in
Advantages may be achieved as a result of the formation of the second redistribution portion 93B by methods that include forming the photoresist 65 over the conductive material 63 and forming the conductive via 67 in the photoresist 65 over the conductive material 63. The photoresist 65 is removed and the insulating layer 57 is coated over the conductive via 67 and the conductive material 63. The insulating layer 57 is etched to expose a top surface of the conductive via 67 and the conductive feature 55 is then formed over the conductive via 67 and the etched insulating layer 57. These advantages include reduced shrinkage of the insulating layer 57 during a subsequent curing process as a result of the conductive via 67 being formed prior to the formation of the insulating layer 57. This allows the conductive via 67 to be formed having a smaller width and a larger height (e.g., having a higher aspect ratio), as well as allowing the conductive feature 59 to have a smaller width This further allows for a higher routing density that is suitable for high-speed transmission, high capacity bandwidth, and high speed computing applications. In addition, the insulating layer 57 can be formed to a greater thickness, which increases device reliability and helps to prevent resistive-capacitive (RC) delay during operation. Further, a greater thickness of the insulating layer 57 will enhance device package structural stability.
Advantages can be achieved as a result of the formation of the second redistribution portion 93B by methods that include forming the photoresist 65 over the conductive material 63 and forming the conductive via 67 in the photoresist 65 over the conductive material 63. The photoresist 65 is removed and the insulating layer 57 is coated over the conductive via 67 and the conductive material 63. The insulating layer 57 is etched to expose a top surface of the conductive via 67 and the conductive feature 55 is then formed over the conductive via 67 and the etched insulating layer 57. The conductive via 67 has a trapezoid shape and the width of the conductive via 67 decreases in a direction from the conductive feature 59 towards the conductive feature 55 (for example, the width of the conductive via 67 may decrease in a direction from the substrate 70 towards the subsequently attached dies 68 and dies 88 (shown in
In
Still referring to
In
In
In
In
In another embodiment, the electrical connectors 77/78 do not include the metal pillars and are solder balls and/or bumps, such as controlled collapse chip connection (C4), electroless nickel immersion Gold (ENIG), electroless nickel electroless palladium immersion gold technique (ENEPIG) formed bumps, or the like. In this embodiment, the bump electrical connectors 77/78 may include a conductive material such as solder, copper, aluminum, gold, nickel, silver, palladium, tin, the like, or a combination thereof. In this embodiment, the electrical connectors 77/78 are formed by initially forming a layer of solder through such commonly used methods such as evaporation, electroplating, printing, solder transfer, ball placement, or the like. Once a layer of solder has been formed on the structure, a reflow may be performed in order to shape the material into the desired bump shapes.
In
The dies 88 may be formed through similar processing as described above in reference to the dies 68. In some embodiments, the dies 88 include one or more memory dies, such as a stack of memory dies (e.g., DRAM dies, SRAM dies, High-Bandwidth Memory (HBM) dies, Hybrid Memory Cubes (HMC) dies, or the like). In the stack of memory dies embodiments, a die 88 can include both memory dies and a memory controller, such as, for example, a stack of four or eight memory dies with a memory controller. Also, in some embodiments, the dies 88 may be different sizes (e.g., different heights and/or surface areas), and in other embodiments, the dies 88 may be the same size (e.g., same heights and/or surface areas).
In some embodiments, the dies 88 may be similar heights to those of the dies 68 (as shown in
The dies 88 include a main body 80, an interconnect structure 84, and die connectors 86. The main body 80 of the dies 88 may comprise any number of dies, substrates, transistors, active devices, passive devices, or the like. In an embodiment, the main body 80 may include a bulk semiconductor substrate, semiconductor-on-insulator (SOI) substrate, multi-layered semiconductor substrate, or the like. The semiconductor material of the main body 80 may be silicon, germanium, a compound semiconductor including silicon germanium, silicon carbide, gallium arsenic, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide; an alloy semiconductor including SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP; or combinations thereof. Other substrates, such as multi-layered or gradient substrates, may also be used. The main body 80 may be doped or undoped. Devices, such as transistors, capacitors, resistors, diodes, and the like, may be formed in and/or on an active surface.
An interconnect structure 84 comprising one or more dielectric layer(s) and respective metallization pattern(s) is formed on the active surface. The metallization pattern(s) in the dielectric layer(s) may route electrical signals between the devices, such as by using vias and/or traces, and may also contain various electrical devices, such as capacitors, resistors, inductors, or the like. The various devices and metallization patterns may be interconnected to perform one or more functions. The functions may include memory structures, processing structures, sensors, amplifiers, power distribution, input/output circuitry, or the like. Additionally, die connectors 86, such as conductive pillars (for example, comprising a metal such as copper), are formed in and/or on the interconnect structure 84 to provide an external electrical connection to the circuitry and devices. In some embodiments, the die connectors 86 protrude from the interconnect structure 84 to form pillar structure to be utilized when bonding the dies 88 to other structures. One of ordinary skill in the art will appreciate that the above examples are provided for illustrative purposes. Other circuitry may be used as appropriate for a given application.
More particularly, an IMD layer may be formed in the interconnect structure 84. The IMD layer may be formed, for example, of a low-K dielectric material, such as PSG, BPSG, FSG, SiOxCy, Spin-On-Glass, Spin-On-Polymers, silicon carbon material, compounds thereof, composites thereof, combinations thereof, or the like, by any suitable method known in the art, such as spinning, CVD, PECVD, HDP-CVD, or the like. A metallization pattern may be formed in the IMD layer, for example, by using photolithography techniques to deposit and pattern a photoresist material on the IMD layer to expose portions of the IMD layer that are to become the metallization pattern. An etch process, such as an anisotropic dry etch process, may be used to create recesses and/or openings in the IMD layer corresponding to the exposed portions of the IMD layer. The recesses and/or openings may be lined with a diffusion barrier layer and filled with a conductive material. The diffusion barrier layer may comprise one or more layers of tantalum nitride, tantalum, titanium nitride, titanium, cobalt tungsten, the like, or a combination thereof, deposited by ALD, or the like. The conductive material of the metallization patterns may comprise copper, aluminum, tungsten, silver, and combinations thereof, or the like, deposited by CVD, PVD, or the like. Any excessive diffusion barrier layer and/or conductive material on the IMD layer may be removed, such as by using a CMP.
In the embodiments wherein the die connectors 66 and 86 protrude from the interconnect structures 64 and 84, respectively, the metal pillars 79 may be excluded from the dies 68 and 86 as the protruding die connectors 66 and 86 may be used as the pillars for the metal cap layers 78.
The conductive joints 91 electrically couple the circuits in the dies 68 and the dies 88 through interconnect structures 84 and 64 and die connectors 86 and 66, respectively, to redistribution structure 93 and TVs 74 in components 96.
In some embodiments, before bonding the electrical connectors 77/78, the electrical connectors 77/78 are coated with a flux (not shown), such as a no-clean flux. The electrical connectors 77/78 may be dipped in the flux or the flux may be jetted onto the electrical connectors 77/78. In another embodiment, the flux may also be applied to the electrical connectors 79/78. In some embodiments, the electrical connectors 77/78 and/or 79/78 may have an epoxy flux (not shown) formed thereon before they are reflowed with at least some of the epoxy portion of the epoxy flux remaining after the dies 68 and the dies 88 are attached to the components 96. This remaining epoxy portion may act as an underfill to reduce stress and protect the joints resulting from the reflowing the electrical connectors 77/78/79.
The bonding between the dies 68 and 88 and the components 96 may be a solder bonding or a direct metal-to-metal (such as a copper-to-copper or tin-to-tin) bonding. In an embodiment, the dies 68 and the dies 88 are bonded to the components 96 by a reflow process. During this reflow process, the electrical connectors 77/78/79 are in contact with the die connectors 66 and 86, respectively, and the conductive features 53 of the redistribution structure 93 to physically and electrically couple the dies 68 and the dies 88 to the components 96. After the bonding process, an inter-metallic compound (IMC) (not shown) may form at the interface of the metal pillars 77 and 79 and the metal cap layers 78.
In
In some embodiments, the dies 68 are system-on-a-chip (SoC) or a graphics processing unit (GPU) and the second dies are memory dies that may utilized by the dies 68. In an embodiment, the dies 88 are stacked memory dies. For example, the stacked memory dies 88 may include low-power (LP) double data rate (DDR) memory modules, such as LPDDR1, LPDDR2, LPDDR3, LPDDR4, or the like memory modules.
In
In
In
In
In
In
In some embodiments, the electrical connectors 120 are solder balls and/or bumps, such as ball grid array (BGA) balls, C4 micro bumps, ENIG formed bumps, ENEPIG formed bumps, or the like. The electrical connectors 120 may include a conductive material such as solder, copper, aluminum, gold, nickel, silver, palladium, tin, the like, or a combination thereof. In some embodiments, the electrical connectors 120 are formed by initially forming a layer of solder through such commonly used methods such as evaporation, electroplating, printing, solder transfer, ball placement, or the like. Once a layer of solder has been formed on the structure, a reflow may be performed in order to shape the material into the desired bump shapes. In another embodiment, the electrical connectors 120 are metal pillars (such as a copper pillar) formed by a sputtering, printing, electro plating, electroless plating, CVD, or the like. The metal pillars may be solder free and have substantially vertical sidewalls. In some embodiments, a metal cap layer (not shown) is formed on the top of the metal pillar connectors 120. The metal cap layer may include nickel, tin, tin-lead, gold, silver, palladium, indium, nickel-palladium-gold, nickel-gold, the like, or a combination thereof and may be formed by a plating process.
The electrical connectors 120 may be used to bond to an additional electrical component, which may be a semiconductor substrate, a package substrate, a Printed Circuit Board (PCB), or the like (see 300 in
In
Additionally, one or more surface devices 140 may be connected to the substrate 300. The surface devices 140 may be used to provide additional functionality or programming to the component package 200, or the package as a whole. In an embodiment, the surface devices 140 may include surface mount devices (SMDs) or integrated passive devices (IPDs) that include passive devices such as resistors, inductors, capacitors, jumpers, combinations of these, or the like that are desired to be connected to and utilized in conjunction with component package 200, or other parts of the package. The surface devices 140 may be placed on a first major surface of the substrate 300, an opposing major surface of the substrate 300, or both, according to various embodiments.
Devices (represented by a transistor) 254 may be formed at the front surface of the semiconductor substrate 252. The devices 254 may be active devices (e.g., transistors, diodes, etc.), capacitors, resistors, etc. An inter-layer dielectric (ILD) 256 is over the front surface of the semiconductor substrate 252. The ILD 256 surrounds and may cover the devices 254. The ILD 256 may include one or more dielectric layers formed of materials such as Phospho-Silicate Glass (PSG), Boro-Silicate Glass (BSG), Boron-Doped Phospho-Silicate Glass (BPSG), undoped Silicate Glass (USG), or the like.
Conductive plugs 258 extend through the ILD 256 to electrically and physically couple the devices 254. For example, when the devices 254 are transistors, the conductive plugs 258 may couple the gates and source/drain regions of the transistors. The conductive plugs 258 may be formed of tungsten, cobalt, nickel, copper, silver, gold, aluminum, the like, or combinations thereof. An interconnect structure 260 is over the ILD 256 and conductive plugs 258. The interconnect structure 260 interconnects the devices 254 to form an integrated circuit. The interconnect structure 260 may be formed by, for example, metallization patterns in dielectric layers on the ILD 256. The metallization patterns include metal lines and vias formed in one or more low-k dielectric layers. The metallization patterns of the interconnect structure 260 are electrically coupled to the devices 254 by the conductive plugs 258.
The integrated circuit die 250 further includes pads 262, such as aluminum pads, to which external connections are made. The pads 262 are on the active side of the integrated circuit die 250, such as in and/or on the interconnect structure 260. One or more passivation films 264 are on the integrated circuit die 250, such as on portions of the interconnect structure 260 and pads 262. Openings extend through the passivation films 264 to the pads 262. Die connectors 266, such as conductive pillars (for example, formed of a metal such as copper), extend through the openings in the passivation films 264 and are physically and electrically coupled to respective ones of the pads 262. The die connectors 266 may be formed by, for example, plating, or the like. The die connectors 266 electrically couple the respective integrated circuits of the integrated circuit die 250.
Advantages can be achieved as a result of the formation of the redistribution structure 293 by methods and using materials that are similar to those during the formation of the second redistribution portion 93B described previously in
In
Conductive connectors 350 are then formed on the UBMs 238. The conductive connectors 350 may be ball grid array (BGA) connectors, solder balls, metal pillars, controlled collapse chip connection (C4) bumps, micro bumps, electroless nickel-electroless palladium-immersion gold technique (ENEPIG) formed bumps, or the like. The conductive connectors 350 may include a conductive material such as solder, copper, aluminum, gold, nickel, silver, palladium, tin, the like, or a combination thereof. In some embodiments, the conductive connectors 350 are formed by initially forming a layer of solder through evaporation, electroplating, printing, solder transfer, ball placement, or the like. Once a layer of solder has been formed on the structure, a reflow may be performed in order to shape the material into the desired bump shapes. In another embodiment, the conductive connectors 350 comprise metal pillars (such as a copper pillar) formed by sputtering, printing, electro plating, electroless plating, CVD, or the like. The metal pillars may be solder free and have substantially vertical sidewalls. In some embodiments, a metal cap layer is formed on the top of the metal pillars. The metal cap layer may include nickel, tin, tin-lead, gold, silver, palladium, indium, nickel-palladium-gold, nickel-gold, the like, or a combination thereof and may be formed by a plating process.
The first package component 500 may then be mounted to the package substrate 700 using the conductive connectors 350. The package substrate 700 includes a substrate core 302 and bond pads 304 over the substrate core 302. The substrate core 302 may be made of a semiconductor material such as silicon, germanium, diamond, or the like. Alternatively, compound materials such as silicon germanium, silicon carbide, gallium arsenic, indium arsenide, indium phosphide, silicon germanium carbide, gallium arsenic phosphide, gallium indium phosphide, combinations of these, and the like, may also be used. Additionally, the substrate core 302 may be an SOI substrate. Generally, an SOI substrate includes a layer of a semiconductor material such as epitaxial silicon, germanium, silicon germanium, SOI, SGOI, or combinations thereof. The substrate core 302 is, in one alternative embodiment, based on an insulating core such as a fiberglass reinforced resin core. One example core material is fiberglass resin such as FR4. Alternatives for the core material include bismaleimide-triazine BT resin, or alternatively, other PCB materials or films. Build up films such as ABF or other laminates may be used for substrate core 302.
The substrate core 302 may include active and passive devices (not shown). A wide variety of devices such as transistors, capacitors, resistors, combinations of these, and the like may be used to generate the structural and functional requirements of the design for the device stack. The devices may be formed using any suitable methods.
The substrate core 302 may also include metallization layers and vias (not shown), with the bond pads 304 being physically and/or electrically coupled to the metallization layers and vias. The metallization layers may be formed over the active and passive devices and are designed to connect the various devices to form functional circuitry. The metallization layers may be formed of alternating layers of dielectric material (e.g., low-k dielectric material) and conductive material (e.g., copper) with vias interconnecting the layers of conductive material and may be formed through any suitable process (such as deposition, damascene, dual damascene, or the like). In some embodiments, the substrate core 302 is substantially free of active and passive devices.
In some embodiments, the conductive connectors 350 are reflowed to attach the first package component 500 to the bond pads 304. The conductive connectors 350 electrically and/or physically couple the package substrate 700, including metallization layers in the substrate core 302, to the first package component 500. In some embodiments, a solder resist 306 is formed on the substrate core 302. The conductive connectors 350 may be disposed in openings in the solder resist 306 to be electrically and mechanically coupled to the bond pads 304. The solder resist 306 may be used to protect areas of the substrate core 302 from external damage.
The conductive connectors 350 may have an epoxy flux (not shown) formed thereon before they are reflowed with at least some of the epoxy portion of the epoxy flux remaining after the first package component 500 is attached to the package substrate 700. This remaining epoxy portion may act as an underfill to reduce stress and protect the joints resulting from reflowing the conductive connectors 350. In some embodiments, an underfill 308 may be formed between the first package component 500 and the package substrate 700 and surrounding the conductive connectors 350. The underfill 308 may be formed by a capillary flow process after the first package component 500 is attached or may be formed by a suitable deposition method before the first package component 500 is attached.
In an embodiment, the second package component 600 is electrically and physically coupled to the first package component 500. The second package component 600 includes, for example, a substrate 402 and one or more stacked dies 410 (e.g., 410A and 410B) coupled to the substrate 402. Although one set of stacked dies 410 (410A and 410B) is illustrated, in other embodiments, a plurality of stacked dies 410 (each having one or more stacked dies) may be disposed side-by-side coupled to a same surface of the substrate 402. The substrate 402 may be made of a semiconductor material such as silicon, germanium, diamond, or the like. In some embodiments, compound materials such as silicon germanium, silicon carbide, gallium arsenic, indium arsenide, indium phosphide, silicon germanium carbide, gallium arsenic phosphide, gallium indium phosphide, combinations of these, and the like, may also be used. Additionally, the substrate 402 may be a silicon-on-insulator (SOI) substrate. Generally, an SOI substrate includes a layer of a semiconductor material such as epitaxial silicon, germanium, silicon germanium, SOI, silicon germanium on insulator (SGOI), or combinations thereof. The substrate 402 is, in one alternative embodiment, based on an insulating core such as a fiberglass reinforced resin core. One example core material is fiberglass resin such as FR4. Alternatives for the core material include bismaleimide-triazine (BT) resin, or alternatively, other printed circuit board (PCB) materials or films. Build up films such as Ajinomoto build-up film (ABF) or other laminates may be used for the substrate 402.
The substrate 402 may include active and passive devices (not shown). A wide variety of devices such as transistors, capacitors, resistors, combinations of these, and the like may be used to generate the structural and functional requirements of the design for the second package component 600. The devices may be formed using any suitable methods.
The substrate 402 may also include metallization layers (not shown) and the conductive vias 408. The metallization layers may be formed over the active and passive devices and are designed to connect the various devices to form functional circuitry. The metallization layers may be formed of alternating layers of dielectric material (e.g., low-k dielectric material) and conductive material (e.g., copper) with vias interconnecting the layers of conductive material and may be formed through any suitable process (such as deposition, damascene, dual damascene, or the like). In some embodiments, the substrate 402 is substantially free of active and passive devices.
The substrate 402 may have bond pads 404 on a first side of the substrate 402 to couple to the stacked dies 410, and bond pads 406 on a second side of the substrate 402, the second side being opposite the first side of the substrate 402, to couple to conductive connectors 452. In some embodiments, the bond pads 404 and 406 are formed by forming recesses (not shown) into dielectric layers (not shown) on the first and second sides of the substrate 402. The recesses may be formed to allow the bond pads 404 and 406 to be embedded into the dielectric layers. In other embodiments, the recesses are omitted as the bond pads 404 and 406 may be formed on the dielectric layer. In some embodiments, the bond pads 404 and 406 include a thin seed layer (not shown) made of copper, titanium, nickel, gold, palladium, the like, or a combination thereof. The conductive material of the bond pads 404 and 406 may be deposited over the thin seed layer. The conductive material may be formed by an electro-chemical plating process, an electroless plating process, CVD, atomic layer deposition (ALD), PVD, the like, or a combination thereof. In an embodiment, the conductive material of the bond pads 404 and 406 is copper, tungsten, aluminum, silver, gold, the like, or a combination thereof.
In some embodiments, the bond pads 404 and the bond pads 406 are UBMs that include three layers of conductive materials, such as a layer of titanium, a layer of copper, and a layer of nickel. Other arrangements of materials and layers, such as an arrangement of chrome/chrome-copper alloy/copper/gold, an arrangement of titanium/titanium tungsten/copper, or an arrangement of copper/nickel/gold, may be utilized for the formation of the bond pads 404 and 406. Any suitable materials or layers of material that may be used for the bond pads 404 and 406 are fully intended to be included within the scope of the current application. In some embodiments, conductive vias 408 extend through the substrate 402 and couple at least one of the bond pads 404 to at least one of the bond pads 406.
In the illustrated embodiment, the stacked dies 410 are coupled to the substrate 402 by wire bonds 412, although other connections may be used, such as conductive bumps. In an embodiment, the stacked dies 410 are stacked memory dies. For example, the stacked dies 410 may be memory dies such as low-power (LP) double data rate (DDR) memory modules, such as LPDDR1, LPDDR2, LPDDR3, LPDDR4, or the like memory modules.
The stacked dies 410 and the wire bonds 412 may be encapsulated by a molding material 414. The molding material 414 may be molded on the stacked dies 410 and the wire bonds 412, for example, using compression molding. In some embodiments, the molding material 414 is a molding compound, a polymer, an epoxy, silicon oxide filler material, the like, or a combination thereof. A curing process may be performed to cure the molding material 414; the curing process may be a thermal curing, a UV curing, the like, or a combination thereof.
The second package component 600 is mechanically and electrically bonded to the first package component 500 by way of the conductive connectors 452, the bond pads 406, and a metallization pattern of a back-side redistribution structure 206 on the first package component 500. In some embodiments, the stacked dies 410 may be coupled to the integrated circuit dies 250 through the wire bonds 412, the bond pads 404 and 406, the conductive vias 408, the conductive connectors 452, the back-side redistribution structure 206, the through vias 216, and the redistribution structure 293.
In some embodiments, a solder resist (not shown) is formed on the side of the substrate 402 opposing the stacked dies 410. The conductive connectors 452 may be disposed in openings in the solder resist to be electrically and mechanically coupled to conductive features (e.g., the bond pads 406) in the substrate 402. The solder resist may be used to protect areas of the substrate 202 from external damage.
In some embodiments, the conductive connectors 452 have an epoxy flux (not shown) formed thereon before they are reflowed with at least some of the epoxy portion of the epoxy flux remaining after the second package component 600 is attached to the first package component 500.
In some embodiments, an underfill (not shown) is formed between the first package component 500 and the second package component 600, surrounding the conductive connectors 452. The underfill may reduce stress and protect the joints resulting from the reflowing of the conductive connectors 452. The underfill may be formed by a capillary flow process after the second package component 600 is attached, or may be formed by a suitable deposition method before the second package component 600 is attached. In embodiments where the epoxy flux is formed, it may act as the underfill.
The embodiments of the present disclosure have some advantageous features. The embodiments include the formation of a device package (e.g., a chip-on-wafer-on-substrate (CoWoS) package) comprising one or more semiconductor chips bonded to an interposer and a package substrate bonded to a side of the interposer opposing the one or more semiconductor chips. The interposer may include a redistribution structure (e.g., comprising redistribution lines and/or conductive vias disposed in one or more insulating layers) disposed on a semiconductor substrate. The redistribution structure may be formed by the methods that include forming a patterned photoresist over a first conductive feature and forming a conductive via in the patterned photoresist over the first conductive feature. The photoresist is removed and a polyimide layer is coated over the conductive via and the first conductive feature. The polyimide layer is etched to expose a top surface of the conductive via and a second conductive feature is then formed over the conductive via and the etched polyimide layer. One or more embodiments disclosed herein may include allowing the conductive via to have a smaller width and a larger height (e.g., having a higher aspect ratio), which allows for a higher routing density that is suitable for high-speed transmission, high capacity bandwidth, and high speed computing applications. In addition, the polyimide layer can be formed to a greater thickness, which increases the reliability of the device package and helps to prevent resistive-capacitive (RC) delay during operation.
In accordance with an embodiment, a method includes forming a redistribution structure, where forming the redistribution structure includes forming a first conductive material on a portion of a first seed layer; forming a mask over the first seed layer and the first conductive material, where an opening in the mask at least partially exposes the first conductive material; forming a first conductive via in the opening; etching portions of the first seed layer using the first conductive material as an etching mask; depositing a first insulating layer over the first conductive via, the first conductive material and remaining portions of the first seed layer; and etching the first insulating layer such that a portion of the first conductive via protrudes above a top surface of the first insulating layer; and attaching a first die to the redistribution structure using first electrical connectors. In an embodiment, the method further includes depositing a second seed layer on the first insulating layer and the first conductive via; and plating a second conductive material on a portion of the second seed layer. In an embodiment, the second seed layer is in physical contact with a top surface and sidewalls of a first portion of the first conductive via, the second seed layer being separate from sidewalls of a second portion of the first conductive via, and the first portion of the first conductive via being above the second portion of the first conductive via. In an embodiment, etching the first insulating layer includes a plasma etching process that includes a combination of plasmas derived from CF4 and O2 gases. In an embodiment, the first insulating layer includes a polyimide. In an embodiment, after etching the first insulating layer, the first insulating layer has a thickness greater than 10 μm. In an embodiment, the first conductive via has a trapezoid shape, where a width of the first conductive via decreases in a direction from the first conductive material towards the first die, and a bottom corner of the first conductive via has an inner angle that is smaller than 90°.
In accordance with an embodiment, a method includes forming a first redistribution structure over a substrate, where forming the first redistribution structure includes depositing a first seed layer over a first conductive via and a first insulating layer; forming a first conductive material on the first seed layer; forming a mask over the first seed layer and the first conductive material; forming an opening in the mask that exposes the first conductive material; forming a second conductive via in the opening; depositing a second insulating layer around the second conductive via and the first conductive material; and forming a conductive feature over and electrically connected to the second conductive via, where the first insulating layer and the second insulating layer each have a respective thickness that is greater than 10 μm. In an embodiment, the conductive feature has a width that is in a range from 1.2 μm to 12 μm. In an embodiment, the second conductive via has a trapezoid shape, where a topmost surface of the second conductive via has a smaller width than a bottommost surface of the second conductive via, and where the topmost surface of the second conductive via is farther away from the substrate than the bottommost surface of the second conductive via. In an embodiment, the first insulating layer and the second insulating layer include a polyimide. In an embodiment, the method further includes etching the second insulating layer to expose a top surface of the second conductive via, where after etching the second insulating layer a portion of the second conductive via protrudes above a top surface of the second insulating layer. In an embodiment, a portion of the first conductive via protrudes above a top surface of the first insulating layer. In an embodiment, widths of the first conductive via and the second conductive via are smaller than 1 μm.
In accordance with an embodiment, a package comprises a redistribution structure including a first conductive feature; a first insulating layer surrounding the first conductive feature, where the first insulating layer is in physical contact with a top surface and sidewalls of the first conductive feature; a first conductive via over the first conductive feature and surrounded by the first insulating layer; a first seed layer on a top surface of the first conductive via; and a second conductive feature on the first seed layer, where the first conductive via has a trapezoid shape, and where a width of the first conductive via decreases in a direction from the first conductive feature towards the second conductive feature; and a first die over and bonded to the redistribution structure by first connectors. In an embodiment, an angle between a surface of the first insulating layer that is in contact with a sidewall of the first conductive via and a surface of the first insulating layer that is in contact with a top surface of the first conductive feature is greater than 90°. In an embodiment, the first insulating layer has a thickness greater than 10 μm. In an embodiment, the first insulating layer includes a polyimide. In an embodiment, a width of the first conductive via is smaller than 1 μm. In an embodiment, the first seed layer is in physical contact with a sidewall of a first portion of the first conductive via, and where the first seed layer does not physically contact a sidewall of a second portion of the first conductive via, where the first portion of the first conductive via is higher than the second portion of the first conductive via.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.