The present invention relates to packaged semiconductor chips and to methods of manufacture thereof.
The following published patent documents are believed to represent the current state of the art:
The present invention seeks to provide improved packaged semiconductor chips and methods of manufacture thereof.
There is thus provided in accordance with a preferred embodiment of the present invention, a chip-sized wafer level packaged device including a portion of a semiconductor wafer including a device, a packaging layer formed over the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer and a ball grid array formed over a surface of the packaging layer and being electrically connected to the device.
In accordance with a preferred embodiment of the present invention, the semiconductor wafer contains at least one of silicon and Gallium Arsenide. Preferably, the packaging layer is adhered to the portion of the semiconductor wafer by an adhesive, the adhesive having thermal expansion characteristics similar to those of the packaging layer. Additionally or alternatively, the packaging layer includes silicon.
In accordance with another preferred embodiment of the present invention, the chip-sized wafer level packaged device also includes at least one compliant layer formed over the packaging layer and underlying the ball grid array. Preferably, the chip-sized wafer level packaged device also includes metal connections formed over the compliant layer and underlying the ball grid array, the metal connections providing electrical contact between the ball grid array and the device.
In accordance with yet another preferred embodiment of the present invention the device includes a memory device. Preferably, alpha-particle shielding is provided between the ball grid array and the device. More preferably, the alpha-particle shielding is provided by at least one compliant layer formed over the packaging layer and underlying the ball grid array. Additionally or alternatively, the chip-sized wafer level packaged device also includes metal connections formed over the packaging layer and underlying the ball grid array, the metal connections providing electrical contact between the ball grid array and the device.
There is also provided in accordance with another preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a semiconductor wafer including a multiplicity of devices, forming a packaging layer over the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer, forming ball grid arrays over a surface of the packaging layer, the ball grid arrays being electrically connected to ones of the multiplicity of devices and dicing the semiconductor wafer and the packaging layer.
In accordance with a preferred embodiment of the present invention the providing a semiconductor wafer includes providing a semiconductor wafer containing at least one of silicon and Gallium Arsenide. Preferably, the method also includes adhering the packaging layer to the portion of the semiconductor wafer by an adhesive, the adhesive having thermal expansion characteristics similar to those of the packaging layer. Additionally or alternatively, the forming a packaging layer includes forming a silicon packaging layer.
In accordance with another preferred embodiment of the present invention the method also includes forming at least one compliant layer over the packaging layer prior to forming the ball grid arrays. Preferably, the forming at least one compliant layer includes forming at least one electrophoretic layer. Additionally or alternatively, the forming at least one compliant layer includes providing alpha-particle shielding between the ball grid array and the surface.
In accordance with still another preferred embodiment of the present invention the multiplicity of devices include a memory device. Preferably, the method also includes providing alpha-particle shielding between the ball grid array and the surface. Additionally or alternatively, the method also includes forming metal connections over the packaging layer and underlying the ball grid array, the metal connections providing electrical contact between the ball grid array and the device.
There is additionally provided in accordance with yet another preferred embodiment of the present invention a chip-sized wafer level packaged device including a portion of a semiconductor wafer including a device, a packaging layer formed over the portion of the semiconductor wafer, a compliant layer formed over the packaging layer at at least some locations thereon and a ball grid array formed over a surface of the packaging layer and over the compliant layer and being electrically connected to the device.
In accordance with a preferred embodiment of the present invention the packaging layer includes a material having thermal expansion characteristics similar to those of the semiconductor wafer. Preferably, the compliant layer is provided at locations underlying individual balls of the ball grid array. Additionally or alternatively, the compliant layer may include silicone.
In accordance with another preferred embodiment of the present invention the device is a DRAM device. Preferably, the compliant layer includes platforms formed of compliant material, each of the platforms having formed thereon a ball of the ball grid array. Additionally or alternatively, the chip-sized wafer level packaged device also includes metal connections formed over the compliant layer and underlying the ball grid array, the metal connections providing electrical contact between the ball grid array and the device. Preferably, alpha-particle shielding is provided between the ball grid array and the device.
There is further provided in accordance with a further preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged integrated circuit devices including providing a semiconductor wafer including a multiplicity of integrated circuit devices, forming a packaging layer over the semiconductor wafer, forming recesses in a replication silicon wafer in a planar arrangement corresponding to that of a desired ball grid array, placing compliant material in the recesses thereby to define an array of regions of the compliant material, planarizing the array of regions of the compliant material, attaching the silicon wafer over the packaging layer, such that planarized surfaces of the array of regions of the compliant material lie over and facing the packaging layer, removing the replication silicon wafer such that the array of regions of the compliant material remain, forming ball grid arrays over the array of regions of the compliant material, the ball grid arrays being electrically connected to the ones of the multiplicity of integrated circuit devices and dicing the semiconductor wafer and the packaging layer.
In accordance with a preferred embodiment of the present invention the forming a packaging layer includes a forming a packaging layer of a material having thermal expansion characteristics similar to those of the semiconductor wafer. Preferably, the forming a packaging layer includes forming a packaging layer of silicon. Additionally or alternatively, the placing compliant material includes placing silicone.
In accordance with another preferred embodiment of the present invention the multiplicity of integrated circuit devices includes at least one DRAM device. Preferably, the method also includes forming metal connections the compliant material prior to the forming ball grid arrays, the metal connections providing electrical contact between the ball grid arrays and ones of the multiplicity of integrated circuit devices.
In accordance with yet another preferred embodiment of the present invention the method also includes forming a compliant electrophoretic coating layer over the packaging layer prior to the attaching the replication silicon wafer. Preferably, the forming a compliant electrophoretic coating layer includes providing alpha-particle shielding between the ball grid arrays and the integrated circuit devices.
There is yet further provided in accordance with a yet further preferred embodiment of the present invention a chip-sized wafer level packaged device including a portion of a semiconductor wafer including a device, a passivation layer formed over the portion of the semiconductor wafer, a compliant layer formed over the passivation layer at at least some locations thereon and a ball grid array formed over a surface of the passivation layer and over the compliant layer and being electrically connected to the device.
In accordance with a preferred embodiment of the present invention the compliant layer includes silicone. Additionally or alternatively, the passivation layer includes a polymer. Preferably, the passivation layer includes a polyimide.
In accordance with another preferred embodiment of the present invention the passivation layer provides alpha-particle shielding between the ball grid array and the device. Preferably, the device is a DRAM device. Additionally or alternatively, the chip-sized wafer level packaged device also includes metal connections formed over the compliant layer and underlying the ball grid array, the metal connections providing electrical contact between the ball grid array and the device.
There is still further provided in accordance with a still further preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a semiconductor wafer including a multiplicity of devices, forming a passivation layer over the semiconductor wafer, forming a compliant layer over the passivation layer, forming ball grid arrays over a surface of the compliant layer, the ball grid arrays being electrically connected to ones of the multiplicity of devices and dicing the semiconductor wafer and the packaging layer.
In accordance with a preferred embodiment of the present invention the forming a passivation layer includes forming the passivation layer from a polymer. Preferably, the forming a passivation layer includes forming the passivation layer from a polyimide. Additionally or alternatively, the forming a compliant layer includes forming the compliant layer from silicone.
In accordance with another preferred embodiment of the present invention the forming a passivation layer includes providing alpha-particle shielding between the ball grid arrays and the device. Preferably, the multiplicity of devices includes at least one DRAM device. Additionally or alternatively, the method also includes forming metal connections over the compliant layer and underlying the ball grid array, the metal connections providing electrical contact between the ball grid array and the device.
There is additionally provided in accordance with an additional preferred embodiment of the present invention a chip-sized, wafer level packaged device including a portion of a semiconductor wafer including a device, at least one packaging layer containing silicon and formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically coupled to the device and a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device.
In accordance with a preferred embodiment of the present invention the at least one packaging layer includes a plurality of packaging layers. Preferably, the plurality of packaging layers are disposed on the same side of the portion of the semiconductor wafer. Additionally or alternatively, the device is a DRAM device.
In accordance with another preferred embodiment of the present invention the chip-sized wafer level packaged device also includes at least one compliant layer, formed over the packaging layer and underlying at least one of the first and second ball grid arrays. Preferably, the chip-sized wafer level packaged device also includes metal connections formed over the at least one compliant layer and underlying at least one of the first and second ball grid arrays, the metal connections providing electrical contact between at least one of the first and second ball grid arrays and the device. Additionally or alternatively, the at least one compliant layer includes at least one of silicone and a polymeric dielectric material. Preferably, the polymeric material is a polyimide.
In accordance with yet another preferred embodiment of the present invention alpha-particle shielding is provided between at least one of the first and second ball grid arrays and the device.
There is also provided in accordance with another preferred embodiment of the present invention a chip-sized, wafer level packaged device including a portion of a semiconductor wafer including a device, a least one packaging layer formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically connected to the device, a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device and a compliant electrophoretic coating layer underlying at least one of the first and second ball grid arrays.
In accordance with a preferred embodiment of the present invention the at least one packaging layer contains silicon. Preferably, the compliant electrophoretic coating layer provides alpha-particle shielding between at least one of the first and second ball grid arrays and the device. Additionally or alternatively, the device is a DRAM device.
In accordance with another preferred embodiment of the present invention the at least one packaging layer includes a plurality of packaging layers. Preferably, the plurality of packaging layers are disposed on the same side of the portion of the semiconductor wafer. Additionally or alternatively, the chip-sized wafer level packaged device also includes metal connections formed over the compliant electrophoretic coating layer and underlying at least one of the first and second ball grid arrays, the metal connections providing electrical contact between at least one of the first and second ball grid arrays and the device.
In accordance with yet another preferred embodiment of the present invention the compliant electrophoretic coating layer comprises a sufficiently conductive inorganic packaging layer which is electrophoretically coated by an organic layer employing appropriate modulus which provides under-ball compliancy.
There is additionally provided in accordance with yet another preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a semiconductor wafer including a multiplicity of devices, forming at least one packaging layer including a silicon packaging layer over the semiconductor wafer, forming a first ball grid array over a surface of the at least one packaging layer and being electrically connected to ones of the multiplicity of devices, forming a second ball grid array over a surface of the portion of the semiconductor wafer and being electrically connected to ones of the multiplicity of devices and dicing the semiconductor wafer and the at least one packaging layer.
In accordance with a preferred embodiment of the present invention the forming at least one packaging layer includes forming a plurality of packaging layers. Preferably, the forming a plurality of packaging layers includes disposing the plurality of packaging layers on the same side of the semiconductor wafer. Additionally or alternatively the multiplicity of devices includes at least one DRAM device.
In accordance with another preferred embodiment of the present invention the method also includes forming at least one compliant layer over the packaging layer and underlying at least one of the first and second ball grid arrays. Preferably, the method also includes forming metal connections over the at least one compliant layer and underlying at least one of the first and second ball grid arrays, the metal connections providing electrical contact between at least one of the first and second ball grid arrays and the device. Additionally or alternatively, the method also includes providing alpha-particle shielding between at least one of the first and second ball grid arrays and the device.
There is also provided in accordance with yet another preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a semiconductor wafer including a multiplicity of devices, forming at least one packaging layer over the semiconductor wafer, forming a first ball grid array over a surface of the at least one packaging layer and being electrically connected to ones of the multiplicity of devices, forming a second ball grid array over a surface of the portion of the semiconductor wafer and being electrically connected to ones of the multiplicity of devices, forming a compliant electrophoretic coating layer underlying at least one of the first and second ball grid arrays and dicing the semiconductor wafer and the at least one packaging layer.
In accordance with a preferred embodiment of the present invention the forming at least one packaging layer includes forming at least one packaging layer which contains silicon. Preferably, the forming a compliant electrophoretic coating layer includes providing alpha-particle shielding between the ball grid arrays and the device. Additionally or alternatively, the multiplicity of devices includes at least one DRAM device.
In accordance with another preferred embodiment of the present invention the forming at least one packaging layer includes forming a plurality of packaging layers. Preferably, the forming a plurality of packaging layers includes disposing the plurality of packaging layers on the same side of the semiconductor wafer. Additionally or alternatively, the method also includes forming metal connections over the compliant electrophoretic coating layer and underlying at least one of the first and second ball grid arrays, the metal connections providing electrical contact between at least one of the first and second ball grid arrays and ones of the multiplicity of devices.
There is additionally provided in accordance with still another preferred embodiment of the present invention a chip-sized wafer level packaged device including a portion of a semiconductor wafer including a device, a packaging layer formed over the portion of the semiconductor wafer, a ball grid array formed over a surface of the packaging layer and being electrically connected to the device and metal connections interconnecting the ball grid array with the device, the metal connections including first metal connections, each extending from a bond pad of the device at a first location over the portion of the semiconductor wafer to a second location over the portion of the semiconductor wafer, transversely displaced from the first location and second metal connections, each extending from one of the first metal connections at the second location to a ball forming part of the ball grid array.
In accordance with a preferred embodiment of the present invention the packaging layer includes silicon. Preferably, the chip-sized wafer level packaged device also includes a compliant layer formed over the packaging layer and underlying the ball grid array. Additionally or alternatively, the device includes a memory device.
In accordance with another preferred embodiment of the present invention alpha-particle shielding is provided between the ball grid array and the device. Preferably, the compliant layer provides alpha-particle shielding between the ball grid array and the device. Additionally or alternatively, the chip-sized wafer level packaged device also includes an encapsulant layer formed between the portion of the semiconductor wafer and the packaging layer.
There is further provided in accordance with a further preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a semiconductor wafer including a multiplicity of devices, providing a packaging layer over the semiconductor wafer, forming a ball grid array over a surface of the packaging layer and electrically connecting it to ones of the multiplicity of devices by metal connections including forming first metal connections, each extending from a bond pad of the device at a first location over the portion of the semiconductor wafer to a second location over the portion of the semiconductor wafer, transversely displaced from the first location and forming second metal connections, each extending from one of the first metal connections at the second location to a ball forming part of the ball grid array and dicing the semiconductor wafer and the packaging layer.
In accordance with a preferred embodiment of the present invention the providing a packaging layer includes providing a packaging layer formed of silicon. Preferably, the method also includes forming a compliant layer over the packaging layer and underlying the ball grid array. Additionally or alternatively, the multiplicity of devices includes a memory device.
In accordance with another preferred embodiment of the present invention the method also includes providing alpha-particle shielding between the ball grid array and the device. Preferably, the forming a compliant layer includes providing alpha-particle shielding between the ball grid array and the device. Additionally or alternatively, the method also includes forming an encapsulant layer between the portion of the semiconductor wafer and the packaging layer.
There is yet further provided in accordance with yet a further preferred embodiment of the present invention a chip-sized wafer level packaged device including a first portion of a first semiconductor wafer including a first active surface, a second portion of a second semiconductor wafer including a second active surface, the second portion of the second semiconductor wafer being arranged with respect to the first portion of the first semiconductor wafer such that the first and second active surfaces are in a mutually facing spatial relationship, at least one ball grid array formed over a non-active surface of at least one of the first and second portions and metal connections interconnecting the at least one ball grid array with the first and second active surfaces, the metal connections including first metal connections, each extending from a bond pad on one of the first and second active surfaces at a first location over a corresponding one of the first and second portions to a second location over the corresponding one of the first and second portions, transversely displaced from the first location and second metal connections, each extending from one of the first metal connections at the second location to a ball forming part of the at least one ball grid array.
In accordance with a preferred embodiment of the present invention the chip-sized wafer level packaged device also includes a compliant layer underlying the at least one ball grid array. Preferably, the packaged device includes a memory device.
In accordance with another preferred embodiment of the present invention alpha-particle shielding is provided between the at least one ball grid array and the first and second active surfaces. Preferably, the compliant layer provides alpha-particle shielding between the at least one ball grid array and the first and second active surfaces. Additionally or alternatively, the packaging layer includes silicon.
There is still further provided in accordance with a still further preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a first portion of a first semiconductor wafer including a first active surface, providing a second portion of a second semiconductor wafer including a second active surface, arranging the second portion of the second semiconductor wafer with respect to the first portion of the first semiconductor wafer such that the first and second active surfaces are in a mutually facing spatial relationship, forming at least one ball grid array over a non-active surface of at least one of the first and second portions and forming metal connections interconnecting the at least one ball grid array with the first and second active surfaces, including forming first metal connections, each extending from a bond pad on one of the first and second active surfaces at a first location over a corresponding one of the first and second portions to a second location over the corresponding one of the first and second portions, transversely displaced from the first location and forming second metal connections, each extending from one of the first metal connections at the second location to a ball forming part of the at least one ball grid array and dicing the first and second semiconductor wafers.
In accordance with a preferred embodiment of the present invention the method also includes forming a compliant layer prior to forming the at least one ball grid array. Preferably, the method also includes providing alpha-particle shielding between the at least one ball grid array and the first and second active surfaces. More preferably, the forming a compliant layer includes providing alpha-particle shielding between the at least one ball grid array and the first and second active surfaces.
There is additionally provided in accordance with an additional preferred embodiment of the present invention stacked chip-sized, wafer level packaged devices including at least first and second chip-sized wafer level packaged devices each including a portion of a semiconductor wafer including a device, at least one packaging layer containing silicon and formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically connected to the device and a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device, the first ball grid array of the first device being electrically connected to the second ball grid array of the second device.
In accordance with a preferred embodiment of the present invention the at least one packaging layer includes a plurality of packaging layers. Preferably, the plurality of packaging layers are disposed on the same side of the portion of the semiconductor wafer. Additionally or alternatively, the device is a DRAM device.
There is also provided in accordance with another preferred embodiment of the present invention stacked chip-sized, wafer level packaged devices including at least first and second chip-sized wafer level packaged devices each including a portion of a semiconductor wafer including a device, at least one packaging layer formed over the device, a first ball grid array formed over a surface of the at least one packaging layer and being electrically connected to the device, a second ball grid array formed over a surface of the portion of the semiconductor wafer and being electrically connected to the device and a compliant electrophoretic coating layer underlying at least one of the first and second ball grid arrays, the first ball grid array of the first device being electrically connected to the second ball grid array of the second device.
In accordance with a preferred embodiment of the present invention the at least one packaging layer contains silicon. Preferably, the compliant electrophoretic coating layer provides alpha-particle shielding between the first and second ball grid arrays and the device. Additionally or alternatively, the device is a DRAM device.
There is additionally provided in accordance with yet another preferred embodiment of the present invention a method of manufacture of stacked chip-sized wafer level packaged devices including providing at least first and second chip-sized wafer level packaged devices including, for each of the first and second chip-sized wafer level packaged devices providing a semiconductor wafer including a multiplicity of devices, forming at least one packaging layer including a silicon packaging layer over the semiconductor wafer, forming a first ball grid array over a surface of the at least one packaging layer and being electrically connected to ones of the multiplicity of devices, forming a second ball grid array over a surface of the semiconductor wafer and being electrically connected to ones of the multiplicity of devices and dicing the semiconductor wafer and the at least one packaging layer and soldering the first ball grid array of the first device to the second ball grid array of the second device.
In accordance with a preferred embodiment of the present invention the forming at least one packaging layer includes forming a plurality of packaging layers. Preferably, the forming a plurality of packaging layers includes disposing the plurality of packaging layers on the same side of the portion of the semiconductor wafer. Additionally or alternatively, the multiplicity of devices includes at least one DRAM device.
There is also provided in accordance with still another preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing at least first and second chip-sized wafer level packaged devices including, for each of the first and second chip-sized wafer level packaged devices, providing a semiconductor wafer including an active surface defining a multiplicity of devices, forming at least one packaging layer over the semiconductor wafer, forming a first ball grid array over a surface of the at least one packaging layer and being electrically connected to ones of the multiplicity of devices, forming a second ball grid array over a surface of the semiconductor wafer and being electrically connected to ones of the multiplicity of devices, forming a compliant electrophoretic coating layer underlying at least one of the first and second ball grid arrays and dicing the semiconductor wafer and the at least one packaging layer and soldering the first ball grid array of the first device to the second ball grid array of the second device.
In accordance with a preferred embodiment of the present invention the forming at least one packaging layer includes forming a plurality of packaging layers. Preferably, the forming a plurality of packaging layers includes disposing the plurality of packaging layers on the same side of the portion of the semiconductor wafer. Additionally or alternatively, the multiplicity of devices includes at least one DRAM device.
There is further provided in accordance with a further preferred embodiment of the present invention a chip-sized wafer level packaged device including a portion of a semiconductor wafer including a device, a packaging layer formed over the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer and a plurality of interconnects formed over a surface of the packaging layer and being electrically connected to the device.
In accordance with a preferred embodiment of the present invention the plurality of interconnects includes Anisotropic Conductive Film (ACF) attachable interconnects. Preferably, the ACF attachable interconnects are formed of copper. Additionally or alternatively, the chip-sized wafer level packaged device also includes a printed circuit board including interconnects and a conductive film bonding the interconnects of the printed circuit board to the interconnects of the packaging layer.
In accordance with another preferred embodiment of the present invention the conductive film includes an Anisotropic Conductive Film (ACF). Preferably, the semiconductor wafer contains at least one of silicon and Gallium Arsenide. Additionally or alternatively, the packaging layer is adhered to the portion of the semiconductor wafer by an adhesive, the adhesive having thermal expansion characteristics similar to those of the packaging layer.
In accordance with yet another preferred embodiment of the present invention the packaging layer includes silicon. Preferably, the device includes a memory device.
There is yet further provided in accordance with yet a further preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a semiconductor wafer including a multiplicity of devices, forming a packaging layer over the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer, forming a plurality of interconnects over a surface of the packaging layer which are electrically connected to ones of the multiplicity of devices and dicing the semiconductor wafer and the packaging layer.
In accordance with a preferred embodiment of the present invention the forming a plurality of interconnects includes forming ACF attachable interconnects. Preferably, the forming ACF attachable interconnects of copper. Additionally or alternatively, the method also includes providing a printed circuit board including interconnects and bonding the interconnects of the printed circuit board to the attachable interconnects of the packaging layer by a conductive film.
In accordance with another preferred embodiment of the present invention the bonding includes bonding by an anisotropic conductive film. Preferably, the providing a semiconductor wafer includes providing a semiconductor wafer containing at least one of silicon and Gallium Arsenide. Additionally or alternatively, the method also includes adhering the packaging layer to the semiconductor wafer by an adhesive, the adhesive having thermal expansion characteristics similar to those of the packaging layer.
There is still further provided in accordance with still a further preferred embodiment of the present invention a chip-sized wafer level packaged device including a portion of a semiconductor wafer including a device, a packaging layer formed over an active surface of the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer, metal connections formed onto the packaging layer, the metal connections being electrically connected to the device and including portions which are gold plated and a printed circuit board including metal pins, the metal pins being coated with an Indium layer, the pins being mounted onto the portions of the metal connections which are gold plated by eutectic Au/In intermetallic bonding.
In accordance with a preferred embodiment of the present invention the semiconductor wafer contains at least one of silicon and Gallium Arsenide. Preferably, the packaging layer is adhered to the portion of the semiconductor wafer by an adhesive, the adhesive having thermal expansion characteristics similar to those of the packaging layer. Additionally or alternatively, the packaging layer includes silicon.
In accordance with another preferred embodiment of the present invention the chip-sized wafer level packaged device also includes at least one compliant layer formed over the packaging layer and underlying the metal connections. Preferably, the device includes a memory device.
There is also provided in accordance with another preferred embodiment of the present invention a chip-sized wafer level packaged device including a portion of a semiconductor wafer including a device, a packaging layer formed over an active surface of the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer, metal connections formed onto the packaging layer, the metal connections being electrically connected to the device and including portions which are gold plated and a wafer level die including a portion of a semiconductor wafer including a device, a packaging layer formed over an active surface of the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer and metal pins coated with an Indium layer, the pins being mounted onto the portions of the metal connections which are gold plated by eutectic Au/In intermetallic bonding.
In accordance with a preferred embodiment of the present invention at least one of the semiconductor wafers contains at least one of silicon and Gallium Arsenide. Preferably, the packaging layer is adhered to the portion of the semiconductor wafer by an adhesive, the adhesive having thermal expansion characteristics similar to those of the packaging layer. Additionally or alternatively, the packaging layer includes silicon.
In accordance with another preferred embodiment of the present invention the chip-sized wafer level packaged device also includes at least one compliant layer formed over the packaging layer and underlying the metal connections. Preferably, the device includes a memory device.
There is additionally provided in accordance with an additional preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a portion of a semiconductor wafer including a multiplicity of devices, forming a packaging layer over an active surface of the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer, forming metal connections mounted onto the packaging layer, the metal connections being electrically connected to the device and including portions which are gold plated, providing a printed circuit board including metal pins which are coated with an Indium layer and employing eutectic Au/In intermetallic bonding to bond the metal pins to the portions of the metal connections which are gold plated, thereby mounting the printed circuit board to the packaging layer.
In accordance with a preferred embodiment of the present invention the method also includes adhering the packaging layer to the portion of the semiconductor wafer by an adhesive, the adhesive having thermal expansion characteristics similar to those of the packaging layer. Preferably, the method also includes forming at least one compliant layer over the packaging layer and underlying the metal connections.
There is further provided in accordance with a further preferred embodiment of the present invention a method of manufacture of chip-sized wafer level packaged devices including providing a portion of a semiconductor wafer including a multiplicity of devices, forming a packaging layer over an active surface of the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer, forming metal connections mounted onto the packaging layer, the metal connections being electrically connected to the device and including portions which are gold plated, providing a wafer level die including a portion of a semiconductor wafer including a device, a packaging layer formed over an active surface of the portion of the semiconductor wafer, the packaging layer including a material having thermal expansion characteristics similar to those of the semiconductor wafer and metal pins coated with an Indium layer and employing eutectic Au/In intermetallic bonding to bond the metal pins to the portions of the metal connections which are gold plated, thereby mounting the wafer level die onto the packaging layer.
In accordance with a preferred embodiment of the present invention the method also includes adhering the packaging layer to the portion of the semiconductor wafer by an adhesive, the adhesive having thermal expansion characteristics similar to those of the packaging layer. Preferably the method also includes forming at least one compliant layer over the packaging layer and underlying the metal connections.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
Turning to
It is a particular feature of the present invention that the thermal expansion characteristics of the packaging layer 110 are closely matched to those of the semiconductor wafer 100. For example, if the semiconductor wafer 100 is made of silicon, which has a coefficient of thermal expansion of 2.6 μm·m−1·K−1 at 25° C., the coefficient of thermal expansion of the packaging layer 110 should be similar. Furthermore, the adhesive 112 preferably has a coefficient of thermal expansion which is closely matched to the coefficients of thermal expansion of the semiconductor wafer 100 and of the packaging layer 110. Preferably, when the semiconductor wafer 100 comprises silicon, the protective layer 110 also comprises silicon having sufficient conductivity to permit electrophoretic coating thereof.
Turning to
As shown in
Reference is now made to
The notch 150 exposes a row of bond pads 154, corresponding to bond pads 108 (
Patterned metal connections 162, corresponding to metal connections 132 (
Reference is now made to
As shown in
Reference is now made to
The notch 276 exposes a row of bond pads 279, corresponding to bond pads 108 (
Patterned metal connections 286, corresponding to metal connections 132 (
An encapsulant passivation layer 292, corresponding to encapsulant passivation layer 254 (
Additional metal connections 294, corresponding to metal connections 262 (
An encapsulant passivation layer 299, corresponding to encapsulant passivation layer 264 (
Reference is now made to
Preferably, notches 302 are wider than notches 300 and are symmetrically formed on both sides of scribe lines 304. Notches 302 are of varying width and depth, such that at corners of dies at which adjacent dies meet, there is provided electrically conductive continuity of the packaging layer 110 across adjacent dies 102 prior to dicing. This is achieved by decreasing the depth and corresponding width of the notches 302 at junctions of adjacent dies 102.
Turning to
As shown in
Reference is now made to
Disposed over straight-edged base portion 350 and set back slightly therefrom, other than at the corners of the packaged semiconductor DRAM chip, thereby defining a shoulder 356, is an inclined edge portion 358 corresponding to inclined surface 346 (
The inclined edge portion 358 is defined by an encapsulant passivation layer 360, corresponding to encapsulant passivation layer 334 (
As also seen in
Reference is now made to
Reference is now made to
As shown in
Reference is now made to
The notch 550 exposes a row of bond pads 554, corresponding to bond pads 108 (
Patterned metal connections 566, corresponding to metal connections 516 (
Reference is now made to
The method of
Reference is now made to
Turning to
As shown in
Reference is now made to
The notch 950 exposes a row of bond pads 954, corresponding to bond pads 108 (
Patterned metal connections 966, corresponding to metal connections 926 (
Reference is now made to
The method of
Reference is now made to
As seen in
Turning to
As shown in
Reference is now made to
The notch 1350 exposes a row of bond pads 1354, corresponding to bond pads 108 (
An electrophoretic, electrically insulative compliant layer 1362, corresponding to electrophoretic, electrically insulative compliant layer 1322 (
Patterned metal connections 1366, corresponding to metal connections 1326 (
Reference is now made to
The method of
Reference is now made to
As shown in
Reference is now made to
Patterned metal connections 1766, corresponding to metal connections 1716 (
Reference is now made to
Reference is now made to
As shown in
Reference is now made to
Turning to
As shown in
Reference is now made to
The notch 2175 exposes a row of bond pads 2178, corresponding to bond pads 108 (
Patterned metal connections 2182, corresponding to metal connections 2162 (
At a second surface of silicon wafer die 2177 facing oppositely from the first surface, a plurality of bond pad specific notches 2186, corresponding to notches 2120 (
The notches 2186 each expose one of bond pads 2178. An electrophoretic, electrically insulative compliant layer 2187, corresponding to electrophoretic, electrically insulative compliant layer 2122 (
Patterned metal connections 2188, corresponding to metal connections 2132 (
Reference is now made to
The method of
Reference is now made to
As shown in
Reference is now made to
Turning to
As shown in
Reference is now made to
The notch 2575 exposes a row of bond pads 2579, corresponding to bond pads 108 (
Patterned metal connections 2583, corresponding to metal connections 2562 (
At a second surface of silicon layer 2577, facing oppositely from the first surface, a packaging layer 2586, corresponding to packaging layer 2500 (
A plurality of bond pad specific notches 2591, corresponding to notches 2520 (
The notches 2591 each expose one of bond pads 2579. An electrophoretic, electrically insulative compliant layer 2592, corresponding to electrophoretic, electrically insulative compliant layer 2522 (
Patterned metal connections 2593, corresponding to metal connections 2532 (
Reference is now made to
As shown in
Turning to
As shown in
As seen in
Reference is now made to
A silicon layer 3083, corresponding to semiconductor wafer 100 (
Packaging layer 3081 is bonded over encapsulant passivation layer 3084 and metal connections 3086 by an adhesive layer 3087, corresponding to adhesive 3036 (
Notch 3080 extends through packaging layer 3081 and adhesive layer 3087 to corresponding portions of metal connections 3086 at locations designated by reference numeral 3088, which correspond to locations 3050 (
Notch 3079 extends through packaging layer 3081, adhesive layer 3087 and encapsulant passivation layer 3084 to those of bond pads 3085 which are not connected to metal connections 3086.
An electrophoretic, electrically insulative compliant layer 3089, corresponding to electrophoretic, electrically insulative compliant layer 3060 (
Patterned metal connections 3090, corresponding to metal connections 3071 (
Patterned metal connections 3092, corresponding to metal connections 3072 (
An encapsulant passivation layer 3094, corresponding to encapsulant passivation layer 3073 (
Reference is now made to
The method of
Reference is now made to
Turning to
As shown in
As seen in
Reference is now made to
An adhesive layer 3456, corresponding to adhesive 3406 (
Notch 3453 extends through the portion of semiconductor wafer 3454 and adhesive layer 3456 to portions of metal connections 3462 at locations designated by reference numeral 3464, which correspond to locations 3414 (
Notch 3451 extends through the portion of semiconductor wafer 3454 to bond pad 3466, corresponding to bond pad 3410 (
Notch 3452 extends through the portion of semiconductor wafer 3454 to bond pad 3468, corresponding to bond pad 3411 (
An electrophoretic, electrically insulative compliant layer 3470, corresponding to electrophoretic, electrically insulative compliant layer 3420 (
Metal connections 3472, corresponding to metal connections 3432 (
Metal connections 3478 interconnect metal connections 3462 at locations 3464 with bond pads 3468 and extend over generally planar surfaces of coating 3470 to solder bump locations 3480, corresponding to solder bump locations 3442 (
A passivation layer 3482, corresponding to encapsulant layer 3440 (
Reference is now made to
Reference is now made to
Reference is now made to
As seen in
Reference is now made to
The method of
Reference is now made to
Reference is now made to
The method of
Reference is now made to
Die 4200 is shown turned upside-down and having pins 4204 in registration with gold plated surfaces of notches 120 of die 4100 (
Reference is now made to
The method of
Reference is now made to
The method of
Reference is now made to
As shown in
Reference is now made to
Patterned metal connections 4466, corresponding to metal connections 4406 (
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been specifically claimed herein. Rather the scope of the present invention includes both combinations and sub-combinations of various features described hereinabove as well as modifications thereof which may occur to persons skilled in the art upon reading the foregoing description and which are not in the prior art.
The present application is a continuation of U.S. patent application Ser. No. 14/177,527, filed Feb. 11, 2014, which is issuing on Jun. 30, 2015 as U.S. Pat. No. 9,070,678, which is a continuation of U.S. patent application Ser. No. 13/407,085, filed Feb. 28, 2012, which issued on Feb. 18, 2014 as U.S. Pat. No. 8,653,644, which is a continuation of U.S. patent application Ser. No. 11/603,935, filed Nov. 22, 2006, which issued on Oct. 29, 2013 as U.S. Pat. No. 8,569,876, all of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4074342 | Honn et al. | Feb 1978 | A |
4682074 | Hoeberechts et al. | Jul 1987 | A |
4765864 | Holland et al. | Aug 1988 | A |
4941033 | Kishida | Jul 1990 | A |
5148265 | Khandros et al. | Sep 1992 | A |
5148266 | Khandros et al. | Sep 1992 | A |
5229647 | Gnadinger | Jul 1993 | A |
5322816 | Pinter | Jun 1994 | A |
5334561 | Matsui et al. | Aug 1994 | A |
5347159 | Khandros et al. | Sep 1994 | A |
5481133 | Hsu | Jan 1996 | A |
5511428 | Goldberg et al. | Apr 1996 | A |
5679977 | Khandros et al. | Oct 1997 | A |
5686762 | Langley | Nov 1997 | A |
5700735 | Shiue et al. | Dec 1997 | A |
5703408 | Ming-Tsung et al. | Dec 1997 | A |
5808874 | Smith | Sep 1998 | A |
5821608 | DiStefano et al. | Oct 1998 | A |
5998861 | Hiruta | Dec 1999 | A |
6002161 | Yamazaki | Dec 1999 | A |
6005466 | Pedder | Dec 1999 | A |
6013948 | Akram et al. | Jan 2000 | A |
6022758 | Badehi | Feb 2000 | A |
6031274 | Muramatsu et al. | Feb 2000 | A |
6037668 | Cave et al. | Mar 2000 | A |
6103552 | Lin | Aug 2000 | A |
6143369 | Sugawa et al. | Nov 2000 | A |
6143396 | Saran et al. | Nov 2000 | A |
6169319 | Malinovich et al. | Jan 2001 | B1 |
6181016 | Lin et al. | Jan 2001 | B1 |
6261865 | Akram | Jul 2001 | B1 |
6277669 | Kung et al. | Aug 2001 | B1 |
6284563 | Fjelstad | Sep 2001 | B1 |
6313024 | Cave et al. | Nov 2001 | B1 |
6313540 | Kida et al. | Nov 2001 | B1 |
6362529 | Sumikawa et al. | Mar 2002 | B1 |
6368410 | Gorczyca et al. | Apr 2002 | B1 |
6399892 | Milkovich et al. | Jun 2002 | B1 |
6472247 | Andoh et al. | Oct 2002 | B1 |
6492201 | Haba | Dec 2002 | B1 |
6498381 | Halahan et al. | Dec 2002 | B2 |
6498387 | Yang | Dec 2002 | B1 |
6507113 | Fillion et al. | Jan 2003 | B1 |
6531384 | Kobayashi et al. | Mar 2003 | B1 |
6555913 | Sasaki et al. | Apr 2003 | B1 |
6586955 | Fjelstad et al. | Jul 2003 | B2 |
6608377 | Chang et al. | Aug 2003 | B2 |
6638352 | Satsu et al. | Oct 2003 | B2 |
6693358 | Yamada et al. | Feb 2004 | B2 |
6716737 | Plas et al. | Apr 2004 | B2 |
6727576 | Hedler et al. | Apr 2004 | B2 |
6737300 | Ding et al. | May 2004 | B2 |
6743660 | Lee et al. | Jun 2004 | B2 |
6812549 | Umetsu et al. | Nov 2004 | B2 |
6828175 | Wood et al. | Dec 2004 | B2 |
6853046 | Shibayama | Feb 2005 | B2 |
6864172 | Noma et al. | Mar 2005 | B2 |
6867123 | Katagiri et al. | Mar 2005 | B2 |
6873054 | Miyazawa et al. | Mar 2005 | B2 |
6879049 | Yamamoto et al. | Apr 2005 | B1 |
6914336 | Matsuki et al. | Jul 2005 | B2 |
6927156 | Mathew | Aug 2005 | B2 |
6936913 | Akerling et al. | Aug 2005 | B2 |
6982475 | MacIntyre | Jan 2006 | B1 |
7026175 | Li et al. | Apr 2006 | B2 |
7068139 | Harris et al. | Jun 2006 | B2 |
7091062 | Geyer | Aug 2006 | B2 |
7112874 | Atlas | Sep 2006 | B2 |
7271033 | Lin et al. | Sep 2007 | B2 |
7329563 | Lo et al. | Feb 2008 | B2 |
7413929 | Lee et al. | Aug 2008 | B2 |
7420257 | Shibayama | Sep 2008 | B2 |
7436069 | Matsui | Oct 2008 | B2 |
7446036 | Bolom et al. | Nov 2008 | B1 |
7456479 | Lan | Nov 2008 | B2 |
7531445 | Shiv | May 2009 | B2 |
7531453 | Kirby et al. | May 2009 | B2 |
7719121 | Humpston et al. | May 2010 | B2 |
7750487 | Muthukumar et al. | Jul 2010 | B2 |
7754531 | Tay et al. | Jul 2010 | B2 |
7767497 | Haba | Aug 2010 | B2 |
7781781 | Adkisson et al. | Aug 2010 | B2 |
7791199 | Grinman et al. | Sep 2010 | B2 |
7807508 | Oganesian et al. | Oct 2010 | B2 |
7829976 | Kirby et al. | Nov 2010 | B2 |
7834273 | Takahashi et al. | Nov 2010 | B2 |
7901989 | Haba et al. | Mar 2011 | B2 |
7915710 | Lee et al. | Mar 2011 | B2 |
7935568 | Oganesian et al. | May 2011 | B2 |
8008121 | Choi et al. | Aug 2011 | B2 |
8008192 | Sulfridge | Aug 2011 | B2 |
8193615 | Haba et al. | Jun 2012 | B2 |
8253244 | Kang | Aug 2012 | B2 |
8263434 | Pagaila et al. | Sep 2012 | B2 |
8299608 | Bartley et al. | Oct 2012 | B2 |
8310036 | Haba et al. | Nov 2012 | B2 |
8405196 | Haba et al. | Mar 2013 | B2 |
8421193 | Huang | Apr 2013 | B2 |
8421238 | Inagaki | Apr 2013 | B2 |
8685793 | Oganesian et al. | Apr 2014 | B2 |
20010028098 | Liou | Oct 2001 | A1 |
20010048591 | Fjelstad et al. | Dec 2001 | A1 |
20020030245 | Hanaoka et al. | Mar 2002 | A1 |
20020048668 | Inoue | Apr 2002 | A1 |
20020061723 | Duescher | May 2002 | A1 |
20020096787 | Fjelstad | Jul 2002 | A1 |
20020109236 | Kim et al. | Aug 2002 | A1 |
20020127839 | Umetsu et al. | Sep 2002 | A1 |
20020151171 | Furusawa | Oct 2002 | A1 |
20030047351 | Satsu et al. | Mar 2003 | A1 |
20030049193 | Satsu et al. | Mar 2003 | A1 |
20030059976 | Nathan et al. | Mar 2003 | A1 |
20030071331 | Yamaguchi et al. | Apr 2003 | A1 |
20030178714 | Sakoda et al. | Sep 2003 | A1 |
20040016942 | Miyazawa et al. | Jan 2004 | A1 |
20040017012 | Yamada et al. | Jan 2004 | A1 |
20040043607 | Farnworth et al. | Mar 2004 | A1 |
20040051173 | Koh et al. | Mar 2004 | A1 |
20040061238 | Sekine | Apr 2004 | A1 |
20040104454 | Takaoka et al. | Jun 2004 | A1 |
20040121606 | Raskin et al. | Jun 2004 | A1 |
20040155354 | Hanaoka et al. | Aug 2004 | A1 |
20040173891 | Imai et al. | Sep 2004 | A1 |
20040178495 | Yean et al. | Sep 2004 | A1 |
20040188819 | Farnworth et al. | Sep 2004 | A1 |
20040188822 | Hara | Sep 2004 | A1 |
20040203224 | Halahan et al. | Oct 2004 | A1 |
20040217483 | Hedler et al. | Nov 2004 | A1 |
20040222508 | Aoyagi | Nov 2004 | A1 |
20040251525 | Zilber | Dec 2004 | A1 |
20040259292 | Beyne et al. | Dec 2004 | A1 |
20050012225 | Choi et al. | Jan 2005 | A1 |
20050046002 | Lee et al. | Mar 2005 | A1 |
20050051883 | Fukazawa | Mar 2005 | A1 |
20050056903 | Yamamoto et al. | Mar 2005 | A1 |
20050099259 | Harris et al. | May 2005 | A1 |
20050106845 | Halahan et al. | May 2005 | A1 |
20050148160 | Farnworth et al. | Jul 2005 | A1 |
20050156330 | Harris | Jul 2005 | A1 |
20050181540 | Farnworth et al. | Aug 2005 | A1 |
20050248002 | Newman et al. | Nov 2005 | A1 |
20050260794 | Lo | Nov 2005 | A1 |
20050279916 | Kang et al. | Dec 2005 | A1 |
20050282374 | Hwang et al. | Dec 2005 | A1 |
20050287783 | Kirby et al. | Dec 2005 | A1 |
20060001174 | Matsui | Jan 2006 | A1 |
20060001179 | Fukase et al. | Jan 2006 | A1 |
20060017161 | Chung et al. | Jan 2006 | A1 |
20060043598 | Kirby et al. | Mar 2006 | A1 |
20060046348 | Kang | Mar 2006 | A1 |
20060046463 | Watkins et al. | Mar 2006 | A1 |
20060046471 | Kirby et al. | Mar 2006 | A1 |
20060055050 | Numata et al. | Mar 2006 | A1 |
20060068580 | Dotta | Mar 2006 | A1 |
20060071347 | Dotta | Apr 2006 | A1 |
20060076019 | Ho | Apr 2006 | A1 |
20060079019 | Kim | Apr 2006 | A1 |
20060094231 | Lane et al. | May 2006 | A1 |
20060115932 | Farnworth et al. | Jun 2006 | A1 |
20060148250 | Kirby | Jul 2006 | A1 |
20060154446 | Wood et al. | Jul 2006 | A1 |
20060175697 | Kurosawa et al. | Aug 2006 | A1 |
20060197216 | Yee | Sep 2006 | A1 |
20060197217 | Yee | Sep 2006 | A1 |
20060264029 | Heck et al. | Nov 2006 | A1 |
20060278898 | Shibayama | Dec 2006 | A1 |
20060278997 | Gibson et al. | Dec 2006 | A1 |
20060292866 | Borwick et al. | Dec 2006 | A1 |
20070035020 | Umemoto | Feb 2007 | A1 |
20070045779 | Hiatt | Mar 2007 | A1 |
20070052050 | Dierickx | Mar 2007 | A1 |
20070096295 | Burtzlaff et al. | May 2007 | A1 |
20070126085 | Kawano et al. | Jun 2007 | A1 |
20070194427 | Choi et al. | Aug 2007 | A1 |
20070231966 | Egawa | Oct 2007 | A1 |
20070249095 | Song et al. | Oct 2007 | A1 |
20070262464 | Watkins et al. | Nov 2007 | A1 |
20070269931 | Chung et al. | Nov 2007 | A1 |
20070290300 | Kawakami | Dec 2007 | A1 |
20080002460 | Tuckerman et al. | Jan 2008 | A1 |
20080020898 | Pyles et al. | Jan 2008 | A1 |
20080032448 | Simon et al. | Feb 2008 | A1 |
20080061436 | Yang et al. | Mar 2008 | A1 |
20080076195 | Shiv | Mar 2008 | A1 |
20080079779 | Cornell et al. | Apr 2008 | A1 |
20080090333 | Haba et al. | Apr 2008 | A1 |
20080099900 | Oganesian et al. | May 2008 | A1 |
20080099907 | Oganesian et al. | May 2008 | A1 |
20080111213 | Akram et al. | May 2008 | A1 |
20080116544 | Grinman et al. | May 2008 | A1 |
20080136038 | Savastiouk et al. | Jun 2008 | A1 |
20080150089 | Kwon et al. | Jun 2008 | A1 |
20080157273 | Giraudin et al. | Jul 2008 | A1 |
20080164574 | Savastiouk et al. | Jul 2008 | A1 |
20080185719 | Cablao et al. | Aug 2008 | A1 |
20080230923 | Jo et al. | Sep 2008 | A1 |
20080246136 | Haba et al. | Oct 2008 | A1 |
20080274589 | Lee et al. | Nov 2008 | A1 |
20080284041 | Jang et al. | Nov 2008 | A1 |
20090008747 | Hoshino et al. | Jan 2009 | A1 |
20090014843 | Kawashita et al. | Jan 2009 | A1 |
20090026566 | Oliver et al. | Jan 2009 | A1 |
20090032951 | Andry et al. | Feb 2009 | A1 |
20090032966 | Lee et al. | Feb 2009 | A1 |
20090039491 | Kim et al. | Feb 2009 | A1 |
20090045504 | Suh | Feb 2009 | A1 |
20090065907 | Haba et al. | Mar 2009 | A1 |
20090085208 | Uchida | Apr 2009 | A1 |
20090108464 | Uchiyama | Apr 2009 | A1 |
20090133254 | Kubota et al. | May 2009 | A1 |
20090134498 | Ikeda et al. | May 2009 | A1 |
20090148591 | Wang et al. | Jun 2009 | A1 |
20090166846 | Pratt et al. | Jul 2009 | A1 |
20090212381 | Crisp et al. | Aug 2009 | A1 |
20090224372 | Johnson | Sep 2009 | A1 |
20090243047 | Wolter et al. | Oct 2009 | A1 |
20090263214 | Lee et al. | Oct 2009 | A1 |
20090267183 | Temple et al. | Oct 2009 | A1 |
20090267194 | Chen | Oct 2009 | A1 |
20090283662 | Wu et al. | Nov 2009 | A1 |
20090294983 | Cobbley et al. | Dec 2009 | A1 |
20090309235 | Suthiwongsunthorn et al. | Dec 2009 | A1 |
20100013060 | Lamy et al. | Jan 2010 | A1 |
20100038778 | Lee et al. | Feb 2010 | A1 |
20100047963 | Wang et al. | Feb 2010 | A1 |
20100105169 | Lee et al. | Apr 2010 | A1 |
20100117242 | Miller et al. | May 2010 | A1 |
20100127346 | DeNatale et al. | May 2010 | A1 |
20100140775 | Jung | Jun 2010 | A1 |
20100148371 | Kaskoun et al. | Jun 2010 | A1 |
20100155940 | Kawashita et al. | Jun 2010 | A1 |
20100159643 | Takahashi et al. | Jun 2010 | A1 |
20100159699 | Takahashi | Jun 2010 | A1 |
20100164062 | Wang et al. | Jul 2010 | A1 |
20100167534 | Iwata | Jul 2010 | A1 |
20100193964 | Farooq et al. | Aug 2010 | A1 |
20100225006 | Haba et al. | Sep 2010 | A1 |
20100230795 | Kriman et al. | Sep 2010 | A1 |
20100258917 | Lin | Oct 2010 | A1 |
20110089573 | Kurita | Apr 2011 | A1 |
20110095373 | Hwang et al. | Apr 2011 | A1 |
20110195546 | Yang | Aug 2011 | A1 |
20110204505 | Pagaila et al. | Aug 2011 | A1 |
20110221070 | Yen et al. | Sep 2011 | A1 |
20110266674 | Hsia et al. | Nov 2011 | A1 |
20110304057 | Matsumoto | Dec 2011 | A1 |
20120007232 | Haba | Jan 2012 | A1 |
20120018863 | Oganesian et al. | Jan 2012 | A1 |
20120018868 | Oganesian et al. | Jan 2012 | A1 |
20120018893 | Oganesian et al. | Jan 2012 | A1 |
20120018894 | Oganesian et al. | Jan 2012 | A1 |
20120018895 | Oganesian et al. | Jan 2012 | A1 |
20120020026 | Oganesian et al. | Jan 2012 | A1 |
20120025365 | Haba | Feb 2012 | A1 |
20120068330 | Oganesian et al. | Mar 2012 | A1 |
20120068351 | Oganesian et al. | Mar 2012 | A1 |
20120068352 | Oganesian et al. | Mar 2012 | A1 |
20120139094 | Haba et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
1327263 | Dec 2001 | CN |
1490875 | Apr 2004 | CN |
1758430 | Apr 2006 | CN |
101350322 | Jan 2009 | CN |
101675516 | Mar 2010 | CN |
201910420 | Jul 2011 | CN |
0316799 | May 1989 | EP |
0926723 | Jun 1999 | EP |
1482553 | Dec 2004 | EP |
1519410 | Mar 2005 | EP |
1551060 | Jul 2005 | EP |
1619722 | Jan 2006 | EP |
1653510 | May 2006 | EP |
1653521 | May 2006 | EP |
1686627 | Aug 2006 | EP |
60160645 | Aug 1985 | JP |
1106949 | Apr 1989 | JP |
4365558 | Dec 1992 | JP |
H07505982 | Jun 1995 | JP |
08-213427 | Aug 1996 | JP |
11016949 | Jan 1999 | JP |
11195706 | Jul 1999 | JP |
2000299408 | Oct 2000 | JP |
2001-085559 | Mar 2001 | JP |
2001-217386 | Aug 2001 | JP |
2002016178 | Jan 2002 | JP |
2002050738 | Feb 2002 | JP |
03285338 | May 2002 | JP |
2002162212 | Jun 2002 | JP |
2002-217331 | Aug 2002 | JP |
2002270718 | Sep 2002 | JP |
2002373957 | Dec 2002 | JP |
2003020404 | Jan 2003 | JP |
2003198069 | Jul 2003 | JP |
2003318178 | Nov 2003 | JP |
2004014657 | Jan 2004 | JP |
2004158537 | Jun 2004 | JP |
2004165602 | Jun 2004 | JP |
2004-200547 | Jul 2004 | JP |
2005-026405 | Jan 2005 | JP |
2005031117 | Feb 2005 | JP |
2005-093486 | Apr 2005 | JP |
2005-101268 | Apr 2005 | JP |
2005522019 | Jul 2005 | JP |
2005209967 | Aug 2005 | JP |
2005216921 | Aug 2005 | JP |
2005294577 | Oct 2005 | JP |
2005347442 | Dec 2005 | JP |
2005354120 | Dec 2005 | JP |
2006041148 | Feb 2006 | JP |
2006080199 | Mar 2006 | JP |
2006120931 | May 2006 | JP |
2006269968 | Oct 2006 | JP |
2007005403 | Jan 2007 | JP |
2007-053149 | Mar 2007 | JP |
2007-081304 | Mar 2007 | JP |
2007096198 | Apr 2007 | JP |
2007-157844 | Jun 2007 | JP |
2007227512 | Sep 2007 | JP |
2007250712 | Sep 2007 | JP |
2007-317887 | Dec 2007 | JP |
2008-085020 | Jan 2008 | JP |
2008-091632 | Apr 2008 | JP |
2008147224 | Jun 2008 | JP |
2008147601 | Jun 2008 | JP |
2008-177249 | Jul 2008 | JP |
2008227335 | Sep 2008 | JP |
2008-258258 | Oct 2008 | JP |
2009016773 | Jan 2009 | JP |
2009-505401 | Feb 2009 | JP |
2009111367 | May 2009 | JP |
2009224699 | Oct 2009 | JP |
2010-028601 | Feb 2010 | JP |
2010093228 | Apr 2010 | JP |
2010147281 | Jul 2010 | JP |
2010157215 | Jul 2010 | JP |
2010245506 | Oct 2010 | JP |
19990088037 | Dec 1999 | KR |
20040066018 | Jul 2004 | KR |
10-2005-0057533 | Jun 2005 | KR |
20060009407 | Jan 2006 | KR |
2006-0020822 | Mar 2006 | KR |
20070065241 | Jun 2007 | KR |
100750741 | Aug 2007 | KR |
20100087566 | Aug 2010 | KR |
200406884 | May 2004 | TW |
200522274 | Jul 2005 | TW |
200535435 | Nov 2005 | TW |
200933760 | Aug 2009 | TW |
201025501 | Jul 2010 | TW |
03025998 | Mar 2003 | WO |
2004114397 | Dec 2004 | WO |
2005022631 | Mar 2005 | WO |
2006004127 | Jan 2006 | WO |
2007021639 | Feb 2007 | WO |
2008054660 | May 2008 | WO |
2008108970 | Sep 2008 | WO |
2009017758 | Feb 2009 | WO |
2009023462 | Feb 2009 | WO |
2009104668 | Aug 2009 | WO |
2010104637 | Sep 2010 | WO |
Entry |
---|
Chinese Office Action for Application No. 2013100226268 dated Feb. 4, 2015. |
Japanese Office Action for Application 2013-541978 dated Feb. 24, 2015. |
Japanese Office Action for Application No. 2014-146474 dated. Apr. 24, 2015. |
Japanese Office Action for Application No. 2013-538966 dated Sep. 18, 2015. |
U.S. Appl. No. 11/590,616, filed Oct. 31, 2006. |
U.S. Appl. No. 11/789,694, filed Apr. 25, 2007. |
U.S. Appl. No. 12/143,743, “Recontituted Wafer Level Stacking”, filed Jun. 20, 2008. |
Chinese Office Action for Application No. 201010546210.2 dated Aug. 21, 2013. |
Chinese Office Action for Application No. 201010546793.9 dated Jun. 25, 2013. |
David R. Lide et al: ‘Handbook of Chemistry and Physics, 77th Edition, 1996-1997’, Jan. 1, 1997 (Jan. 1, 1997), CRC Press, Boca Raton, New York, London, Tokyo, XP002670569, pp. 12-90-12-91. |
Extended European Search Report for Application No. EP12189442 dated Mar. 6, 2014. |
International Search Report and Written Opinion for Application No. PCT/US2011/029394 dated Jun. 6, 2012. |
International Search Report and Written Opinion for Application No. PCT/US2011/060553 dated Oct. 26, 2012. |
International Search Report and Written Opinion for Application No. PCT/US2011/063653 dated Aug. 13, 2012. |
International Search Report and Written Opinion for PCT/US2011/051552 dated Apr. 11, 2012. |
International Search Report and Written Opinion for PCT/US2011/051556 dated Feb. 13, 2012. |
International Search Report and Written Opinion, PCT/US2008/009356 dated Feb. 19, 2009. |
International Search Report and Written Opinion, PCT/US2010/002318, dated Nov. 22, 2010. |
International Search Report and Written Opinion, PCT/US2010/052458, dated Jan. 31, 2011. |
International Search Report and Written Opinion, PCT/US2010/052785, Dated Dec. 20, 2010. |
International Search Report and Written Opinion, PCT/US2011/063025, Mar. 19, 2012. |
International Search Report Application No. PCT/US2011/029568, dated Aug. 30, 2011. |
International Search Report Application No. PCT/US2011/029568, dated Oct. 21, 2011. |
International Search Report, PCT/US10/52783, Dated Dec. 10, 2010. |
International Search Report, PCT/US2008/002659, Oct. 17, 2008. |
International Searching Authority, Search Report for Application No. PCT/US2011/060553 dated Jun. 27, 2012. |
International Written Opinion for Application No. PCT/US2011/063653 dated Jan. 14, 2013. |
Japanese Office Action for Application No. 2009-552696 dated Aug. 14, 2012. |
Japanese Office Action for Application No. 2009-552696 dated Nov. 1, 2013. |
Japanese Office Action for Application No. 2010-519953 dated Oct. 19, 2012. |
Korean Office Action for Application No. 10-2010-7004471 dated May 29, 2014. |
Office Action for Taiwan Application No. 100145366 dated Nov. 21, 2014. |
Partial International Search Report for Application No. PCT/US2011/063653 dated Jul. 9, 2012. |
Partial International Search Report, PCT/US2008/002659. |
PCT/US08/09207, “Reconstituted Wafer Stack Packaging With After Applied Pad Extensions,” filed Jul. 25, 2008. |
Preliminary Examination Report from Taiwan Application No. 099140226 dated Oct. 21, 2013. |
Supplementary European Search Report, EP 08795005 dated Jul. 5, 2010. |
Taiwan Office Action for Application No. 100113585 dated Jun. 5, 2012. |
Taiwan Office Action for Application No. 100144451 dated Apr. 16, 2014. |
Taiwanese Office Action and Search Report for Application No. 100144456 dated Jul. 29, 2014. |
Taiwanese Office Action for Application No. 099143374 dated Jun. 24, 2013. |
Taiwanese Office Action for Application No. 100133520 dated Dec. 12, 2013. |
Taiwanese Office Action for Application No. 100144452 dated Oct. 17, 2014. |
U.S. Appl. No. 12/723,039. |
U.S. Appl. No. 12/784,841. |
U.S. Appl. No. 12/842,612. |
U.S. Appl. No. 12/842,651. |
U.S. Appl. No. 12/842,717. |
Number | Date | Country | |
---|---|---|---|
20150380336 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14177527 | Feb 2014 | US |
Child | 14753895 | US | |
Parent | 13407085 | Feb 2012 | US |
Child | 14177527 | US | |
Parent | 11603935 | Nov 2006 | US |
Child | 13407085 | US |