Semiconductor device fabricated on multiple substrate

Information

  • Patent Grant
  • 6544866
  • Patent Number
    6,544,866
  • Date Filed
    Friday, May 31, 2002
    22 years ago
  • Date Issued
    Tuesday, April 8, 2003
    21 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Fahmy; Wael
    • Pham; Hoai
    Agents
    • Jacobson Holman PLLC
Abstract
A semiconductor device fabricated on a multiple substrate with a first structure including a first semiconductor substrate with at least one first bonding pad and at least one alignment key formed thereon, and a second structure including a second semiconductor substrate with at least one second bonding pad and at least one alignment aperture passing through the second semiconductor substrate. By irradiating a UV beam through the alignment aperture and detecting reflection off the alignment key, the first and second semiconductor substrates are aligned.
Description




FIELD OF THE INVENTION




The present invention relates to a semiconductor device and, more particularly, to a semiconductor device fabricated on a multiple substrate and a method for fabricating the same.




DESCRIPTION OF THE PRIOR ART




A merged memory and logic (MML) device is as an example of a semiconductor device formed on a multiple substrate. The merged memory and logic device has a memory device, such as DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory) or the like, and a logic device, which are formed on the multiple substrate in order to achieve a system marked by lightness, thinness, shortness, smallness, high efficiency and low-power consumption.





FIGS. 1A

to


1


C are cross-sectional views showing fabrication processes of a merged memory and logic device according to the prior art.




As shown in

FIG. 1A

, an interlayer insulating layer


11


is formed on a memory device (not shown) and a first semiconductor substrate


10


. A final metal wire is formed on the interlayer insulating layer


11


and then bonding pads


12


are formed in order to join a second semiconductor substrate to the first semiconductor substrate


10


. A protection layer


13


is formed on the bonding pads


12


and the interlayer insulating layer


11


and then the bonding pads


12


are exposed by selectively etching back the protection layer


13


. Typically, different elements, such as gate electrodes of transistors, bit lines, metal wires, contact holes and via holes, are formed on the first semiconductor substrate


10


and metal lines and polysilicon layers are used to implement these structures.




On the other hand, referring to

FIG. 1B

, an interlayer insulating layer


21


is formed on a logic device (not shown) which is formed on a second semiconductor substrate


20


. A final metal wire is formed on the interlayer insulating layer


21


and bonding pads


22


are formed on the interlayer insulating layer


21


in order to join the second semiconductor substrate


20


to the first semiconductor substrate


10


. A protection layer


23


is formed on the bonding pads


22


and the interlayer insulating layer


21


and then the bonding pads


22


are exposed by selectively etching back the protection layer


23


.




The interlayer insulating layer


21


is formed on logic transistors made by polysilicon layers, multi-step metal wires and contact and via holes for metal interconnection.




As shown in

FIG. 1C

, in order to connect each memory device and logic device formed on the first semiconductor substrate


10


and the second semiconductor substrate


20


, respectively, the second semiconductor is turned upside down so as to join the bonding pads


12


of the first semiconductor substrate


10


to the bonding pads


22


of the second semiconductor substrate


20


and the first and second semiconductors


10


,


20


are stacked. When the stacked first and second semiconductor substrates


10


,


20


are annealed at a temperature of 300° C. to 450° C., the bonding pads


12


of the first semiconductor


10


and the bonding pads


22


of the second semiconductor


20


are electrically connected.




Since a conventional stacking technique for a merged memory and logic device, as mentioned above, does not use a mask align key for joining the first and second semiconductor substrates


10


and


20


, a misalignment is caused, making it difficult to electrically connect the first semiconductor substrate


10


and the second semiconductor substrate


20


.




SUMMARY OF THE INVENTION




It is, therefore, an object of the present invention to provide a semiconductor device fabricated on multiple substrates and a method for fabricating the same.




In accordance with a first aspect of the present invention, there is provided a semiconductor device, comprising: 1) a first structure including a first semiconductor substrate, at least one first bonding pad, and at least one alignment key formed on the first semiconductor substrate; and 2) a second structure including a second semiconductor substrate, at least one second bonding pad, and at least one alignment aperture passing through the second semiconductor substrate.




In accordance with another aspect of the present invention, there is provided a semiconductor device comprising: 1) a first structure including a first semiconductor substrate having a first circuit device, a first interlayer insulating layer formed on the first semiconductor substrate, at least one first bonding pad formed on the first interlayer insulating layer, and at least one alignment key formed on the first interlayer insulating layer; and 2) a second structure including a second semiconductor substrate having a second circuit device, a second interlayer insulating layer formed on the second semiconductor substrate, at least one second bonding pad formed on the second interlayer insulating layer, and at least one beam guiding aperture passing through the second structure and providing a beam path to the alignment key on the first interlayer insulating layer.




In accordance with a further aspect of the present invention, there is provided a method for fabricating a semiconductor device, comprising steps of providing a first semiconductor substrate having a first circuit device; forming a first interlayer insulating layer on the first semiconductor substrate; forming at least one bonding pad on the first interlayer insulating layer; forming at least one alignment key on the first interlayer insulating layer; providing a second semiconductor substrate having a second circuit device; forming a second interlayer insulating layer on the second semiconductor substrate; forming at least one second bonding pad on the second interlayer insulating layer; forming at least one alignment aperture by selectively etching the second interlayer insulating layer and the second semiconductor substrate; aligning the first semiconductor substrate and the second semiconductor substrate for joining the first bonding pad with the second bonding pad; irradiating a beam passing through the alignment aperture and detecting a beam reflectivity; re-aligning the first semiconductor substrate until the beam reflectivity is matched with a reflectivity of the alignment key; and joining the first bonding pad with the second bonding pad by a thermal treatment process.











BRIEF DESCRIPTION OF THE DRAWINGS




The above and other objects and features of the present invention will become apparent from the following description of the preferred embodiments given an conjunction with the accompanying drawings, in which:





FIGS. 1A

to


1


C are cross-sectional views showing fabrication processes of a merged memory and logic device according to the prior art;





FIGS. 2A

to


2


B are cross-sectional views showing fabrication processes of a first semiconductor substrate of a merged memory and logic device according to the present invention;





FIGS. 2C

to


2


D are cross-sectional views showing fabrication processes of a second semiconductor substrate of a merged memory and logic device according to the present invention.





FIGS. 2E

to


2


G are cross-sectional views showing fabrication processes of joining the first semiconductor substrate and the second semiconductor substrate of a merged memory and logic device according to the present invention.





FIG. 3A

is a diagram showing an array of bonding pads and alignment keys of an upper side of a memory device shown in

FIG. 2B

according to the present invention; and





FIG. 3B

is a diagram showing an array of bonding pads and alignment holes of an upper side of a logic device according to the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Hereinafter, a semiconductor device fabricated on a multiple substrate and a method for fabricating the same according to the present invention will be described in detail referring to the accompanying drawings.




As shown in

FIG. 2A

, an interlayer insulating layer


31


is formed on a first semiconductor substrate


30


on which a memory device (not shown) is provided, and a metal layer


32


is formed on the interlayer insulating layer


31


in order to form final metal wiring (not shown). The interlayer insulating layer


31


is formed on multiple metal wires, and a memory device including multiple polysilicon layers and a plurality of contact holes for electrically connecting source/drain regions of the memory to the multiple metal wires and via holes for connecting a metal wire to another metal wire are formed.




The metal layer


32


is selectively etched back and the final metal wire (not shown), such as an aluminum layer, is formed. Bonding pads


32


A are formed in order to join a second semiconductor substrate and alignment keys


32


B are formed at the same time, as shown in FIG.


2


B. Misalignment detecting layer


33


, which surround the alignment keys


32


B, may also be formed. Their detailed layout will be described in reference to FIG.


3


A. The misalignment detecting layers


33


can be formed with various materials having different reflectivity and an insulating layer, such as an oxide layer, is used as the misalignment detecting layer


33


in an embodiment of the present invention.




In another embodiment of the present invention, the interlayer insulating layer


31


itself can be used as a misalignment detecting layer without forming additional misalignment detecting layers, such as oxide layers, on the interlayer insulating layer.





FIG. 3A

is a diagram showing an array of the bonding pads


32


A, the alignment keys


32


B, the misalignment detecting layers


33


and a final metal wire (not shown) which are formed on the interlayer insulating layer


31


.

FIG. 2B

is a cross-sectional view taken along the broken line A-A′ of FIG.


3


A. The bonding pads


32


A have a size of 50 μm to 90 μm and are located on the inside of the alignment keys


32


B. The alignment keys


32


B have a size of 5 μm to 10 μm and are located on the outside of the bonding pads


32


A. The misalignment detecting layers


33


have a size of 10 μm to 50 μm and surround the alignment keys


32


B. Because the formation of the alignment keys


32


B is simultaneously implemented in patterning the final metal wire, additional processing and cost are not needed.





FIGS. 2C

to


2


D are cross-sectional views showing fabrication processes of a second semiconductor of a merged memory and logic device according to the present invention. As shown in

FIG. 2C

, an interlayer insulating layer


41


is formed in the second semiconductor substrate


40


on which a logic device (not shown) is provided and a final metal wire (not shown), such as an aluminum layer, is formed. Bonding pads


42


are formed in order to join the first and second semiconductor substrates


30


and


40


. A protection layer


43


is formed on the bonding pad


42


and then the protection layer


43


is selectively etched back by a mask patterning process so as to expose an upper portion of the bonding pads


42


. The interlayer insulating layer


41


is formed on logic transistors made of multi polysilicon layers and multiple metal wires. Contact holes for electrically connecting source/drain regions of the logic transistors and via holes for connecting metal wiring are formed therein.




In order to connect a memory device and a logic device separately formed on each of the first semiconductor substrate


30


and the second semiconductor substrate


40


, circular alignment apertures


44


having a diameter of about 5 μm to 10 μm, and corresponding to the positions of alignment keys


32


B formed on the first semiconductor substrate


30


, are formed by the selective etching process using a laser beam.





FIG. 3B

is a diagram showing an array of the final metal wiring (not shown), bonding pads


42


and alignment apertures


44


in the logic device formed on the second semiconductor substrate


40


according to the present invention.

FIG. 2D

corresponds to a cross-sectional view taken along the broken line B-B′ of FIG.


3


B.




As shown in

FIG. 2E

, in order to join the bonding pads


42


over the second semiconductor substrate


40


to the bonding pads


32


A over the first semiconductor substrate


30


, the second semiconductor substrate


40


is turned upside down and then the first semiconductor substrate


30


and the second semiconductor substrate


40


are aligned. Because an accurate alignment between the bonding pads


32


A over the first semiconductor substrate


30


and the bonding pads


42


over the second semiconductor substrate


40


is not expected, post processing is performed as follows.




As shown in

FIG. 2F

, a bottom side of the second semiconductor substrate


40


is fixed with a vacuum pump in an aligner


50


. An ultra violet (UV) beam having a wavelength of 350nm to 450nm is irradiated onto the top side of the first semiconductor substrate


30


through the alignment aperture


44


formed on the second semiconductor substrate


40


by using a UV beam projector, and a UV beam detector


52


detects the UV beam reflected from the alignment key


32


B of the first semiconductor substrate


30


.




If the alignment of the first semiconductor substrate


30


and the second semiconductor substrate


40


has been accurately performed, then 100% of the UV beam will be reflected from the alignment key


32


B made of a metal layer. The reflected UV beam is detected in the UV beam detector and then the alignment processing between the substrates is completed.




If the first semiconductor substrate


30


and the second semiconductor substrate


40


are misaligned, however, the UV beam is irradiated to the misalignment detecting layer


33


around the alignment key


32


B so that at least part of the UV beam is absorbed in the misalignment detecting layer


33


instead of being reflected. Accordingly, 100% of the UV beam is not detected at the UV beam detector


52


in the case of misalignment. A best alignment condition is searched for by changing the location of the second semiconductor substrate


40


attached by the vacuum pump in the mask aligner


50


on a step-by-step basis until the first semiconductor substrate


30


and the second semiconductor substrate


40


are aligned.




After an accurate alignment of the first semiconductor substrate


30


and the second semiconductor substrate


40


is performed, a thermal treatment is performed at a temperature of 350° C. to 450° C. As the bonding pads


32


A of the first semiconductor substrate


30


and the bonding pads


42


of the second semiconductor substrate


40


are joined, each final metal wire (not shown) of the first and the second semiconductor substrate


30


and


40


is electrically connected.




Accordingly, the present invention can be adapted for all processes for accurately stacking two different semiconductor substrates in not only fabrication process of a merged memory and logic device including DRAM, SRAM or flash memory device, but also when fabricating a highly integrated memory device using a semiconductor stacking technique. Also, the present invention can be carried out without additional processing and cost for accurately stacking two different semiconductor substrates, and solves the problem of decreased throughput generated by pattern misalignment.




It will be apparent to those skilled in the art that various modification and variations can be made in the present invention without deviating from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modification and variations of this invention provided they come within the scope of the appended claims and their equivalents.



Claims
  • 1. A method for fabricating a semiconductor device, comprising steps of:providing a first semiconductor substrate having a first circuit device; forming a first interlayer insulating layer on the first semiconductor substrate; forming at least one bonding pad on the first interlayer insulating layer; forming at least one alignment key on the first interlayer insulating layer; providing a second semiconductor substrate having a second circuit device; forming a second interlayer insulating layer on the second semiconductor substrate; forming at least one second bonding pad on the second interlayer insulating layer; forming at least one alignment aperture by selectively etching the second interlayer insulating layer and the second semiconductor substrate; aligning the first semiconductor substrate and the second semiconductor substrate to join the first bonding pad with the second bonding pad; irradiating a beam passing through the alignment aperture and detecting a beam reflectivity; re-aligning the first semiconductor substrate with the second semiconductor substrate until the beam reflectivity is matched with a reflectivity of the alignment key; and joining the first bonding pad with the second bonding pad by a thermal treatment process.
  • 2. The method for fabricating a semiconductor as recited in claim 1, wherein the method further includes a step of forming a misalignment detecting layer surrounding sidewalls of the alignment key, wherein the alignment key has a different reflectivity than the alignment key.
  • 3. The method for fabricating a semiconductor as recited in claim 2, wherein the alignment key is a metal layer and the misalignment detecting layer is an insulating layer.
  • 4. The method for fabricating a semiconductor as recited in claim 1 wherein the first circuit device is a memory device and the second device is a logic device.
  • 5. The method for fabricating a semiconductor as recited in claim 1, wherein the method further comprises the step of forming a first connecting wire for connecting the first circuit device to the second circuit device.
  • 6. The method for fabricating a semiconductor as recited in claim 5, wherein the steps of forming the first connecting wire and forming the alignment key are performed at substantially a same time.
  • 7. The method for fabricating a semiconductor as recited in claim 1, wherein the method further comprises a step of forming a second connecting wire for connecting the second circuit device to the first circuit device.
  • 8. The method for fabricating a semiconductor as recited in claim 7, wherein the steps of forming the second connecting wire and forming the alignment aperture are performed at substantially a same time.
Priority Claims (1)
Number Date Country Kind
2001-16945 Mar 2001 KR
Parent Case Info

This is a divisional application of prior application Ser. No. 09/977,249 filed Oct. 16, 2001 now U.S. Pat. No. 6,441,497.

US Referenced Citations (14)
Number Name Date Kind
4749442 Barbu et al. Jun 1988 A
5523628 Williams et al. Jun 1996 A
5672542 Schwiebert et al. Sep 1997 A
5783870 Mostafazadeh et al. Jul 1998 A
5798565 Atkins et al. Aug 1998 A
5801719 Jabbi et al. Sep 1998 A
6002136 Naeem Dec 1999 A
6005292 Roldan et al. Dec 1999 A
6190940 DeFelice et al. Feb 2001 B1
6221691 Schrock Apr 2001 B1
6281452 Prasad et al. Aug 2001 B1
6297141 Miyazaki Oct 2001 B1
6297560 Capote et al. Oct 2001 B1
6365978 Ibnabdeljalil et al. Apr 2002 B1