Semiconductor devices are typically produced by placing a multiplicity of integrated circuits (ICs), each formed by a plurality of elements and having a predetermined function, in a matrix pattern on, e.g., a semiconductor wafer such as silicon.
A multiplicity of chips placed on the wafer substrate are separated from each other by a scribe region (a scribe line) provided in a grid pattern. After forming a plurality of chips on a single substrate through a semiconductor manufacturing process, the substrate is divided into individual semiconductor devices through dicing the substrate along the scribe region into individual chips.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
As mentioned above, after forming a plurality of chips on a single substrate through a semiconductor manufacturing process, the substrate is divided into individual semiconductor devices through dicing the substrate along a scribe region into individual chips. If there are a molding compound and insulating layers (e.g., polyimide layers) at the scribe region, a laser pre-cut process may be performed to cut the insulating layers and thus to expose a portion of the molding compound, and a die saw process may then be performed to cut the molding compound. However, the laser pre-cut process is costly.
The present disclosure provides a method of manufacturing a semiconductor device without forming insulating layer at the scribe line region to remove the need for the laser pre-cutting process, thereby reducing production cost. In addition, the method of manufacturing the semiconductor device can avoid a variety of delamination (peeling) during processes, especially wet processes using chemicals, such as photoresist stripping processes or etching processes. Embodiments of the method of manufacturing the semiconductor device will be described below in detail.
The semiconductor structure 100 includes a semiconductor chip (die) 110 and a molding compound 120 disposed around the semiconductor chip 110, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
As shown in
As shown in
In some embodiments, the semiconductor structure 100 further includes a release layer 170 between the insulating layer 160 and the carrier substrate 150. In some embodiments, the release layer 170 is configured to separate the carrier substrate 150 from the insulating layer 160. In some embodiments, the release layer 170 is a light to heat conversion layer (LTHC).
As shown in
In some embodiments, forming the insulating film 200 includes forming a plurality of insulating layers stacked to each other and in a stair-like configuration, such as a first insulating layer 210, a second insulating layer 220, and a third insulating layer 230, as shown in
In some embodiments, the first insulating layer 210 is formed over the chip region 100a of the semiconductor structure 100 and the seal ring region 100b of the semiconductor structure 100. In some embodiments, a first insulating material (not shown) is blanket formed (e.g. by spin coating) over the chip region 100a and the seal ring region 100b and then patterned, e.g. using a photolithographic (including exposure and development) process, to form the first insulating layer 210. In some embodiments, the first insulating layer 210 includes polyimide resin.
In some embodiments, forming the first insulating layer 210 further includes forming the first insulating layer 210 over and in contact with the conductive pattern 130. In some embodiments, the conductive pattern 130 has great light reflection compared to the molding compound 120, resulting in large process window of the exposure process. Therefore, the conductive pattern 130 can help to form small via openings (e.g., diameter less than or equal to 10 microns) of the first insulating layer 210.
In some embodiments, the first conductive layer 310 is formed over the chip region 100a of the semiconductor structure 100 and the seal ring region 100b of the semiconductor structure 100 and laterally adjacent to a peripheral portion (not marked) of the first insulating layer 210. In some embodiments, the first conductive layer 310 formed over the seal ring region 100b is acted as a portion of the seal ring 300, and the first conductive layer 310 formed over the chip region 100a is acted as a portion of an interconnect structure (not marked). In some embodiments, a first conductive material is blanket formed (e.g., by electroplating) over the first insulating layer 210 and then patterned (e.g. using photolithographic and etching processes) to form the first conductive layer 310. In some embodiments, the first conductive layer 310 includes copper.
In some embodiments, the second insulating layer 220 is formed over the first insulating layer 210 yet exposing a lateral surface of the first conductive feature 310 facing away from the first insulating layer 210. In some embodiments, a second insulating material (not shown) is blanket formed (e.g. by spin coating) over the first insulating layer 210 and the first conductive layer 310 and then patterned (e.g. using a photolithographic (including exposure and development) process) to form the second insulating layer 220. In some embodiments, the second insulating layer 220 includes polyimide resin.
In some embodiments, the second conductive layer 320 is formed over and laterally adjacent to a peripheral portion of the second insulating layer 220 yet exposing a lateral surface of the second conductive feature 320 facing away the second insulating layer 220. In some embodiments, the second conductive layer 320 is formed over and in contact with the peripheral portion of the second insulating layer 220 and the first conductive feature 310. In some embodiments, the second conductive layer 320 formed over the seal ring region 100b is aced as a portion of the seal ring 300, and the second conductive layer 320 formed over the chip region 100a is acted as a portion of the interconnect structure (not marked). In some embodiments, a second conductive material is blanket formed (e.g., by electroplating) over the second insulating layer 220 and the first conductive feature 310 and then patterned (e.g. using photolithographic and etching processes) to form the second conductive layer 320. In some embodiments, the second conductive layer 320 includes copper.
In some embodiments, the third insulating layer 230 is formed over the second insulating layer 220 yet exposing the lateral surface of the second conductive feature 320 facing away the second insulating layer 220. In some embodiments, a third insulating material (not shown) is blanket formed (e.g. by spin coating) over the second insulating layer 220 and the second conductive layer 320 and then patterned (e.g. using a photolithographic (including exposure and development) process) to form the third insulating layer 230. In some embodiments, the third insulating layer 230 includes polyimide resin.
In some embodiments, the third conductive layer 330 is formed over and laterally adjacent to a peripheral portion of the third insulating layer 230. In some embodiments, the third conductive layer 330 is formed over and in contact with the peripheral portion of the third insulating layer 230 and the second conductive layer 320. In some embodiments, the third conductive layer 330 formed over the seal ring region 100b is aced as a portion of the seal ring 300, and the third conductive layer 330 formed over the chip region 100a is acted as a portion of the interconnect structure (not marked). In some embodiments, a third conductive material is blanket formed (e.g., by electroplating) over the third insulating layer 230 and the second conductive layer 320 and then patterned (e.g. using photolithographic and etching processes) to form the third conductive layer 330. In some embodiments, the third conductive layer 330 includes copper.
As shown in
In some embodiments, because of the protective layer 240, the stair-like portion of the seal ring 300 and the insulating film 200 in the stair-like configuration, no delamination occurs between the insulating film 200 and the semiconductor structure 100 (e.g., between the first insulating layer 210 and the conductive pattern 130) or between the protective layer 240 and the conductive pattern 130. Also, no delamination occurs between the first and second insulating layers 210, 220, or between the second and third insulating layers 220, 230, or between the third insulating layer 230 and the protective layer 240. In some embodiments, the seal ring 300 and the conductive pattern 130 constitutes a full wall to provide excellent moisture protection.
As shown in
In some embodiments, after the balls 520 and the device 540 are formed, the carrier substrate 150 is removed. In some embodiments, the carrier substrate 150 is removed using a de-bonding process (e.g., laser process). Specifically, as shown in
In some embodiments, after the de-bonding process is performed, a laser drill process is performed to form through holes (not marked) through the insulating layer 160 to expose the through vias 140, as shown in
Similar to the embodiments of
The present disclosure further provides a semiconductor device. As shown in
The semiconductor structure 100 has a chip region 100a and a seal ring region 100b surrounding the chip region 100a. The semiconductor structure 100 includes a semiconductor chip 110 and a molding compound 120 surrounding the semiconductor chip 110, as shown in
The insulating structure 200′ is disposed over the chip region 100a of the semiconductor structure 100 and the seal ring region 100b of the semiconductor structure 100. The insulating structure 200′ has a substantially smooth and inclined exposed lateral surface 240a and covers the seal ring 300. The term “substantially smooth and inclined lateral exposed surface” herein refers to the inclined lateral exposed surface having a profile without noticeable ups and downs in an cross-sectional view, such as shown in
The seal ring 300 is positioned over the seal ring region 100b of the semiconductor structure 100 and covered by the insulating structure 200′. In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, the insulating structure 200′ is in contact with the conductive pattern 130, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
According to some embodiments, a method includes forming an insulating film over a semiconductor structure. The semiconductor structure includes a semiconductor chip and a molding compound disposed around the semiconductor chip. The method further includes forming a sealing ring over a sidewall of the insulating film. A sidewall of the sealing ring facing away from the sidewall of the insulating film is exposed. The method further includes forming a protective layer over the exposed sidewall of the sealing ring.
According to some embodiments, a method includes forming an insulating film over a semiconductor structure. The semiconductor structure includes a semiconductor chip and a molding compound disposed around the semiconductor chip. The method further includes forming a sealing ring over a sidewall of the insulating film and forming a protective layer over a sidewall of the sealing ring and in contact with a top surface of the semiconductor structure.
According to some embodiments, a method includes forming an insulating film over a semiconductor structure. The semiconductor structure includes a semiconductor chip and a molding compound disposed around the semiconductor chip. The method further includes forming a sealing ring. The sealing ring has a first portion extending substantially along a top surface of the semiconductor structure, a second portion extending substantially along a sidewall of the insulating film, and a third portion extending substantially along a top surface of the insulating film. The method further includes forming a protective layer over the sealing ring.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application is a continuation application of U.S. patent application Ser. No. 17/340,036, filed Jun. 6, 2021, which is a continuation application of U.S. patent application Ser. No. 16/272,935, filed Feb. 11, 2019, now U.S. Pat. No. 11,031,351, issued Jun. 8, 2021, which is a divisional application of U.S. patent application Ser. No. 15/289,173, filed Oct. 8, 2016, now U.S. Pat. No. 10,204,870, issued Feb. 12, 2019, which claims priority to U.S. Provisional Application Ser. No. 62/329,125, filed Apr. 28, 2016, both of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62329125 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15289173 | Oct 2016 | US |
Child | 16272935 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17340036 | Jun 2021 | US |
Child | 18485291 | US | |
Parent | 16272935 | Feb 2019 | US |
Child | 17340036 | US |