This invention relates to configurations for electronic modules formed of semiconductor electronic devices.
Power switching circuits such as bridge circuits are commonly used in a variety of applications. A circuit schematic of a 3-phase bridge circuit 10 configured to drive a motor is shown in
The transistors 41-46 may be enhancement mode or E-mode transistors (normally off, Vth>0), or depletion mode or D-mode (normally on, Vth<0) transistors. In power circuits, enhancement mode devices are typically used to prevent accidental turn on which may cause damage to the devices or other circuit components. Nodes 17, 18, and 19 are all coupled to one another via inductive loads, i.e., inductive components such as motor coils (not shown in
As used herein, the term “blocking a voltage” refers to a transistor, device, or component being in a state for which significant current, such as current that is greater than 0.001 times the average operating current during regular ON-state conduction, is prevented from flowing through the transistor, device, or component when a voltage is applied across the transistor, device, or component. In other words, while a transistor, device, or component is blocking a voltage that is applied across it, the total current passing through the transistor, device, or component will not be greater than 0.001 times the average operating current during regular ON-state conduction.
Referring to
Referring to
In addition to their use in motor-drive applications, half bridges and bridge circuits can also be used in many other applications, for example boost or buck converters or in power supplies. An exemplary circuit which utilizes a half bridge 15 to drive an electrical load 28 is illustrated in
The mode of switching illustrated in
Alternative circuit configurations make use of additional passive and/or active components, or alternatively signal timing techniques, to allow the transistors to be “soft-switched”. A soft-switching circuit configuration is one in which the switching transistors are configured to be switched ON during zero-current (or near zero-current) conditions and switched OFF during zero-voltage (or near zero-voltage) conditions. Soft-switching methods and configurations have been developed to address the high levels of electro-magnetic interference (EMI) and associated ringing observed in hard-switched circuits, especially in high current and/or high voltage applications. While soft-switching can in many cases alleviate these problems, the circuitry required for soft switching typically includes many additional components, resulting in increased overall cost and complexity. Soft-switching also typically requires that the circuits be configured to switch only at specific times when the zero-current or zero-voltage conditions are met, hence limiting the control signals that can be applied and in many cases reducing circuit performance. Hence, alternative configurations and methods are desirable for hard-switched power switching circuits in order to maintain sufficiently low levels of EMI.
In one aspect, an electronic component is described which includes a first transistor encased in a first package, the first package including a first conductive portion having a first area, with the first transistor being mounted over the first conductive portion. The electronic component further includes a second transistor encased in a second package, the second package including a second conductive portion having a second area, the second transistor being mounted over the second conductive portion. The electronic component also includes a substrate comprising an insulating layer between a first metal layer and a second metal layer, the first metal layer being on a first side of the substrate and the second metal layer being on a second side of the substrate. The first package is on the first side of the substrate with the first conductive portion being electrically connected to the first metal layer, the second package is on the second side of the substrate with the second conductive portion being electrically connected to the second metal layer, and the first package is opposite the second package, with at least 50% of the first area of the first conductive portion being opposite the second area of the second conductive portion.
In another aspect, an electronic component is described which includes a first transistor encased in a first package, the first package having a source lead and a first conductive portion, with the first transistor being mounted over the first conductive portion. The electronic component also includes a second transistor encased in a second package, the second package having a drain lead and a second conductive portion, with the second transistor being mounted over the second conductive portion. The electronic component further includes a substrate comprising an insulating layer between a first metal layer and a second metal layer, the first metal layer being on a first side of the substrate and the second metal layer being on a second side of the substrate. The first package is on the first side of the substrate with the first conductive portion being electrically connected to the first metal layer, the second package is on the second side of the substrate with the second conductive portion being electrically connected to the second metal layer, and the first package is at least partially opposite the second package, with the source lead of the first package being substantially aligned with the drain lead of the second package.
In yet another aspect, an electronic component is described which includes a capacitor comprising an insulating layer between a first electrically conductive layer and a second electrically conductive layer. The electronic component also includes a first transistor encased in a first package, the first package having a first conductive portion, and a second transistor encased in a second package, the second package having a second conductive portion. The first conductive portion is mounted directly over the first electrically conductive layer, and the second conductive portion is mounted directly over the second electrically conductive layer.
In still another aspect, a half bridge configured to be connected to an electrical load is described. The half bridge includes a first switch encased in a first package and a second switch encased in a second package, the first package having a source lead and the second package having a drain lead, with the source lead of the first package being electrically connected to the drain lead of the second package. The half bridge is operable to hard-switch a voltage of at least 300 Volts across the electrical load at a switching rate of at least 100 Volts/nanosecond while a current of at least 3 Amps flows through the electrical load.
The electronic components and half bridges described herein can include one or more of the following features. The first and second transistors can be part of a half bridge circuit. The substrate can form a capacitor which serves to stabilize a voltage between the first and second metal layers during operation of the half bridge circuit. The capacitor formed by the substrate can be a first capacitor, the electronic component further comprising a second capacitor connected in parallel to the first capacitor. The substrate can include a via hole, and a lead of the second capacitor can pass through the via hole. The first package can have a source lead and the second package can have a drain lead, with the source and drain leads being electrically connected to one another. The substrate can include a via hole, and a connector which electrically connects the source lead of the first package to the drain lead of the second package can pass through the via hole. The first transistor can have a first electrode which is electrically connected to the first conductive portion, and the second transistor can have a second electrode which is electrically connected to the second conductive portion. The first electrode can be a drain electrode of the first transistor, and the second electrode can be a source electrode of the second transistor. The first conductive portion can be directly on and contacting the first metal layer, and the second conductive portion can be directly on and contacting the second metal layer.
The first transistor or the second transistor can be a III-Nitride transistor or a lateral device. The first package can have a source lead and the second package can have a drain lead, with the source lead being substantially aligned with the drain lead. The electronic component can further include a third transistor encased in the first package, where a source of the first transistor is electrically connected to a drain of the third transistor, and a gate of the first transistor is electrically connected to a source of the second transistor. The first transistor can be a high-voltage depletion-mode transistor, and the third transistor can be a low-voltage enhancement-mode transistor.
The substrate can be a printed circuit board (PCB) substrate, such as a 2-layer printed circuit board (PCB) substrate. A drain electrode of the first transistor can be electrically connected to the first conductive portion, and a source electrode of the second transistor can be electrically connected to the second conductive portion. The first package can have a drain lead and the second package can have a source lead, with the drain lead of the first package electrically connected to the first conductive portion, and the source lead of the second package electrically connected to the second conductive portion. The electronic component can comprise a half bridge module, which can be configured to be connected to an electrical load. The first conductive portion can be electrically connected to the first electrically conductive layer, and the second conductive portion can be electrically connected to the second electrically conductive layer. The current through an electrical load can be at least 6 amps, and the first switch and the second switch can be on opposite sides of a substrate.
In yet another aspect, a method of operating a half bridge circuit comprising a first switch encased in a first package and a second switch encased in a second package is described. The method includes biasing a drain of the first switch at a voltage of at least 300 Volts relative to a source of the second switch, and biasing the first switch on and biasing the second switch off, thereby causing a current of at least 3 Amps to flow through the first switch and causing the second switch to block a voltage. The method further includes at a first time switching the first switch off, causing the current to flow through the second switch and causing the first switch to block a voltage. The switching of the first switch comprises hard-switching of the first switch at a switching rate of at least 100 Volts/nanosecond.
Methods described herein can each include one or more of the following features. The first switch and the second switch can each comprise one or more transistors. The method can further comprise at a second time switching the first switch from off to on, causing the current to flow through the first switch and causing the second switch to block a voltage. The second time can be after the first time. The method can further comprise connecting the half bridge circuit to an electrical load, wherein the current flows through the electrical load. The drain of the first switch can be biased at a voltage of at least 400 Volts relative to the source of the second switch.
The details of one or more embodiments of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
Like reference symbols in the various drawings indicate like elements.
Described herein are electronic components and methods suitable for maintaining low levels of EMI in electronic power switching circuits, thereby allowing for higher circuit stability and improved performance. The described electronic components can also have a reduced size as compared to conventional components, thereby allowing for lower production costs.
The transistors or other switching devices in the circuits described herein are typically configured to be hard-switched, as previously described, at very high switching rates (i.e., with very short switching times). When a transistor of one of the circuits herein is in the OFF state with no substantial current flowing through it, it typically supports a voltage which is close to the circuit high voltage. When a transistor of one of the circuits herein is in the ON state, it typically has substantial current passing through it with only a small voltage across it. The switching time of a switching transistor switched under hard-switching conditions is defined as follows. When the transistor is switched from the OFF state described above to the ON state described above, the current through the device begins to increase at the onset of switching, the rate of increase being adjustable by adjusting the conditions of the control circuitry, while the voltage across the device remains approximately the same. The voltage across the device does not drop substantially until the point at which substantially all the load current passes through the transistor. The time that elapses between the onset of switching and the drop in voltage across the device is referred to as the “switching time” for turning the transistor on. The total voltage switched across the device divided by the switching time (dV/dt) is referred to as the “voltage switching rate” or just the “switching rate”.
When switching the transistor from the ON state to the OFF state, the voltage across the device increases to the OFF state voltage approximately at the onset of switching, while the decrease in current from the ON state value to the OFF state value takes a longer time, the rate of decrease again being adjustable by adjusting the conditions of the control circuitry. The time that elapses between the onset of switching and the drop to zero current through the device is referred to as the “switching time” for turning the transistor OFF. The total current switched through the device divided by the switching time (dI/dt) is referred to as the “current switching rate” or just the “switching rate”. In general, while shorter switching times (and therefore higher switching rates) typically result in lower switching losses, they typically also cause higher levels of EMI, which can degrade circuit components or damage them such that they are rendered inoperable.
In order to ensure proper operation of the circuits in
As illustrated in
The transistors 90 (shown in
Referring to
In some implementations, transistors 90 are III-Nitride transistors, such as III-Nitride high electron mobility transistors (HEMTs). III-Nitride transistors are suitable for many of the applications in which the electronic component of
Still referring to
As used herein, two or more contacts or other items such as conductive layers or components are said to be “electrically connected” if they are connected by a material which is sufficiently conducting to ensure that the electric potential at each of the contacts or other items is substantially the same or about the same regardless of bias conditions.
Referring to
Referring back to
In addition to providing a rigid surface to which switches 60 and 70 can be secured, substrate 85 also serves the function of capacitor 51 in the circuit diagrams of
Referring to
Similarly, referring to
Metal layer 81, in addition to being one of the plates of capacitor 51 in
As seen in
In many cases, the capacitance of substrate 85 may not be large enough for stable circuit operation. In these cases, one or more additional capacitors 31, shown in
While in
The source electrode 111 of the low-voltage E-mode transistor 109 and the gate electrode 115 of the high-voltage D-mode transistor 108 are electrically connected together, for example with wire bonds 34, and together form the source 121 of the hybrid device 107. The gate electrode 112 of the low-voltage E-mode transistor 109 functions as the gate 122 of the hybrid device 107. The drain electrode 116 of the high-voltage D-mode transistor 108 functions as the drain 123 of the hybrid device 107. The source electrode 114 of the high-voltage D-mode transistor 108 is electrically connected to the drain electrode 113 of the low-voltage E-mode transistor 109. As seen in
As used herein, a “hybrid enhancement-mode electronic device or component”, or simply a “hybrid device or component”, is an electronic device or component formed of a depletion-mode transistor and a enhancement-mode transistor, where the depletion-mode transistor is capable of a higher operating and/or breakdown voltage as compared to the enhancement-mode transistor, and the hybrid device or component is configured to operate similarly to a single enhancement-mode transistor with a breakdown and/or operating voltage about as high as that of the depletion-mode transistor. That is, a hybrid enhancement-mode device or component includes at least 3 nodes having the following properties. When the first node (source node) and second node (gate node) are held at the same voltage, the hybrid enhancement-mode device or component can block a positive high voltage (i.e., a voltage larger than the maximum voltage that the enhancement-mode transistor is capable of blocking) applied to the third node (drain node) relative to the source node. When the gate node is held at a sufficiently positive voltage (i.e., greater than the threshold voltage of the enhancement-mode transistor) relative to the source node, current passes from the source node to the drain node or from the drain node to the source node when a sufficiently positive voltage is applied to the drain node relative to the source node. When the enhancement-mode transistor is a low-voltage device and the depletion-mode transistor is a high-voltage device, the hybrid component can operate similarly to a single high-voltage enhancement-mode transistor. The depletion-mode transistor can have a breakdown and/or maximum operating voltage that is at least two times, at least three times, at least five times, at least ten times, or at least twenty times that of the enhancement-mode transistor.
In typical power switching applications in which high-voltage switching transistors are used, the transistor is, during the majority of time, in one of two states. In the first state, which is commonly referred to as the “on state”, the voltage at the gate electrode relative to the source electrode is higher than the transistor threshold voltage, and substantial current flows through the transistor. In this state, the voltage difference between the source and drain is typically low, usually no more than a few volts, such as about 0.1-5 volts. In the second state, which is commonly referred to as the “off state”, the voltage at the gate electrode relative to the source electrode is lower than the transistor threshold voltage, and no substantial current, apart from off-state leakage current, flows through the transistor. In this second state, the voltage between the source and drain can range anywhere from about 0V to the value of the circuit high voltage supply, which in some cases can be as high as 100V, 300V, 600V, 1200V, 1700V, or higher, but can be less than the breakdown voltage of the transistor. In some applications, inductive elements in the circuit cause the voltage between the source and drain to be even higher than the circuit high voltage supply. Additionally, there are short times immediately after the gate has been switched on or off during which the transistor is in a transition mode between the two states described above. When the transistor is in the off state, it is said to be “blocking a voltage” between the source and drain. As used herein, “blocking a voltage” refers to the ability of a transistor, device, or component to prevent significant current, such as current that is greater than 0.001 times the average operating current during regular on-state conduction, from flowing through the transistor, device, or component when a voltage is applied across the transistor, device, or component. In other words, while a transistor, device, or component is blocking a voltage that is applied across it, the total current passing through the transistor, device, or component will not be greater than 0.001 times the average operating current during regular on-state conduction.
The electronic components described herein are configured such that the switches, and the transistors which are included in the switches, can be switch high voltages and/or high currents at high switching rates without destabilizing the circuit in which the electronic component is used, or causing damage to circuit components. In conventional half bridge circuits formed of a high-side and a low-side switch, where each switch is formed of one or more transistors and individually packaged (that is, the transistors of the high-side switch are all encased in a first package, and the transistors of the low-side switch are all encased in a second package), it is typically difficult or impossible to switch high voltages and/or high currents at high switching rates without destabilizing the circuit in which the electronic component is used, since parasitic inductances are typically too large. By utilizing the half bridge configuration illustrated in
The operating conditions for the circuit during the current and voltage measurements of
During time period 141, high-side switch 60 was biased ON (i.e., the voltage of gate lead 62 relative to source lead 61 was greater than the threshold voltage of switch 60), causing current to flow through both the high-side switch 60 and the inductive load 21, as in
Still referring to
At time 145, the high-side switch 60 was switched back ON, causing the load current to again flow through both the high-side switch 60 and the inductive load 21, as in
The operating conditions for the circuit during the current and voltage measurements of
During time period 151, low-side switch 70 was biased OFF (i.e., the voltage of gate lead 72 relative to source lead 71 was less than the threshold voltage of switch 70), causing current to flow through both the high-side switch 60 and the inductive load 21, as in
Still referring to
At time 155, the low-side switch 60 was switched back OFF, causing the load current to again flow through both the high-side switch 60 and the inductive load 21, as in
The configuration for low-side switch 70 shown in
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the techniques and devices described herein. For example, transistors 44 and 43, which are used to sink or supply current in
This is a continuation of U.S. application Ser. No. 14/585,705, filed on Dec. 30, 2014, which is a continuation of U.S. application Ser. No. 14/134,878, filed on Dec. 19, 2013 (now U.S. Pat. No. 8,952,750), which is a continuation of U.S. application Ser. No. 13/405,041, filed on Feb. 24, 2012 (now U.S. Pat. No. 8,648,643). The disclosures of the prior applications are considered part of and are incorporated by reference in the disclosure of this application.
Number | Name | Date | Kind |
---|---|---|---|
4321489 | Higuchi et al. | Mar 1982 | A |
4384287 | Sakuma | May 1983 | A |
4665508 | Chang | May 1987 | A |
4728826 | Einzinger et al. | Mar 1988 | A |
4808853 | Taylor | Feb 1989 | A |
4864479 | Steigerwald et al. | Sep 1989 | A |
5198964 | Ito et al. | Mar 1993 | A |
5379209 | Goff | Jan 1995 | A |
5493487 | Close et al. | Feb 1996 | A |
5637922 | Fillion et al. | Jun 1997 | A |
5767573 | Noda et al. | Jun 1998 | A |
5789951 | Shen et al. | Aug 1998 | A |
5952856 | Horiguchi et al. | Sep 1999 | A |
6008684 | Ker et al. | Dec 1999 | A |
6107844 | Berg et al. | Aug 2000 | A |
6130831 | Matsunaga | Oct 2000 | A |
6172550 | Gold et al. | Jan 2001 | B1 |
6333617 | Itabashi et al. | Dec 2001 | B1 |
6395593 | Pendharkar et al. | May 2002 | B1 |
6455905 | Perugupalli et al. | Sep 2002 | B1 |
6521940 | Vu et al. | Feb 2003 | B1 |
6633195 | Baudelot et al. | Oct 2003 | B2 |
6650169 | Faye et al. | Nov 2003 | B2 |
6781423 | Knoedgen | Aug 2004 | B1 |
6900657 | Bui et al. | May 2005 | B2 |
6975023 | Oliver et al. | Dec 2005 | B2 |
7116567 | Shelton et al. | Oct 2006 | B2 |
7304331 | Saito et al. | Dec 2007 | B2 |
7348687 | Aichriedler et al. | Mar 2008 | B2 |
7375407 | Yanagihara et al. | May 2008 | B2 |
7378883 | Hsueh | May 2008 | B1 |
7443648 | Cutter et al. | Oct 2008 | B2 |
7449730 | Kuraguchi | Nov 2008 | B2 |
7477082 | Fukazawa | Jan 2009 | B2 |
7501669 | Parikh et al. | Mar 2009 | B2 |
7538366 | Saito et al. | May 2009 | B2 |
7548112 | Sheppard | Jun 2009 | B2 |
7612602 | Yang et al. | Nov 2009 | B2 |
7639064 | Hsiao et al. | Dec 2009 | B2 |
7714360 | Otsuka et al. | May 2010 | B2 |
7719055 | McNutt et al. | May 2010 | B1 |
7746020 | Schnetzka et al. | Jun 2010 | B2 |
7755108 | Kuraguchi | Jul 2010 | B2 |
7782099 | Kawamura | Aug 2010 | B2 |
7804328 | Pentakota et al. | Sep 2010 | B2 |
7825435 | Machida et al. | Nov 2010 | B2 |
7851825 | Suh et al. | Dec 2010 | B2 |
7855401 | Sheppard et al. | Dec 2010 | B2 |
7875907 | Honea et al. | Jan 2011 | B2 |
7875914 | Sheppard | Jan 2011 | B2 |
7884395 | Saito | Feb 2011 | B2 |
7898004 | Wu et al. | Mar 2011 | B2 |
7906837 | Cabahug et al. | Mar 2011 | B2 |
7915643 | Suh et al. | Mar 2011 | B2 |
7920013 | Sachdev et al. | Apr 2011 | B2 |
7965126 | Honea et al. | Jun 2011 | B2 |
7982242 | Goto | Jul 2011 | B2 |
8013580 | Cervera et al. | Sep 2011 | B2 |
8018056 | Hauenstein | Sep 2011 | B2 |
8089139 | Shi et al. | Jan 2012 | B2 |
8193559 | Haeberlen et al. | Jun 2012 | B2 |
8441128 | Domes | May 2013 | B2 |
8530904 | Treu et al. | Sep 2013 | B2 |
8648643 | Wu | Feb 2014 | B2 |
8742460 | Mishra et al. | Jun 2014 | B2 |
8952750 | Wu | Feb 2015 | B2 |
20020125920 | Stanley | Sep 2002 | A1 |
20030178654 | Thornton | Sep 2003 | A1 |
20040178831 | Li et al. | Sep 2004 | A1 |
20050052221 | Kohnotoh et al. | Mar 2005 | A1 |
20050067716 | Mishra et al. | Mar 2005 | A1 |
20050077947 | Münzer et al. | Apr 2005 | A1 |
20050146310 | Orr | Jul 2005 | A1 |
20050189561 | Kinzer et al. | Sep 2005 | A1 |
20050189562 | Kinzer et al. | Sep 2005 | A1 |
20050218964 | Oswald et al. | Oct 2005 | A1 |
20060033122 | Pavier | Feb 2006 | A1 |
20060043499 | De Cremoux et al. | Mar 2006 | A1 |
20060060871 | Beach | Mar 2006 | A1 |
20060102929 | Okamoto et al. | May 2006 | A1 |
20060158166 | Van Der Wal | Jul 2006 | A1 |
20060175627 | Shiraishi | Aug 2006 | A1 |
20060176007 | Best | Aug 2006 | A1 |
20060237825 | Pavier et al. | Oct 2006 | A1 |
20060238234 | Benelbar et al. | Oct 2006 | A1 |
20060261473 | Connah et al. | Nov 2006 | A1 |
20070018210 | Sheppard | Jan 2007 | A1 |
20070080672 | Yang | Apr 2007 | A1 |
20070090373 | Beach et al. | Apr 2007 | A1 |
20070146045 | Koyama | Jun 2007 | A1 |
20070210329 | Goto | Sep 2007 | A1 |
20070278518 | Chen et al. | Dec 2007 | A1 |
20080017998 | Pavio | Jan 2008 | A1 |
20080018366 | Hanna | Jan 2008 | A1 |
20080122418 | Briere et al. | May 2008 | A1 |
20080136390 | Briere | Jun 2008 | A1 |
20080158110 | Iida et al. | Jul 2008 | A1 |
20080191342 | Otremba | Aug 2008 | A1 |
20080203559 | Lee et al. | Aug 2008 | A1 |
20080231211 | Baarman | Sep 2008 | A1 |
20080248634 | Beach | Oct 2008 | A1 |
20080272404 | Kapoor | Nov 2008 | A1 |
20080283844 | Hoshi et al. | Nov 2008 | A1 |
20090001562 | Otremba et al. | Jan 2009 | A1 |
20090050936 | Oka | Feb 2009 | A1 |
20090072269 | Suh et al. | Mar 2009 | A1 |
20090085219 | Bayerer | Apr 2009 | A1 |
20090167411 | Machida et al. | Jul 2009 | A1 |
20090180304 | Bahramian et al. | Jul 2009 | A1 |
20090201072 | Honea | Aug 2009 | A1 |
20090215230 | Muto et al. | Aug 2009 | A1 |
20090236728 | Satou et al. | Sep 2009 | A1 |
20090278513 | Bahramian | Nov 2009 | A1 |
20090315594 | Pentakota et al. | Dec 2009 | A1 |
20100019391 | Strzalkowski | Jan 2010 | A1 |
20100067275 | Wang et al. | Mar 2010 | A1 |
20100073067 | Honea | Mar 2010 | A1 |
20100079192 | Strzalkowski | Apr 2010 | A1 |
20100097119 | Ma et al. | Apr 2010 | A1 |
20100117095 | Zhang | May 2010 | A1 |
20100328833 | Frisch et al. | Dec 2010 | A1 |
20110019450 | Callanan et al. | Jan 2011 | A1 |
20110025397 | Wang et al. | Feb 2011 | A1 |
20110101466 | Wu | May 2011 | A1 |
20110121314 | Suh et al. | May 2011 | A1 |
20110169549 | Wu | Jul 2011 | A1 |
20110285378 | Tamaoka | Nov 2011 | A1 |
20110298383 | Muehlschlegel | Dec 2011 | A1 |
20120181674 | Cho | Jul 2012 | A1 |
20120195074 | Lehn | Aug 2012 | A1 |
20120286571 | Baarman | Nov 2012 | A1 |
20120306464 | Hirler et al. | Dec 2012 | A1 |
20130015495 | Hauenstein | Jan 2013 | A1 |
20130222045 | Wu | Aug 2013 | A1 |
20140103989 | Wu | Apr 2014 | A1 |
20150137217 | Wu | May 2015 | A1 |
Number | Date | Country |
---|---|---|
1682445 | Oct 2005 | CN |
1921148 | Feb 2007 | CN |
101263547 | Sep 2008 | CN |
101978589 | Feb 2011 | CN |
102165694 | Aug 2011 | CN |
102308387 | Jan 2012 | CN |
102254902 | Nov 2013 | CN |
103477543 | Dec 2013 | CN |
2 188 842 | May 2010 | EP |
2 243 213 | Oct 2010 | EP |
2 394 303 | Dec 2011 | EP |
5-075040 | Mar 1993 | JP |
6-067744 | Mar 1994 | JP |
2000-101356 | Apr 2000 | JP |
2000-124358 | Apr 2000 | JP |
2001-358285 | Dec 2001 | JP |
2003-244943 | Aug 2003 | JP |
2003-338742 | Nov 2003 | JP |
2004-281454 | Oct 2004 | JP |
2006-033723 | Feb 2006 | JP |
2006-173754 | Jun 2006 | JP |
2006-223016 | Aug 2006 | JP |
2007-036218 | Feb 2007 | JP |
2007-215331 | Aug 2007 | JP |
2007-252055 | Sep 2007 | JP |
2007-294769 | Nov 2007 | JP |
2008-187167 | Aug 2008 | JP |
2008-198735 | Aug 2008 | JP |
2008-199771 | Aug 2008 | JP |
2009-141150 | Jun 2009 | JP |
2009-218475 | Sep 2009 | JP |
2010-539712 | Dec 2010 | JP |
2011-036017 | Feb 2011 | JP |
2011-512119 | Apr 2011 | JP |
2012-517699 | Aug 2012 | JP |
10-1998-0021826 | Jun 1998 | KR |
200941920 | Oct 2009 | TW |
201027912 | Jul 2010 | TW |
201036155 | Oct 2010 | TW |
201126686 | Aug 2011 | TW |
201143017 | Dec 2011 | TW |
201332085 | Aug 2013 | TW |
201347143 | Nov 2013 | TW |
WO 2009036181 | Mar 2009 | WO |
WO 2009036266 | Mar 2009 | WO |
WO 2009102732 | Aug 2009 | WO |
WO 2010039463 | Apr 2010 | WO |
WO 2010090885 | Aug 2010 | WO |
WO 2011053981 | May 2011 | WO |
WO 2011085260 | Jul 2011 | WO |
WO 2011097302 | Aug 2011 | WO |
WO 2013085839 | Jun 2013 | WO |
Entry |
---|
Authorized officer Keon Hyeong Kim, International Search Report and Written Opinion in PCT/US2008/076160 mailed Mar. 18, 2009, 11 pages. |
Authorized officer Simin Baharlou, International Preliminary Report on Patentability in PCT/US2008/076160, mailed Mar. 25 2010, 6 pages. |
Authorized officer Jae Woo Wee, International Search Report and Written Opinion in PCT/US2009/033699, mailed Sep. 21, 2009, 11 pages. |
Authorized officer Dorothée Mülhausen, International Preliminary Report on Patentability in PCT/US2009/033699, mailed Aug. 26, 2010, 6 pages. |
Authorized officer Sung Hee Kim, International Search Report and the Written Opinion in PCT/US2009/057554, mailed May 10, 2010, 13 pages. |
Authorized Officer Gijsbertus Beijer, International Preliminary Report on Patentability in PCT/US2009/057554, mailed Mar. 29, 2011, 7 pages. |
Authorized officer Sung Chan Chung, International Search Report and Written Opinion for PCT/US2010/021824, mailed Aug. 23, 2010, 9 pages. |
Authorized officer Beate Giffo-Schmitt, International Preliminary Report on Patentability in PCT/US2010/021824, mailed Aug. 18, 2011, 6 pages. |
Authorized officer Bon Gyoung Goo, International Search Report and Written Opinion in PCT/US2010/055129, mailed Jul. 1, 2011, 11 pages. |
Authorized officer Yolaine Cussac, International Preliminary Report on Patentability in PCT/US2010/055129, mailed May 18, 2012, 6 pages. |
Authorized officer Sung Joon Lee, International Search Report and Written Opinion in PCT/US2011/020592, mailed Sep. 19, 2011, 9 pages. |
Authorized officer Philippe Bécamel, International Preliminary Report on Patentability in PCT/US2011/020592, mailed Jul. 19, 2012, 7 pages. |
Authorized officer Kee Young Park, International Search Report and Written Opinion in PCT/US2011/023485, mailed Sep. 23, 2011, 10 pages. |
Authorized officer Nora Lindner, International Preliminary Report on Patentability in PCT/US2011/023485, mailed Aug. 16, 2012, 7 pages. |
Authorized officer Kwak In Gu, International Search Report and Written Opinion in PCT/US2012/026810, mailed Jan. 23, 2013, 10 pages. |
Authorized officer Lingfei Bai, International Preliminary Report on Patentability in PCT/US2012/026810, mailed Sep. 12, 2013, 6 pages. |
Authorized officer Sang Won Choi, International Search Report and Written Opinion in PCT/US2013/027294, mailed Jun. 26, 2013, 10 pages. |
Authorized officer Kihwan Moon, International Preliminary Report on Patentability in PCT/US2013/027294, mailed Sep. 4, 2014, 7 pages. |
Authorized officer Hye Lyun Park, International Search Report and Written Opinion in PCT/US2014/045137, mailed Oct. 16, 2014, 9 pages. |
Authorized officer Sung Gon Kim, International Search Report and Written Opinion in PCT/US2014/032241, mailed Aug. 11, 2014, 12 pages. |
Search Report and Action in TW Application No. 098132132, issued Dec. 6, 2012, 8 pages. |
Chinese Third Office Action in Application No. 200980110230.0, Jan. 24, 2014, 18 pages. |
Japanese Office action in Application No. 2010-546867, Sep. 24, 2013, 14 pages. |
Search Report and Action in TW Application No. 098141930, issued Jul. 10, 2014, 7 pages. |
Chen et al., “Single-Chip Boost Converter Using Monolithically Integrated AlGan/GaN Lateral Field-Effect Rectifier and Normally Off HEMT,” IEEE Electron Device Letters, May 2009, 30(5):430-432. |
Choi et al., “An-9005 Driving and Layout Design for Fast Switching Super-junction MOSFETs,” © 2013 Fairchild Corporation, 13 pages. |
Napierala et al., “Selective GaN Epitaxy on Si(111) Substrates Using Porous Aluminum Oxide Buffer Layers,” Journal of the Electrochemical Society, 2006. 153(2):G125-G127, 4 pages. |
Rodríguez et al, “Tutorial on Multilevel Converters,” International Conference on Power Electronics and Intelligent Control for Energy Conservation, Warsaw, Poland, Oct. 17-19, 2005, 148 pages. |
Wu et al., “A 97.8% Efficient GaN HEMT Boost Converter with 300-W Output Power at 1MHz,”Electronic Device Letters, 2008, IEEE, 29(8):824-826. |
Authorized officer Athina Nickitas-Etienne, International Preliminary Report on Patentabililty in PCT/US2014/032241, mailed Oct. 15, 2015, 9 pages. |
Authorized officer Agnès Wittmann-Regis, International Preliminary Report on Patentability in PCT/US2014/045137, mailed Jan. 21, 2016, 6 pages. |
Notification of First Office Action in Chinese Application No. 201380021266.8, dated Dec. 5, 2016, 18 pages. |
Notice of Reasons for Rejection in Japanese Application No. 2014-558857, dated Nov. 22, 2016, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20160079223 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14585705 | Dec 2014 | US |
Child | 14950411 | US | |
Parent | 14134878 | Dec 2013 | US |
Child | 14585705 | US | |
Parent | 13405041 | Feb 2012 | US |
Child | 14134878 | US |