The present application is based on and claims the benefit of priority to Japanese Patent Application No. 2011-010311, filed Jan. 20, 2011. The contents of the specification, scope of patent claims and drawings in Japanese Patent Application No. 2011-10311 are incorporated herein by reference in their entirety in this application.
1. Field of the Invention
The present invention relates to a wiring board and its manufacturing method.
2. Discussion of the Background
Japanese Laid-Open Patent Publication No. 2007-266197 describes a wiring board which includes an insulative substrate where a cavity is formed, a capacitor arranged in the cavity and positioned in a side direction of the insulative substrate, an interlayer insulation layer positioned on the insulative substrate and on the capacitor, and a conductive layer positioned on the interlayer insulation layer. The insulative material from the interlayer insulation layer is filled in a gap between the insulative substrate and the capacitor in the cavity. The entire contents of Japanese Laid-Open Patent Publication No. 2007-266197 are incorporated herein by reference.
According to one aspect of the present invention, a wiring board includes an insulative substrate having a cavity portion, an electronic device positioned in the cavity portion of the insulative substrate, an interlayer insulation layer made of an insulative material and formed on the insulative substrate and on the electronic device, and a conductive layer having a conductive pattern and formed on the interlayer insulation layer. The insulative substrate has a gap formed with respect to the electronic device in the cavity portion, the gap between the electronic device in the cavity portion and the insulative substrate is filled with an insulator made of the insulative material derived from the interlayer insulation layer, and the conductive pattern of the conductive layer has an enlarged-width portion across and directly over the gap.
According to another aspect of the present invention, a method for manufacturing a wiring board includes preparing an insulative substrate having a cavity portion, positioning an electronic device in the cavity portion of the insulative substrate, forming an interlayer insulation layer made of an insulative material on the insulative substrate and on the electronic device, filling a gap between the insulative substrate and the electronic device in the cavity portion with an insulator made of the insulative material derived from the interlayer insulation layer, and forming a conductive layer having a conductive pattern on the interlayer insulation layer. The forming of the conductive layer includes forming an enlarged-width portion across and directly over the gap between in the insulative substrate and the electronic device.
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The embodiments will now be described with reference to the accompanying drawings, wherein like reference numerals designate corresponding or identical elements throughout the various drawings.
In the drawings, arrows (Z1, Z2) each indicate a lamination direction in a wiring board (or a thickness direction of the wiring board), corresponding to a direction along a normal line to the main surfaces (upper and lower surfaces) of the wiring board. On the other hand, arrows (X1, X2) and (Y1, Y2) each indicate a direction perpendicular to a lamination direction (or a direction to a side of each layer). The main surfaces of a wiring board are on the X-Y plane. Side surfaces of a wiring board are on the X-Z plane or the Y-Z plane.
Two main surfaces facing opposite directions of a normal line are referred to as a first surface or a third surface (the Z1-side surface) and a second surface or a fourth surface (the Z2-side surface). In lamination directions, the side closer to the core is referred to as a lower layer (or inner-layer side), and the side farther from the core is referred to as an upper layer (or outer-layer side). In addition, a side farther from a cavity (in particular its gravity center) on the X-Y plane is referred to as outside, and the side closer to the cavity as inside. “Directly over” means a direction Z (Z1 side or Z2 side). A planar shape means a shape on the X-Y plane unless otherwise indicated specifically.
Conductive layers are those formed with one or more conductive patterns. Conductive layers may include a conductive pattern that forms an electrical circuit such as wiring (including ground), a pad or land, and the like, or may include a planar conductive pattern that does not form an electrical circuit.
Opening portions include notches and cuts other than holes and grooves. Holes are not limited to penetrating holes, and non-penetrating holes are also referred to as holes. Holes include via holes and through holes. Hereinafter, conductor formed in a via hole (wall or bottom surface) is referred to as a via conductor, and conductor formed in a through hole (wall surface) is referred to as a through-hole conductor.
Plating includes wet plating such as electrolytic plating as well as dry plating such as PVD (physical vapor deposition) and CVD (chemical vapor deposition).
Preparing includes situations in which material and components are purchased and manufactured accordingly as well as situations in which finished products are purchased and used accordingly.
Positioning an electronic device in a cavity includes situations in which the entire electronic device is completely accommodated in a cavity as well as situations in which only part of an electronic device is positioned in a cavity.
“Connection” includes connecting with a joint as well as connecting without a joint. Connecting with a joint includes situations in which two objects formed separately are bonded by an adhesive or the like, for example. Connecting without a joint includes situations in which two portions are formed to be contiguous (integrated) and nothing is present between them, for example.
In the following, an embodiment of the present invention is described in detail with reference to the drawings.
As shown in
Substrate 100 is insulative, and becomes the core substrate of wiring board 10. Through hole (300a) is formed in substrate 100 (core substrate), and through-hole conductor (300b) is formed by filling plating (such as copper plating) in through hole (300a). Through-hole conductor (300b) is shaped like an hourglass, for example. Namely, through-hole conductor (300b) has narrowed portion (300c), and the width of through-hole conductor (300b) gradually decreases from first surface (F1) toward narrowed portion (300c), and gradually decreases from second surface (F2) toward narrowed portion (300c). However, the shape of through-hole conductor (300b) is not limited to such, and may be substantially a column, for example.
Conductive layer 301 is formed on first surface (F1) of substrate 100, and conductive layer 302 is formed on second surface (F2) of substrate 100. Conductive layers (301, 302) each include a land of through-hole conductor (300b).
Cavity (R10) is formed in substrate 100, and electronic component 200 is accommodated in cavity (R10). Electronic component 200 is positioned in a side direction of substrate 100 (direction X or direction Y) by being positioned in cavity (R10). In the present embodiment, substantially the entire electronic component 200 is completely accommodated in cavity (R10). However, that is not the only option, and only part of electronic component 200 may be positioned in cavity (R10). In the present embodiment, insulator (101a) is filled in a gap between substrate 100 and electronic component 200 in cavity (R10). In the present embodiment, insulator (101a) is made from the insulative material (resin, in particular) of upper insulation layer 101 (resin insulation layer, in particular) (see
Insulation layer 101 is formed on first surface (F1) of substrate 100 and on third surface (F3) of electronic component 200. Insulation layer 102 is formed on second surface (F2) of substrate 100 and on fourth surface (F4) of electronic component 200. Cavity (R10) is a hole that penetrates through substrate 100. Insulation layer 101 covers one opening (the first-surface (F1) side) of cavity (R10) (hole), and insulation layer 102 covers the other opening (the second-surface (F2) side) of cavity (R10) (hole). Conductive layer 110 is formed on insulation layer 101, and conductive layer 120 is formed on insulation layer 102. In the present embodiment, conductive layers (110, 120) are the outermost layers. However, that is not the only option, and more interlayer insulation layers and conductive layers may further be formed (see later-described
Conductive layer 110 is the outermost conductive layer on the first-surface (F1) side, and conductive layer 120 is the outermost conductive layer on the second-surface (F2) side. Solder resists (11, 12) are respectively formed on conductive layers (110, 120). However, opening portions (11a, 12a) are respectively formed in solder resists (11, 12). Therefore, a predetermined position of conductive layer 110 (the position corresponding to opening portion (11a)) is exposed without being covered by solder resist 11 to become pad (P1). Also, a predetermined position of conductive layer 120 (the position corresponding to opening portion (12a)) becomes pad (P2). Pad (P1) becomes an external connection terminal for electrical connection with another wiring board, for example, and pad (P2) becomes an external connection terminal for mounting an electronic component, for example (see later-described
In the present embodiment, pads (P1, P2) have an anticorrosion layer made of Ni/Au film, for example, on their surfaces. Anticorrosion layers may be formed by electrolytic plating, sputtering or the like. Alternatively, anticorrosion layers made of organic preservative film may be formed by an OSP treatment. An anticorrosion layer is not always required and it may be omitted unless necessary.
Holes (311a, 312a) (via holes) are formed in insulation layer 101, and holes (321a, 322a) (via holes) are formed in insulation layer 102. By filling conductor (such as copper plating) in holes (311a, 312a, 321a, 322a), the conductor in each hole respectively becomes via conductors (311b, 312b, 321b, 322b) (filled conductors). Holes (311a, 321a) each reach electrodes (210, 220) of electronic component 200, and via conductors (311b, 321b) are each electrically connected to electrodes (210, 220) of electronic component 200 either from the first-surface (F1) side or from the second-surface (F2) side of substrate 100. As described, electronic component 200 is connected to via conductors (311b, 321b) from both of its surfaces in the present embodiment. In the following, such a structure is referred to as a double-sided via structure.
In the above double-sided via structure, electrodes (210, 220) of electronic component 200 and conductive layer 110 on insulation layer 101 are electrically connected to each other by via conductors (311b), and electrodes (210, 220) of electronic component 200 and conductive layer 120 on insulation layer 102 are electrically connected to each other by via conductors (321b).
In addition, conductive layer 301 on first surface (F1) of substrate 100 and conductive layer 110 on insulation layer 101 are electrically connected to each other by via conductor (312b), and conductive layer 302 on second surface (F2) of substrate 100 and conductive layer 120 on insulation layer 102 are electrically connected to each other by via conductor (322b). Also, conductive layer 301 on first surface (F1) of substrate 100 and conductive layer 302 on second surface (F2) of substrate 100 are electrically connected to each other by through-hole conductor (300b). Via conductors (312b, 322b) and through-hole conductor (300b) are each a filled conductor, and they are stacked in direction Z.
Electronic component 200 is a chip-type MLCC (multilayer ceramic capacitor) as shown in
As shown in
Substrate 100, insulation layers (101, 102), solder resists (11, 12) and electronic component 200 are each shaped as a rectangular sheet, for example. Cavity (R10) penetrates through substrate 100. Openings on both ends of cavity (R10) (first-surface (F1) side and second-surface (F2) side) are each substantially in a rectangular shape, for example. Main surfaces of electronic component 200 are substantially in a rectangular shape, for example. In the present embodiment, electronic component 200 has a planar shape corresponding to cavity (R10) (a similar shape of substantially the same size, for example), and the thickness of electronic component 200 is substantially the same as the depth of cavity (R10) (hole). In addition, the thickness of substrate 100 is substantially the same as the thickness of electronic component 200. However, the above are not the only options, and the shape and dimensions of cavity (R10) are determined freely.
Here, an example of the preferred value for each measurement in
Width (D1) of cavity (R10) in a longitudinal direction is approximately 1080 μm, for example, and width (D2) of cavity (R10) in a lateral direction is approximately 580 μm, for example. Width (D11) of electronic component 200 in a longitudinal direction is approximately 1000 μm, for example, and width (D12) of electronic component 200 in a lateral direction is approximately 500 μm, for example. Width (D3) of a gap between electronic component 200 and cavity (R10) in a longitudinal direction is approximately 40 μm (clearance is twice as much, approximately 80 μm), for example, and width (D4) of a gap between electronic component 200 and cavity (R10) in a lateral direction is approximately 40 μm (clearance is twice as much, approximately 80 μm), for example. Width (D13) of upper portion (210a) or lower portion (210c) of electrode 210 or upper portion (220a) or lower portion (220c) of electrode 220 is approximately 230 μm, for example.
Via conductor (311b) and via conductor (321b) are positioned to face each other by sandwiching electronic component 200, for example. Pitch (D5) of via conductor (311b) or (321b) is approximately 770 μm, for example.
The thickness of substrate 100 is approximately 100 μm, for example. The thickness of electronic component 200 (thickness that includes electrodes) is approximately 150 μm, for example. The thickness of wiring board 10 (thickness from solder resist 11 to solder resist 12) is approximately 290 μm, for example.
Substrate 100 is made, for example, by impregnating glass cloth (core material) with epoxy resin (hereinafter referred to as glass epoxy). The core material has a lower thermal expansion coefficient than the primary material (glass-epoxy resin in the present embodiment). As for core material, the following is considered preferable, for example: glass fiber (glass cloth or glass non-woven fabric, for example), aramid fiber (aramid non-woven fabric, for example), inorganic material such as silica filler, or the like. However, basically, the material of substrate 100 is selected freely. For example, polyester resin, bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, allyl polyphenylene ether resin (A-PPE resin) or the like may be used instead of epoxy resin. Substrate 100 may be formed with multiple layers made of different materials.
In the present embodiment, insulation layers (101, 102) are each made by impregnating core material with resin. Since insulation layer 101 is made of resin containing core material, recess (R11) is seldom formed in region (R1) of insulation layer 101 directly over gap (R0) (see
Via conductors (311b, 312b, 321b, 322b) are each made of copper plating, for example. Those via conductors (311b) and others are shaped in a tapered column (truncated cone), for example, tapering with a diameter that increases from substrate 100 (core substrate) or electronic component 200 toward their respective upper layers. However, the shape of via conductors is not limited to the above, and any other shape may be employed.
Conductive layer 110 is formed with copper foil 111 (lower layer) and copper plating 112 (upper layer). Conductive layer 120 is formed with copper foil 121 (lower layer) and copper plating 122 (upper layer). Conductive layers (110, 120) include wiring that forms an electrical circuit (electrical circuit that includes electronic component 200, for example), a land, a plain pattern to enhance the strength of wiring board 10, and the like.
Materials of each conductive layer and each via conductor are selected freely as long as they are conductive, and they may be metallic or non-metallic. Each conductive layer and each via conductor may be formed with multiple layers made of different materials.
In the present embodiment, insulator (101a) is filled in gap (R0) between substrate 100 and electronic component 200 in cavity (R10) as shown in
In the present embodiment, conductive layer 110 has conductive patterns (110a, 110b, 110c, 110d), whose widths are partially enlarged directly over gap (R0) as shown in
Specifically, those conductive patterns (110a˜110d) each have an area where first straight portion (S1), enlarged-width portion (E) and second straight portion (S2) are connected in that order. First straight portion (S1), enlarged-width portion (E) and second straight portion (S2) are connected to each other in an integrated fashion, and each works as wiring. In addition, each of conductive patterns (110a, 110d) further includes land (L1), which is electrically connected to first straight portion (S1) and which becomes a first terminal, as well as land (L2), which is electrically connected to second straight portion (S2) and which becomes a second terminal. Land (L2) works as pad (P1), for example (
First straight portion (S1) and second straight portion (S2) each have a substantially constant width. In the present embodiment, first straight portion (S1) is positioned inside (the side closer to electronic component 200), and second straight portion (S2) is positioned outside (the side farther from electronic component 200).
Enlarged-width portion (E) is positioned directly over gap (R0), having a width which is greater than either of first straight portion (S1) and second straight portion (S2) in substantially entirely from the connecting point with first straight portion (S1) to the connecting point with second straight portion (S2). Conductive patterns (110a˜110d) each have a width partially enlarged at enlarged-width portion (E). In the present embodiment, enlarged-width portion (E) has a greater width than recesses (R11, R12) as shown in
In the present embodiment, conductive layer 110 has conductive patterns whose widths are partially enlarged directly over gap (R0) between substrate 100 and electronic component 200 in cavity (R10). In a portion where width is enlarged (enlarged-width portion (E)), the strength of enlarged-width portion (E) is enhanced by enlarging the width of the conductive pattern. Accordingly, conductive patterns (conductive layer 110) positioned directly over gap (R0) between substrate 100 and electronic component 200 in cavity (R10) are suppressed from breaking, and electrical connection reliability is enhanced in wiring board 10.
To enhance the strength of conductive patterns, increasing the thickness of conductive patterns is an option. However, when increasing the thickness of conductive patterns, the number of plating steps needs to be increased or the like, and the manufacturing process tends to be complex. By contrast, when enlarging the width of conductive patterns, modifying a pattern (such as a resist pattern) during the patterning step is sufficient, and thus a simplified manufacturing process is easier to maintain.
To suppress breakage in conductive patterns, enlarging the entire width of conductive patterns is an option. However, if the width of conductive patterns is also enlarged even in portions where breakage seldom occurs, another issue may arise, such as a reduction of space for forming wiring.
For that matter, conductive patterns (110a˜110d) each have a width partially enlarged in region (R1) directly over gap (R0) between substrate 100 and electronic component 200 in cavity (R10) (see
Also, to suppress breakage in conductive patterns, it is an option to form conductive patterns to avoid positioning in region (R1) directly over gap (R0) between substrate 100 and electronic component 200 in cavity (R10). However, if conductive patterns are formed to avoid region (R1), another issue may arise, such as a reduction of space for forming wiring.
For that matter, in wiring board 10 of the present embodiment, since conductive patterns are also formed in region (R1) directly over gap (R0) between electronic component 200 and substrate 100, it is easier to secure wiring space.
In the present embodiment, substrate 100 (insulative substrate) corresponds to the core substrate of wiring board 10, and pad (P2) for mounting an electronic component is formed in the outermost layer (conductive layer 120) opposite conductive layer 110 (second-surface (F2) side) (see later-described
In the present embodiment, enlarged-width portion (E) has a shape that is substantially elliptical as shown in
Regarding the measurements in
When the width of enlarged-width portion (E) is not constant as shown in
In at least either connecting point (C1) of first straight portion (S1) and enlarged-width portion (E) or connecting point (C2) of second straight portion (S2) and enlarged-width portion (E), it is considered preferable for the width of conductive patterns to be enlarged at an angle less than 90 degrees. If set so, stress concentration is mitigated, and it is easier to form such portions.
If enlarged-width portion (E) has a shape that is substantially elliptical, width-enlarging angle (θ1) at connecting point (C1) or width-enlarging angle (θ2) at connecting point (C2) is determined based on a tangent at connecting point (C1) or (C2) as shown in
In the following, a method for manufacturing wiring board 10 is described with reference to
In step (S11), wiring board 1000 (starting material) is prepared as shown in
Through hole (300a) shaped like an hourglass is formed by irradiating a laser from both sides of substrate 100 (double-sided copper-clad laminate) having copper foil on both of its surfaces, for example. After copper foils are formed on substrate 100, and through hole (300a) is formed in substrate 100, conductive layers (301, 302) and through-hole conductor (300b) are formed by performing copper plating (such as electroless plating and electrolytic plating), for example.
After the above laser irradiation, it is considered preferable to conduct desmearing on through hole (300a). Unwanted conduction (short-circuiting) is suppressed by desmearing. Also, depending on requirements, it is considered preferable to roughen surfaces of conductive layers (301, 302) by etching or the like.
In the present embodiment, conductive layer 301 is not formed on substrate 100 in region (R100) which corresponds to cavity (R10), as shown in
However, the conductive pattern of conductive layer 301 is not limited to the pattern shown in
In addition, as shown in
In step (S12) in
In step (S13) in
Specifically, as shown in
As shown in
In step (S14) in
After insulator (101a) is filled in cavity (R10), the filled resin (insulator 101a) and electronic component 200 are preliminarily adhered. Specifically, the filled resin is heated to gain retention power to a degree that it can support electronic component 200. In doing so, electronic component 200 supported by carrier 1001 is supported by the filled resin. Carrier 1001 is removed.
At this stage, insulator (101a) (filled resin) and insulation layer 101 are only semicured, not completely cured. However, that is not the only option, and insulator (101a) and insulation layer 101 may be completely cured at this stage, for example.
In step (S15) in
Specifically, insulation layer 102 (second interlayer insulation layer) and copper foil 121 (second copper foil) are formed on second surface (F2) of substrate 100 as shown in
In the subsequent step (S16) in
In particular, by using a laser, for example, holes (311a, 312a) (each a via hole) are formed in insulation layer 101 and copper foil 111, and holes (321a, 322a) (each a via hole) are formed in insulation layer 102 and copper foil 121, as shown in
Using a chemical plating method, for example, electroless copper-plated films (1003, 1004), for example, are formed on copper foils (111, 121) and in holes (311a, 312a, 321a, 322a) (see
Using a lithographic technique, printing or the like, plating resist 1005 having opening portions (1005a) is formed on the first-surface (F1) side main surface (on electroless plated film 1003), and plating resist 1006 having opening portions (1006a) is formed on the second-surface (F2) side main surface (on electroless plated film 1004) (see
As shown in
Plating resists (1005, 1006) are removed using a predetermined removal solution, for example, and unnecessary electroless plated films (1003, 1004) and copper foils (111, 121) are removed. Accordingly, conductive layers (110, 120) including conductive patterns (110a˜110d) (see
A seed layer for electrolytic plating is not limited to electroless plated film, and sputtered film or the like may also be used as a seed layer instead of electroless plated films (1003, 1004).
In step (S17) in
By electrolytic plating, sputtering or the like, an anticorrosion layer made of Ni/Au film, for example, is formed on conductive layers (110, 120), in particular, on surfaces of pads (P1, P2) (see
Accordingly, a buildup section is formed on first surface (F1) of substrate 100, where insulation layer 101, conductive layer 110 and solder resist 11 are formed, and another buildup section is formed on second surface (F2) of substrate 100, where insulation layer 102, conductive layer 120 and solder resist 12 are formed. As a result, wiring board 10 of the present embodiment (
The manufacturing method according to the present embodiment is suitable for manufacturing wiring boards 10. Using such a manufacturing method, excellent wiring boards 10 are obtained at low cost.
Wiring board 10 of the present embodiment may be electrically connected to electronic components or other wiring boards, for example. For example, as shown in
The planar shape of enlarged-width portion (E) in each conductive pattern is not limited to being substantially an ellipse as shown in
As shown in
As shown in
As shown in
The shapes of electronic component 200 and cavity (R10) are not limited specifically. For example, as shown in
It is not necessarily electronic component 200 that is to be built into wiring board 10, but it may be other wiring board 600, for example, as shown in
In the above embodiment, a wiring board has a double-sided via structure for electronic component 200. However, that is not the only option. For example, as shown in
In the above embodiment, a wiring board (wiring board 10) is shown having only one electronic component 200 in cavity (R10) (accommodation space for electronic component 200). However, that is not the only option. For example, it may be a wiring board having multiple electronic components 200 in cavity (R10). Multiple electronic components 200 may be arrayed along a lamination direction (direction Z) or may be arrayed along direction X or direction Y. Alternatively, multiple cavities (R10) may be formed.
In the above embodiment, a double-sided wiring board (wiring board 10) is shown, having conductive layers on both sides of a core substrate. However, that is not the only option. For example, as shown in
Also, as shown in
In the above embodiment, an example is shown in which the thickness of substrate 100 is substantially the same as the thickness of electronic component 200. However, that is not the only option. As shown in
It is an option for a wiring board to have two or more buildup layers on one side of the core substrate. As shown in
As shown in
The structure of wiring board 10, as well as the type, performance, measurements, quality, shapes, number of layers, positioning and so forth of the elements of such a structure, may be modified freely within a scope that does not deviate from the gist of the present invention.
The electrodes (210, 220) of electronic component 200 are not limited to being U-shaped, and they may be a pair of planar electrodes that sandwich capacitor body 201.
Electronic component 200 is not limited to a specific type. Any electronic component, for example, an active component such as an IC circuit along with a passive component such as a capacitor, resistor or inductor, may be used. As shown in
Also, in the example shown in
Via conductors (311b) and others are not limited to being filled conductors, and they may be conformal conductors, for example.
Electronic component 200 may be mounted by other methods such as wire bonding instead of via connections (via conductors (311b, 321b)).
The process for manufacturing a wiring board is not limited to the order and contents shown in
For example, any method may be used for forming each conductive layer. For example, any one method of the following or any combination of two or more of those may be used for forming conductive layers: panel plating, pattern plating, full-additive, semi-additive (SAP), subtractive, transfer and tenting methods.
Also, instead of a laser, wet or dry etching may be used for processing. When an etching process is employed, it is considered preferable to protect in advance with resist or the like portions which are not required to be removed.
The above embodiment and modified examples or the like may be combined freely. Selecting an appropriate combination according to usage requirements or the like is considered preferable. For example, any structure shown in
A wiring board according to the first aspect of the present invention has the following: an insulative substrate where a cavity is formed, an electronic device positioned in the cavity, an interlayer insulation layer positioned on the insulative substrate and on the electronic device, and a conductive layer positioned on the interlayer insulation layer. In such a wiring board, the insulative material from the interlayer insulation layer is filled in a gap between the insulative substrate and the electronic device in the cavity, and the conductive layer includes a conductive pattern whose width is partially enlarged directly over the gap.
A method for manufacturing a wiring board according to the second aspect of the present invention includes the following: preparing an insulative substrate where a cavity is formed; positioning an electronic device in the cavity; forming an interlayer insulation layer on the insulative substrate and on the electronic device; filling the insulative material from the interlayer insulation layer in a gap between the insulative substrate and the electronic device in the cavity; and on the interlayer insulation layer, forming a conductive layer having a conductive pattern whose width is partially enlarged directly over the gap.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2011-010311 | Jan 2011 | JP | national |