In the formation of a semiconductor wafer, integrated circuit devices such as transistors are first formed at the surface of a semiconductor substrate. Interconnect structures are then formed over the semiconductor substrate and the integrated devices. Connectors are formed on the surface of the semiconductor wafer, so that the integrated circuit devices can be accessed. The semiconductor wafer is sawed into a plurality of semiconductor chips.
The packaging of the semiconductor chips may be performed through reflow processes, wherein solder regions between the connectors of the semiconductor chips are reflowed to bond the semiconductor chips to other package components such as device dies, interposer, package substrates, or the like. In the reflow processes, the solder regions are molten, and the shapes and the profiles of the molten solder region are difficult to control. This may cause problems such as bridging, and hence the deterioration of the bonding quality or the yield loss.
For a more complete understanding of the embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative, and do not limit the scope of the disclosure.
A method for forming connectors for package components is provided in accordance with various embodiments. The intermediate stages of manufacturing the connectors in accordance with the embodiments are illustrated. The variations of the embodiments are discussed. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
Referring to
In alternative embodiments, wafer 2 is an interposer wafer or a wafer of package substrates, and is substantially free from active devices including transistors and passive devices such as resistors, capacitors, inductors, and/or the like. In these embodiments, substrate 10 may be formed of a semiconductor material or a dielectric material, and connectors may be formed on opposite sides of substrate 10, and electrically coupled to each other.
Metal pad 28 is formed over interconnect structure 12. Metal pad 28 may comprise aluminum (Al), copper (Cu), silver (Ag), gold (Au), nickel (Ni), tungsten (W), alloys thereof, and/or multi-layers thereof. In an exemplary embodiment, metal pad 28 is formed of aluminum copper. Metal pad 28 may be electrically coupled to semiconductor devices 14, for example, through the underlying interconnect structure 12. Passivation layer 30 may be formed to cover edge portions of metal pad 28. In an exemplary embodiment, passivation layer 30 is formed of polyimide or other dielectric materials such as silicon oxide, silicon nitride, and multi-layers thereof.
Referring to
Referring to
Optionally, as shown in
Next, as shown in
In
Referring to
In the embodiments in
In accordance with embodiments, a device includes a top dielectric layer having a top surface. A metal pillar has a portion over the top surface of the top dielectric layer. A non-wetting layer is formed on a sidewall of the metal pillar, wherein the non-wetting layer is not wettable to the molten solder. A solder region is disposed over and electrically coupled to the metal pillar.
In accordance with other embodiments, a device includes a polymer layer having a top surface, and a copper-containing metal pillar having a portion over the top surface of the polymer layer. A first non-wetting layer is disposed on a sidewall of the copper-containing metal pillar, wherein the first non-wetting layer comprises a material selected from the group consisting essentially of a copper nitride, a copper oxide, and a copper oxynitride. A nickel-containing metal cap is formed over the copper-containing metal pillar. A second non-wetting layer is disposed on a sidewall of the nickel-containing metal cap, wherein the second non-wetting layer comprises a material selected from the group consisting essentially of a nickel nitride, a nickel oxide, and a nickel oxynitride. A solder region is disposed over the nickel-containing metal cap.
In accordance with yet other embodiments, a method includes forming a top dielectric layer of a package component, forming a metal pillar extending over a top surface of the top dielectric layer, and forming a solder region over, and electrically coupled to, the metal pillar. A treatment is then performed to a sidewall surface of the metal pillar to form a non-wettable surface layer.
Although the embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the embodiments as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, and composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps. In addition, each claim constitutes a separate embodiment, and the combination of various claims and embodiments are within the scope of the disclosure.
This is a divisional application of U.S. application Ser. No. 13/343,582, filed on Jan. 4, 2012 which claims the benefit of provisionally filed U.S. Patent Application Ser. No. 61/491,301, filed May 30, 2011, entitled “3DIC Packaging Structures and Methods,” both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3996034 | Taylor et al. | Dec 1976 | A |
4811082 | Jacobs et al. | Mar 1989 | A |
4990462 | Sliwa, Jr. | Feb 1991 | A |
5075253 | Sliwa, Jr. | Dec 1991 | A |
5194403 | Delage et al. | Mar 1993 | A |
5313371 | Knecht et al. | May 1994 | A |
5334804 | Love et al. | Aug 1994 | A |
5380681 | Hsu | Jan 1995 | A |
5481133 | Hsu | Jan 1996 | A |
6002177 | Gaynes et al. | Dec 1999 | A |
6051190 | Birch et al. | Apr 2000 | A |
6187678 | Gaynes et al. | Feb 2001 | B1 |
6218281 | Watanabe et al. | Apr 2001 | B1 |
6229216 | Ma et al. | May 2001 | B1 |
6229220 | Saitoh et al. | May 2001 | B1 |
6236115 | Gaynes et al. | May 2001 | B1 |
6271059 | Bertin et al. | Aug 2001 | B1 |
6279815 | Correla et al. | Aug 2001 | B1 |
6355501 | Fung et al. | Mar 2002 | B1 |
6392163 | Rinne et al. | May 2002 | B1 |
6434016 | Zeng et al. | Aug 2002 | B2 |
6448661 | Kim et al. | Sep 2002 | B1 |
6461895 | Liang et al. | Oct 2002 | B1 |
6562653 | Ma et al. | May 2003 | B1 |
6570248 | Ahn et al. | May 2003 | B1 |
6578754 | Tung | Jun 2003 | B1 |
6592019 | Tung | Jul 2003 | B2 |
6600222 | Levardo | Jul 2003 | B1 |
6607938 | Kwon et al. | Aug 2003 | B2 |
6661085 | Kellar et al. | Dec 2003 | B2 |
6762076 | Kim et al. | Jul 2004 | B2 |
6774306 | Smith | Aug 2004 | B2 |
6790748 | Kim et al. | Sep 2004 | B2 |
6818545 | Lee et al. | Nov 2004 | B2 |
6853076 | Datta et al. | Feb 2005 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6908565 | Kim et al. | Jun 2005 | B2 |
6908785 | Kim | Jun 2005 | B2 |
6917119 | Lee et al. | Jul 2005 | B2 |
6924551 | Rumer et al. | Aug 2005 | B2 |
6943067 | Greenlaw | Sep 2005 | B2 |
6946384 | Kloster et al. | Sep 2005 | B2 |
6975016 | Kellar et al. | Dec 2005 | B2 |
7008867 | Lei | Mar 2006 | B2 |
7037804 | Kellar et al. | May 2006 | B2 |
7056807 | Kellar et al. | Jun 2006 | B2 |
7064436 | Ishiguri et al. | Jun 2006 | B2 |
7087538 | Staines et al. | Aug 2006 | B2 |
7101781 | Ho et al. | Sep 2006 | B2 |
7151009 | Kim et al. | Dec 2006 | B2 |
7157787 | Kim et al. | Jan 2007 | B2 |
7215033 | Lee et al. | May 2007 | B2 |
7276799 | Lee et al. | Oct 2007 | B2 |
7279795 | Periaman et al. | Oct 2007 | B2 |
7307005 | Kobrinsky et al. | Dec 2007 | B2 |
7317256 | Williams et al. | Jan 2008 | B2 |
7320928 | Kloster et al. | Jan 2008 | B2 |
7345350 | Sinha | Mar 2008 | B2 |
7391112 | Li et al. | Jun 2008 | B2 |
7402442 | Condorelli et al. | Jul 2008 | B2 |
7402515 | Arana et al. | Jul 2008 | B2 |
7410884 | Ramanathan et al. | Aug 2008 | B2 |
7432592 | Shi et al. | Oct 2008 | B2 |
7494845 | Hwang et al. | Feb 2009 | B2 |
7498119 | Limb et al. | Mar 2009 | B2 |
7528494 | Furukawa et al. | May 2009 | B2 |
7531890 | Kim | May 2009 | B2 |
7557597 | Anderson et al. | Jul 2009 | B2 |
7576435 | Chao | Aug 2009 | B2 |
7816743 | Furukawa et al. | Oct 2010 | B2 |
7834450 | Jang | Nov 2010 | B2 |
7863739 | Lee et al. | Jan 2011 | B2 |
8159070 | Lin et al. | Apr 2012 | B2 |
8232193 | Chang | Jul 2012 | B2 |
8242011 | Lim et al. | Aug 2012 | B2 |
8637392 | Arvin et al. | Jan 2014 | B2 |
20020090805 | Yap et al. | Jul 2002 | A1 |
20020117330 | Eldridge et al. | Aug 2002 | A1 |
20020166688 | Smith | Nov 2002 | A1 |
20030006062 | Stone et al. | Jan 2003 | A1 |
20040007779 | Arbuthnot et al. | Jan 2004 | A1 |
20040096697 | Tai et al. | May 2004 | A1 |
20080048320 | Lee et al. | Feb 2008 | A1 |
20100109159 | Ho et al. | May 2010 | A1 |
20100132998 | Lee et al. | Jun 2010 | A1 |
20100164098 | Kuechenmeister et al. | Jul 2010 | A1 |
20110006416 | Tseng et al. | Jan 2011 | A1 |
20110193218 | Arvin et al. | Aug 2011 | A1 |
20110266667 | Wu et al. | Nov 2011 | A1 |
20110298123 | Hwang et al. | Dec 2011 | A1 |
20120007228 | Lu et al. | Jan 2012 | A1 |
20120091577 | Hwang et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
1901198 | Jan 2007 | CN |
101740417 | Jun 2010 | CN |
05335313 | Dec 1993 | JP |
2000228420 | Aug 2000 | JP |
Entry |
---|
Wei, C.C., et al., “Comparison of the Electromigration Behaviors Between Micro-bumps and C4 Solder Bumps,” 2011 Electronic Components and Technology Conference, pp. 706-710. |
Lin, T.H., et al., “Electromigration Study of Micro Bumps at Si/Si Interface in 3DIC Package for 28nm Technology and Beyond,” IEEE Electronic Components and Technology Conference, May 31-Jun. 3, 2011, pp. 346-350. |
Number | Date | Country | |
---|---|---|---|
20140131864 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61491301 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13343582 | Jan 2012 | US |
Child | 14161111 | US |